
Model calibration specifications ABI - OKS003 
 
1. Metadata 
Authors: 
Thor Besier 
Marco Schneider 
Nynke Rooks  
 
Date: 2/10/2019 
 
Contact: t.besier@auckland.ac.nz  
 
2. Summary of data utilized with the M&S processes 
Calibration data needed: 
~ 0 degrees knee flexion: Varus - valgus rotation moment - rotation data  
~ 90 degrees knee flexion: Internal - external rotation  moment - rotation data  
~ 90 degrees knee flexion: Anterior - posterior translation force - displacement data 
 
Selected OKS003 robot data 
Load - displacement data:  
File: 006_All Laxity 0deg_main_processed.tdms  
 State.Knee JCS: Knee JCS Valgus 
 State.JCS Load: JCS Load Varus Torque 
File: 014_AllLaxity 90deg_main_processed.tdms  
 State.Knee JCS: Knee JCS Internal Rotation 
 State.JCS Load: JCS Load External Rotation Torque 
 State.Knee JCS: Knee JCS Posterior 
 State.JCS Load: JCS Load Anterior Drawer  
File: state.cfg 
 Knee JCS: Position offset 
 
Anatomical landmarks data:  
File: state.cfg 
 Collected points rigid body 1 
 Collected points rigid body 2 
 
Registration marker data:  
File: state.cfg 
 MRI Fiducial Sphere positions 
 
Imaging data: 
General purpose imaging (MRI) - sagittal 
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3. Overview of target M&S outputs and M&S processes 
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4. Detailed description target M&S outputs 
4.1 Complete calibrated model  
The model will be based on the model built in the Model Development phase, for more                
information on how this model was built, we refer to the ABI Model Development              
specifications and protocol deviations documents. The complete calibrated model will be           
provided as *.feb file together with the corresponding *.log and *.xplt file.  
 
4.1.1 Anatomy 
The model will consist of the tibiofemoral joint. The patella will also be present in the model,                 
but is not taken into account in the calibration. It will be displaced 10mm in the anterior                 
direction to make sure it does not interact with the other structures in the model. The                
tibiofemoral joint structures present in the complete calibrated model will be the femur and              
tibia/fibula bones and cartilages, the medial and lateral meniscus (mMen & lMen), the             
anterior cruciate ligament (ACL), the posterior cruciate ligament (PCL), the medial collateral            
ligament (MCL) and the lateral collateral ligament (LCL).  
 
In the model, the femur and tibia/fibula bones consist of a triangulated mesh and the               
cartilages are represented using hexahedral elements. Both the ligaments and the menisci            
are hexahedral meshes, where the menisci are attached to the tibia using linear springs.  
 
The anatomy of the individual components of the calibrated knee model will be provided as               
meshes in *.feb, *.prv and *.vtk format.  
 
4.1.2 Mechanical properties 
The mechanical properties of each structure in the model are dependent on their material              
properties. The bones will be represented as rigid bodies. The cartilages will also be              
represented as rigid bodies, since this decreases the computational time of the model and              
will be sufficient if the kinematics of the joint are of primary interest. In future models where                 
cartilage stresses and strains will need to be found, the cartilage model will be changed to                
an isotropic elastic material model. 
 
The ligaments will be modelled using a prestrain elastic transverse isotropic Mooney-Rivlin            
material model. Using the prestrain stretch factor (Maas et al., 2016), the initial stretch in the                
ligament can be prescribed. All ligaments have the same material properties, but the             
prestrain stretch factor will be different for each ligament. The menisci will be modelled using               
a Fung orthotropic material model. Please refer to the ABI Model development M&S outputs              
and documents for more detailed information.  
 
The mechanical properties and the material models used, and the calibrated prestrain            
values, will be provided in the complete calibrated model *.feb file and will also be described                
separately in *.txt files.  
 
4.1.3 Coordinate systems 
The anatomical coordinate system will be based on the Grood and Suntay coordinate             
system (Grood and Suntay, 1983). The anatomical coordinate system of the model will be              
matched to the anatomical coordinate system of the robot data. The mesh nodes             
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representing anatomical landmarks for the local coordinate systems per bone will be based             
on the anatomical landmarks used in the robot data. The FEBio coordinate system (Figure 1)               
will be matched to the femur local anatomical coordinate system defined by the Grood and               
Suntay coordinate system.  
 
The calculations of the anatomical coordinate system and the tibiofemoral kinematics,           
executed in Python 3.6, will be provided in a *.txt file. All intermediate outputs, used to match                 
the anatomical coordinate system of the model to that of the robot data, will also be                
provided.  

 
Figure 1: FEBio coordinate system. 

 
4.1.4 Interactions 
Since the cartilages will be modelled as the same rigid body material as their corresponding               
bone, no separate contact implementation between the bones and cartilages is needed. In             
future models where the cartilage is modelled as an isotropic elastic material, a rigid tied               
interface between the bone and cartilage contacting surfaces will be required.  
 
A sliding elastic contact will be used for the tibia cartilage - femur cartilage contact and also                 
for all cartilage - menisci contacts. A facet-on-facet sliding contact between the MCL and the               
parts of the cartilage and bone which could be in contact with the middle part of the MCL will                   
be applied, to ensure that the MCL does not penetrate the bones and cartilages. To attach                
the ligaments to the bones, a rigid tied interface between the attachment nodes of the               
ligaments and the bone rigid bodies will be applied.  
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A rigid cylindrical joint between the femur and the tibia, using two imaginary rigid bodies will                
be used to prescribe the flexion - extension rotation in the knee joint (Erdemir and Sibole,                
2010). This rigid cylindrical joint will be used to be able to prescribe one rotational degree of                 
freedom (DoF) without prescribing or fixing the other 2 rotational DoFs (a current constraint              
of FEBio).  
 
The interactions will be provided in the complete calibrated model *.feb file and will also be                
described separately in *.txt files.  
 
4.1.5 Loading and boundary conditions 
To simulate 0 to 90 degrees of knee flexion, a rotation will be prescribed in the rigid                 
cylindrical joint. The femur will be free in all DoFs where the tibia will be fixed in all DoFs. An                    
axial load of -20N will be applied to the femur to ensure cartilage - cartilage contact. For all                  
other simulations, the rotations and displacements will be prescribed to the rigid bodies             
instead of in the rigid cylindrical joint. This is because FEBio is currently unable to resolve                
the rigid body forces when motion is applied via the rigid cylindrical joint.  
 
The DoFs that are fixed and prescribed vary depending on the simulation case.  
 
For all simulations, the *.feb file and the corresponding *.log and *.xplt file will be provided.                
Also an overview (*.txt file) of the settings per simulation will be provided.  
 
4.2 Intermediate and final calibration outcomes 
4.2.1 Calibration data 
The selected raw data, the time synchronized raw data (if time synchronization is needed)              
and the polynomial fitted data will be provided in *.txt files.  
 
Three data sets will be used for calibration:  
~ 0 degrees of knee flexion: Varus - valgus rotation moment - rotation data 
~ 90 degrees of knee flexion: Internal - external rotation moment - rotation data 
~ 90 degrees of knee flexion: Anterior - posterior translation force - displacement data  
 
4.2.2 Calibrated parameters 
The pre-strain values of the ACL, PCL, MCL and LCL will be optimised during the calibration                
phase. The optimised pre-strain values after each optimisation round (~0 and ~90 degrees             
of knee flexion) will be provided in a *.txt file.  
 
4.2.3 Calibration fit error 
The root mean square error (RMSE) for each timestep (4 timesteps in total) between the               
force/moment in the robot data and the force/moment found in the model for a              
displacement/rotation simulated in the model will be calculated. This RMSE will then be             
normalized to the maximum force/moment in the corresponding processed robot data. This            
normalized RMSE error is the value to be minimized during the optimisation of the ligament               
prestrain stretch values.  
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The final RMSE and the normalized RMSE will be provided for each simulation in each               
optimisation round  (~0 and ~90 degrees of knee flexion) in a *.txt file.  
 
4.2.4 Changed model components 
During the calibration phase, only the prestrain stretch values of the ligaments will be              
changed and provided as described in 4.2.2. No geometries are expected to be changed. 
 
4.3 Intermediate and final outcomes of analysis of experimental load cases  
4.3.1 Source data (as extracted from earmarked data set)  
The raw data that will be used for the simulation of the experimental load cases will be                 
provided in a *.txt file per simulation. 
 
4.3.2 Processed data (as analyzed to make ready for use in simulations) 
The time synchronised (if time synchronisation is needed) and polynomial fitted data will be              
provided in a *.txt file per simulation. The load curves used for the prescribed              
displacement/rotation will be provided in a *.txt file as well.  
 
4.4 Simulation cases 
4.4.1 Loading and boundary conditions  
The loading and boundary conditions for all simulations will be provided in *.txt files and next                
to that the *.feb and the corresponding *.log and *.xplt files will be provided per simulation.  
 
The simulations will be divided into three groups: 
1. 0 to 90 degrees of knee flexion simulation 
2. Load cases used for calibration 
3. Load cases not used for calibration 
 
4.4.2 Target metrics for predictions 
The RMSE and normalized RMSE between the forces in the robot and in the model               
simulation results will be the target metrics for the predictions.  
 
For all simulations, the RMSE and normalized RMSE (average over the simulation and per              
time point) will be provided in *.txt files.  
 
4.4.3 Numerical analysis settings  
Static analyses will be used for the simulations. The settings can be found in the *.feb files                 
per simulation and will be given per simulation in *.txt files.  
 
4.4.4 Anticipated results 
The tibiofemoral kinematics (6 DoF) during the 0 to 90 degrees knee flexion simulation will               
be obtained and provided in *.png format. 
 
For all other simulations the tibiofemoral kinematics can also be calculated and plotted in              
*.png. The RMSE and the normalized RMSE between the robot force and the simulated              
force in the model will also be reported. These results will be given in *.txt files. The                 
simulation results will be available in the *.log and *.xplt files per simulation.  
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5. Detailed descriptions of M&S processes 
5.1 Steps to calibrate the models 
5.1.1 Select robot data  
For our modelling workflow, we aim to keep the amount of data needed to a minimum with                 
the goal of clinical application in mind. Therefore, we choose to only optimise the knee               
model in extension (~0 degrees knee flexion angle) and in about 90 degrees of flexion. 
 
Looking at what data might be clinically obtainable, we choose to use varus-valgus data with               
the knee in extension, and internal - external rotation and anterior - posterior translation data               
with the knee in about 90 degrees of flexion.  
 
The data that matches the 0 and 90 degrees knee flexion angles closest will be selected for                 
use in calibration. The model will be put into this knee flexion angle to match the robot knee                  
flexion angle during optimisation.  
 
The data representing the tibiofemoral joint kinematics based on the motion capture sensors             
will be used (State.Knee JCS). This data is chosen over the data representing the              
tibiofemoral joint kinematics based on the robot position (State.JCS), since in the simVitro             
User Manual (SimVitro user manual) it is stated that this is a better representation of the                
actual joint position, however more noise could be present. The kinematics in the data are               
the relative kinematics, where the offset between the relative and the absolute kinematics             
can be found in the state.cfg document (Knee JCS: Position offset).  
 
For the kinetic data, the State.JCS Load data will be used, representing the tibial loads               
taking into account the load cell output and the relative position between the tibia and the                
load cell (SimVitro user manual). The State.JCS Load data includes: 
- Lateral drawer (N) 
- Anterior drawer (N) 
- Distraction (N) 
- Extension torque (Nm) 
- Varus torque (Nm) 
- External rotation torque (Nm)  
 
5.1.2 Process robot data  
The time synchronisation of the robot data will be checked, and will be corrected if               
necessary by using clear start and end moments of related rotations/translations and            
torques/forces. The robot data points where the actual simulations take place will be             
selected. The processed and selected data will be polynomial fitted in python (numpy             
package: polyfit and poly1D) to smooth the calibration data and to be able to interpolate               
between the data points. 
 
5.1.3 Anatomical coordinate system alignment 
The anatomical coordinate system of the model will be adjusted to match the anatomical              
coordinate system of the robot data, which is based on the Grood and Suntay coordinate               
system (Grood and Suntay, 1983). The local coordinate system per bone is defined by              

7 



anatomical landmarks. The anatomical landmarks used in the model will be adjusted to             
match the anatomical landmarks used in the robot data.  
 
Robot data anatomical landmarks of the tibia: 
1. Lateral tibial plateau 
2. Medial tibial plateau 
3. Distal tibia point 1 
4. Distal tibia point 2 
5. Distal tibia point 3 
6. Distal tibia point 4  
 
Robot data anatomical landmarks of the femur: 
1. Lateral femoral epicondyle 
2. Medial femoral epicondyle  
3. Femoral head point 1 
4. Femoral head point 2  
5. Femoral head point 3 
6. Femoral head point 4 
 
To find the location of the anatomical landmarks of the robot data on the model meshes, the                 
model meshes will be registered to the robot data. This will be done using the registration                
markers (state.cfg: MRI Fiducial Sphere positions). The registration markers will be           
segmented from the MRI data (General purpose imaging - sagittal) and registered to the              
digitized locations of the registration markers in the robot data. The model mesh will be               
registered to the initial segmentation, after which the found transformation matrix will be             
applied to the mesh to register the mesh to the robot data. After this the robot data                 
anatomical landmarks (state.cfg: Collected points rigid body 1 & 2) can be plotted on the               
model mesh and the mesh nodes corresponding to the anatomical landmarks will be             
selected.  
 
The local bone coordinate systems and the joint coordinate system will be calculated as              
defined in the Knee Joint Coordinate System document (v 2.1) obtained from the Open Knee               
Simtk website (Knee joint Coordinate system document), which is based on the Grood and              
Suntay anatomical coordinate system (Grood and Suntay, 1983).  
 
5.1.4 Obtaining the optimisation template model 
The optimisation of the model will be performed in two parts, first, at approximately 0               
degrees of knee flexion (knee in extension) and second, at approximately 90 degrees of              
knee flexion.  
 
In the first optimisation the knee is near full extension (~0 degrees of knee flexion). The robot                 
data to be used for optimisation is not obtained in exactly 0 degrees of knee flexion. The                 
model will be put in the near full extension knee flexion angle in which the varus - valgus                  
robot data is obtained (average knee flexion angle in which data used for optimisation was               
obtained), to mimic the robot data. The full model is then rotated to make sure the FEBio                 
coordinate system matches the femur local coordinate system (according to the Grood and             
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Suntay coordinate system (Grood and Suntay, 1983)). This is done using a custom Python              
script.  
 
After rotating the knee joint into the desired flexion angle, contact between the femur, tibia               
and menisci is ensured. In this procedure the femur is fixed in all DoFs and the tibia is free in                    
the Z direction only. If the geometries are out of contact, a small force on the tibia will be                   
applied pushing the tibia against the femur. This force will be an increasing force from 0 to                 
50N over 0 to 1 seconds with 0.1 second increments. All node coordinates at the moment                
when the geometries are just in contact will be saved. If there initially exists an overlap                
between the geometries, the model will be run with its contact definitions to remove overlap               
between the geometries. After running one timestep all node coordinates will be saved. The              
saved node coordinates will be written into a new *.feb file as the initial node coordinates                
using a custom Python script. The center of masses of both bones in the *.feb file will be set                   
to the new calculated center of masses using the Grood and Suntay coordinate system              
(Grood and Suntay, 1983). This will be done using a custom Python script. The obtained               
*.feb file will be used as a template for the optimisation simulations.  
  
5.1.5 Optimisation: knee in extension 
The parameters to optimise are the prestrain stretch values of the four ligaments (ACL, PCL,               
MCL and LCL). Their initial values are 1.0. The optimisation is performed in Python using the                
basinhopping algorithm with the “Nelder-Mead” minimization method. In the objective          
function the prestrain stretch values will be optimised to minimize the difference between the              
forces or moments simulated and the robot forces or moments with a certain displacement or               
rotation. 
 
With the knee near full extension, the modelled ligaments will be optimised to varus - valgus                
moment - rotation robot data. The displacement driven simulation will be performed using             
four time steps:  
0.1: Prestrain in the ligaments activated 
0.2: Varus rotation (max. varus rotation in the robot data)  
0.3: Valgus rotation to return the knee back to a neutral position (the amount of rotation in                 
the varus rotation in the previous time step)  
0.4: Valgus rotation (max. valgus rotation in the robot data)  
 
The varus and valgus rotation will be prescribed to the tibia as a prescribed rigid body                
motion. The femur will be fixed in flexion - extension and varus - valgus rotation (Rx and Ry)                  
DoFs and the tibia will be fixed in all DoFs except for varus - valgus rotation, since this will                   
be prescribed. An axial force (z direction) of -20N will be applied to the femur to ensure                 
contact between the geometries.  
 
Note: In FEBio, you cannot mix prescribed and free rigid body rotational DoFs. For example,               
to prescribe a varus-valgus rotation in one rigid body the other rotational DoFs of this rigid                
body must be fixed or prescribed. To overcome this, we fix all other DoFs except for                
varus-valgus rotation (which is prescribed in this rigid body) and fix the varus-valgus DoF of               
the interacting rigid body.  
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The *.feb file of the simulation will be called from the Python script in each iteration of the                  
objective function. When FEBio is done running the model, the node coordinates needed to              
calculate the ACS and the forces and moments on the bones will be exported to the .log file                  
and read by the Python script. The simulated varus - valgus angle is calculated for each                
timestep and the corresponding rigid body moment on the tibia is obtained. The fitted robot               
data is then used to calculate the difference in moment in the model and the moment in the                  
robot for the corresponding rotation in the model. This is calculated for each timestep.  
 
The error value to minimize is the normalized root mean square error (RMSE) value. If the                
simulation ran completely, the RMSE of all timesteps (4 timesteps in total) between the              
moment in the robot data and the moment found in the model for a rotation simulated in the                  
model will be calculated. This RMSE will then be normalized to the maximum moment in the                
corresponding processed robot data.  
 
A penalty system will be implemented to avoid error termination (equation 3). If the model               
terminates with an error, a higher penalty value will penalise the optimisation algorithm             
against the combination of prestrain values that caused the simulation to fail. In this system,               
the error value will be directly negatively proportional to the fractional completion of the              
simulation (equation 1), to penalise against values that crash the simulation early. To             
penalise against consecutive failed simulations, the penalty system also increments the error            
with each consecutive error termination (equation 2). 
 

1(t) 0t 20  for 0 .3  p =  − 5 +  ≤ t ≤ 0 (1) 
 
Where ​t ​is the time-step at which the simulation has failed. Please note that normal               
termination occurs at ​t​ = 0.4. 
 

2(x) p1(t) (1 .1x)p =  + 0 (2) 
 
Where ​x​ is the number of consecutive crashed iterations. 
 

(x, ) (− 0t 20)(1 .1x)        for 0 .3 p t =  5 +  + 0 ≤ t ≤ 0 (3)
 

   
5.1.6 Simulation: knee in extension to knee in flexion  
A simulation will be run to put the knee joint in the flexion angle of the ~ 90 degrees knee                    
flexion robot data. The prestrain stretch values recovered from the knee in extension             
optimisation will be used in this simulation as initial values.  
  
The FEBio (Maas et al., 2012) restart function will be used to maintain the geometry and                
attachments of the ligaments. In this way, the simulation from knee extension to knee flexion               
will only have to be run once, which decreases optimisation time for the knee in flexion. The                 
optimisation in knee flexion can then be run from the last step of the knee extension to knee                  
flexion simulation by restarting from where it completed in the previous step.  
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The knee extension to knee flexion simulation will be performed by prescribing the rotation to               
the femur in the rigid cylindrical joint. Where the femur is free in all DoFs but the flexion -                   
extension DoF is prescribed. The tibia is fixed in all DoFs. An axial load of -20N will be                  
applied to the femur to ensure cartilage - cartilage contact.  
 
After the simulation, the whole model is rotated to match the femur local coordinate system               
to the FEBio coordinate system. All node coordinates are obtained and written into a new               
*.feb file as the initial node coordinates. The center of masses of both bones in the *.feb file                  
will be set to the new calculated center of masses using the Grood and Suntay coordinate                
system. This will be done using a custom Python script. This *.feb file will be used as a                  
template for the next optimisation simulations.  
 
5.1.7 Optimisation: knee in flexion 
This second optimisation with the knee in flexion will take place in a similar manner to the                 
first optimisation where the knee is in extension. However, in this optimisation, the start              
prestrain stretch values will be the values found in the knee in extension optimisation. Also,               
during this optimisation, the change in prestrain stretch values during the optimisation will be              
bounded to ± 50% of the optimised prestrain value. E.g. If prestrain value is 1.06, then the                 
bounds are ± 0.03.  
 
With the knee in flexion two simulations will be performed to optimise the prestrain stretch               
values, anterior - posterior translation and internal - external rotation. Both simulations will be              
run using multi-threading in Python (_thread package).  
 
The simulation of the anterior - posterior translation will have the following timesteps: 
0.1: Prestrain in the ligaments activated 
0.2: Anterior translation (max. anterior translation in the robot data)  
0.3: Posterior translation to return the knee back to a neutral position (the amount of               
displacement in the anterior translation in the previous time step) 
0.4: Posterior translation (max. posterior translation in the robot data)  
 
The anterior - posterior displacement will be prescribed to the femur. The femur will only be                
fixed in the flexion - extension rotation DoF and prescribed in the anterior - posterior               
translation DoF. The tibia will be fixed in all DoFs. An axial force of -20N will be applied to                   
the femur to ensure contact between the geometries. 
 
The simulation of the internal - external rotation will have the following timesteps: 
0.1: Prestrain in the ligaments activated 
0.2: Internal rotation (max. internal rotation in the robot data)  
0.3: External rotation to return the knee back to a neutral position (the amount of rotation in                 
the internal rotation in the previous time step) 
0.4: External rotation (max. external rotation in the robot data)  
 
The internal - external rotations will be prescribed to the tibia. The femur will be fixed in the                  
flexion - extension and internal - external rotation DoFs. The tibia will be fixed in all DoFs                 
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except for the internal - external rotation DoF, since this will be prescribed. An axial force of                 
-20N will be applied to the femur to ensure contact between the geometries. 
 
The normalized RMSE is calculated for both simulations as explained in 5.1.5. The mean              
normalized RMSE of both simulations is calculated, which is the value to be minimized in this                
optimisation.  
  
5.1.8 Run simulation cases 
The final optimised prestrain stretched values will be written into the template *.feb file used 
in the knee in extension optimisation. This template will be saved as the simulation template 
*.feb file.  
 
Using this template, the following simulations will be performed: 
- 0 to 90 degrees of knee flexion 
- Load cases which were used for calibration 
- Load cases which were not used for calibration 
 
The steps to implement the load cases of the earmarked data as loading and boundary               
conditions and the steps to perform the simulations are described in 5.2 and 5.3.  
 
5.2 Steps to implement load cases of earmarked data as loading and boundary             
conditions & steps to perform simulations 
All simulations will be displacement driven. The displacements to be prescribed will be             
obtained from the robot data. An IE, VV rotation and an AP translation with the knee in about                  
0, 30, 60 and 90 degrees of knee flexion is executed in the robot. Each IE, VV rotation and                   
AP translation will be simulated separately. The kinematic and kinetic data for the chosen              
rotation/translation will be selected (for example the IE part of the data in 0 degrees of knee                 
flexion) and polynomial fitted to be smoothed (as done with the calibration data (5.1.2)).              
From this data the maximum and minimum translation/rotation will be selected in the robot              
data. These numbers will be put in the loadcurve of the prescribed translation/rotation as              
follows: 
0.1: Prestrain in the ligaments activated 
0.2: Minimum translation/rotation 
0.3: Translation/rotation to return the knee back to a neutral position (the amount of              
translation/rotation in the previous time step) 
0.4: Maximum translation/rotation 
  
For the simulation of 0 to 90 degrees of passive knee flexion, the following loadcurve will be                 
used:  
0.1: Prestrain in the ligaments activated  
1.0: 90 degrees of knee flexion 
 
For all simulations the simulation template *.feb file will be used. The model will be simulated                
to about 0, 30, 60 and 90 degrees of knee flexion (where the same knee flexion angles will                  
be used as in the robot data) using the restart function before running all IE, VV and AP                  
rotation/translation simulations. The loading and boundary conditions will be manually put           
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into this *.feb file and each *.feb file will be saved. The loading and boundary conditions per                 
simulation are presented in table 1. Table 1 indicates if the translation/rotation is prescribed              
as a rigid body motion (RB) or as part of the rigid cylindrical joint (RCJ). For all simulations                  
the auto-stepper function in FEBio will be turned on. The output of the simulations will be the                 
kinematics and kinetics at each timepoint in the simulation, which can be compared to the               
robot data.  
 
Table 1: Loading and boundary conditions during the simulations (in FEBio coordinate            
system (Figure 1))​. 

 
 
5.3 Burden 
The software and hardware requirements, anticipated man hours and expertise level and 
computational cost per process are described below.  
 
1. Select robot data 
Software used: Microsoft office Excel  
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM. 
Anticipated man hours: ~ 2 hours 
Expertise level needed: Low/Medium  
Computational cost: Low  
 
2. Process robot data  
Software used: Python 3.6 
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM. 
Anticipated man hours: ~ 2 weeks 
Expertise level needed: Medium/High  
Computational cost: Low  
 
3. Anatomical coordinate system alignment 
Software used: Python 3.6 & Matlab R2017a Academic Licence 
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM. 
Anticipated man hours: ~ 1 weeks 
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Expertise level needed: Medium  
Computational cost: Low  
 
4. Obtain optimisation template model  
Software used: Python 3.6 & FEBio version 2.9.1 (with prestrain plug-in) 
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM. 
Anticipated man hours: ~ 0.5 weeks 
Expertise level needed: Medium  
Computational cost: Low  
 
5. Optimisation: knee in extension  
Software used: Python 3.6 & FEBio version 2.9.1 (with prestrain plug-in) 
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM & High 
performance computer (Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz 1024GB Ram) 
Anticipated man hours: ~ 2 days (or less)  
Expertise level needed: Low/Medium 
Computational cost: High  
 
6. Simulation: knee extension to knee flexion  
Software used: Python 3.6 & FEBio version 2.9.1 (with restart function & prestrain plug-in) 
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM & High 
performance computer (Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz 1024GB Ram) 
Anticipated man hours: ~ 2-3 hours  
Expertise level needed: Medium  
Computational cost: High  
 
7. Optimisation: knee in flexion  
Software used: Python 3.6 & FEBio version 2.9.1 (with restart function & prestrain plug-in) 
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM & High 
performance computer (Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz 1024GB Ram) 
Anticipated man hours: ~ 2 days 
Expertise level needed: Medium 
Computational cost: High  
 
8. Run simulation cases  
Software used: Python 3.6 & FEBio version 2.9.1 (with restart function & prestrain plug-in) 
Hardware used: Intel(R) Core(™) i7-7700HQ CPU @ 2.8GHz, 32.0 GB RAM & High 
performance computer (Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz 1024GB Ram) 
Anticipated man hours: ~ 1 week 
Expertise level needed: Medium 
Computational cost: High  
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