
COSTBI-612; NO OF PAGES 6
Available online at www.sciencedirect.com

The intramolecular chaperone-mediated protein folding
Yu-Jen Chen and Masayori Inouye
Some proteins have evolved to contain a specific sequence as

an intramolecular chaperone, which is essential for protein

folding but not required for protein function, as it is removed

after the protein is folded by autoprocessing or by an

exogenous protease. To date, a large number of sequences

encoded as N-terminal or C-terminal extensions have been

identified to function as intramolecular chaperones. An

increasing amount of evidence has revealed that these

intramolecular chaperones play an important role in protein

folding both in vivo and in vitro. Here, we summarize recent

studies on intramolecular chaperone-assisted protein folding

and discuss the mechanisms as to how intramolecular

chaperones play roles in protein folding.
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Introduction
When Crick first presented the concept of ‘Central

Dogma’ in 1957, it was assumed that the primary

sequences of proteins contain all the information required

to achieve the functional conformation [1]. However, it

was not proved until Anfinsen demonstrated successful

refolding of a denatured protein to its functionally active

form in vitro [2]. It has been known for decades that

molecular chaperones are involved in protein folding,

which suggests that protein folding is a complicated

process and the information contained in the protein to

‘retain’ its native conformation is not always sufficient

enough to guarantee that the protein will efficiently

achieve functionally active structure.

The first report that the intramolecular chaperone plays a

crucial role in protein folding that leads to functionally

active conformation was based on studies of proteases,

such as subtilisin [3�], a-lytic protease [4], and carbox-

ypeptidase Y [5]. Unlike the molecular chaperone, the
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intramolecular chaperone is encoded in the primary

sequence of the protein as an N-terminal or a C-terminal

sequence extension and is usually termed propeptide or

prosequence. Although, it is not part of the functional

domain and does not contribute to the protein function, it

is essential for the folding of the functional protein [6�].
Indeed, all these intramolecular chaperones are removed

upon the completion of protein folding either by autop-

rocessing in the case of proteases or by an exogenous

protease in the case of non-protease proteins. To date, a

large number of propeptides from various proteins have

been identified to function as an intramolecular chaper-

one to assist the folding of the respective functional

domains [7,8]. On the basis of their roles in protein

folding, intramolecular chaperones can be classified into

two categories (Figure 1). The type I intramolecular

chaperones include those that assist tertiary structure

formation and mostly are produced as the N-terminal

sequence extension, and the type II intramolecular cha-

perones are those that are not directly involved in tertiary

structure formation but guide the assembly of quaternary

structure to form the functional protein complex and are

mostly located at the C-terminus of the protein.

Type I intramolecular chaperones
The first discovery of an intramolecular chaperone was

based on the studies on subtilisin, an alkaline serine

protease from Bacillus subtilis [3�]. An interesting aspect

of the intramolecular chaperone is that one can study the

molecular mechanism of protein folding by introducing

amino acid substitution mutations in the propeptide

region but not in the functional domain of the protein

[9]. Indeed, a number of such mutations have been

introduced in the subtilisin propeptide and their effect

on protein folding has been investigated [10,11�].

In another approach by introducing a series of mutations,

the energy barrier of transition state in subtilisin was

reduced allowing it to fold without the intramolecular

chaperone, although at a slower rate [12�]. Addition of the

propeptide in trans was shown to accelerate the folding of

the engineered subtilisin. The same study also showed

that a propeptide mutant adopting a more stable structure

can assist the folding of the engineered subtilisin at

higher efficiency when added in trans [13]. However,

active subtilisin was poorly made when folded in cis with

the stabilized propeptide owing to a slower rate of

propeptide processing and degradation [14]. A recent

study of POIA1, a protease inhibitor that adopts a pro-

peptide-like but more stable structure, also showed less

efficiency in producing active subtilisin in vivo when it is

fused to subtilisin [15]. Structural studies of the isolated
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Figure 1

Schematic models for the functions of type I and II intramolecular

chaperones. Type I intramolecular chaperones assist the folding of the

functional domain to form the native tertiary structure, while type II

intramolecular chaperones guide the formation of the quaternary

structure of the functional domain.

Figure 2

Crystal structures of subtilisins. The unprocessed tk-subtilisin (a subtilisin ho

precursor (PDB code: 2E1P) (a) and processed pro-subtilisin E complex (PD

Streptomyces subtilisin inhibitor (SSI), adopts a structure similar to that of the

3SIC) (c).
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propeptide of subtilisin revealed that the propeptide is

unfolded under physiological conditions [16]. It is import-

ant to note that the propeptide inhibits subtilisin func-

tion, and therefore it has to be autocatalytically cleaved

and degraded by the mature protease in order to produce

the active protease. As the propeptide is not highly

stable, it can be readily degraded upon its cleavage from

the functional protein [17]. In addition, previous struc-

tural studies have shown that subtilisin interacts with

certain inhibitors at positions different as compared with

the autoprocessed propeptide–subtilisin complex

although these inhibitors adopt a structure similar to

that of the subtilisin propeptide (Figure 2) [18–20]. It is

thus speculated that the propeptide functions as intra-

molecular chaperone and inhibitor through different

mechanisms.

Studies of a-lytic protease suggested that the propeptide

folds independently from the protease domain and is

required at the last stage of protein folding by converting

the molten globule state of the protease domain into the

active conformation [21��,22]. Interestingly, the two

domains of the mature protease were folded indepen-

dently, but were unable to form native structure without

the propeptide. Structural studies have revealed that the

N-terminal domain of the propeptide interacts with the

C-terminal domain of the mature protease. The inter-

action is mediated through a three-stranded beta sheet in

the propeptide structure and a two-stranded beta sheet in

the mature protease structure. It was thus suggested that

a-lytic protease folds through a nucleation mechanism,

in which the propeptide folds first and acts as scaffold,

which stabilizes the C-terminal domain of the mature

protease allowing the structural rearrangement of the two

domains to pack into the native structure (Figure 3)

[21��,23–26].
d protein folding, Curr Opin Struct Biol (2008), doi:10.1016/j.sbi.2008.10.005

molog from hyperthermophilic archaeon, Thermococcus kodakaraensis)

B code: 1SCJ) (b) adopt similar structure. Although the natural inhibitor,

subtilisin propeptide, it binds to subtilisin at different position (PDB code:
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Figure 3

Schematic model of a-lytic protease maturation. The N-terminal propeptide folds into a stable structure, which acts as a scaffold for the protease

domain to pack into native structure (modified from [21��]).
Nerve growth factor (NGF) is also produced as proNGF

with an N-terminal extension. Both proNGF and NGF

are dimeric proteins that carry out different biological

functions [27]. In contrast to the propeptide of subtilisin,

the propeptide of NGF contains limited secondary struc-

ture and is removed by the prohormone convertase rather

than by autoprocessing. The hydrogen–deuterium

exchange experiments and the spectroscopic studies

showed that the propeptide acts as a competitive inhibitor

for the receptor binding of the mature NGF dimer

[28,29]. Distinct from subtilisin and a-lytic protease,

the NGF propeptide is required to be covalently linked

to mature NGF [30]. Structural studies showed that the

NGF forms a cysteine knot by virtue of three intramo-

lecular disulfide bonds [31]. It was thus suggested that the

propeptide assists the folding of NGF via stabilizing a

folding intermediate allowing the three disulfide bonds to

be properly formed. It is worth to note that the isolated

propeptide is monomeric, but both proNGF and mature

NGF are dimeric, suggesting that the cleavage of the

propeptide occurs after dimerization [28]. It is likely that

the quaternary structure may stabilize the tertiary struc-

ture; however, the role of the propeptide in the quatern-

ary structure remains to be elucidated.

The C-peptide of proinsulin is a unique and intriguing

example of intramolecular chaperone, as it is located at

the central part of its primary sequence, and is removed

by trypsin after disulfide bridges are formed between the

A-peptides and B-peptides. The active insulin consists of

two polypeptide chains, A and B, linked by two inter-

chain disulfide bonds [32]. The C-peptide is required to

ensure the disulfide bridges correctly formed [33]. Iso-

lated C-peptide folds independently from the rest of the

protein [34], and acts as a scaffold positioning N-terminal

segment (A-peptide) and C-terminal segment (B-pep-

tide) for proper disulfide bond formation. Although the

C-peptide has independent physiological activities, such

as stimulating Na+, K+-ATPase [35], which suggest

multiple functions, it undoubtedly functions as an intra-

molecular chaperone for folding of insulin.
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Type II intramolecular chaperone
In some proteins, the intramolecular chaperone is not

directly involved in folding tertiary structure but instead

plays a key role in quaternary structure assembly. For

example, the tail spike of E. coli K1-specific bacterio-

phages, which exists as a homotrimer of endosialidases, is

produced with a C-terminal domain (CTD), which is not

part of the functional trimer [36]. Notably, when the

CTD is removed, the truncated endosialidase becomes

insoluble and functionally inactive. Further, it was

reported that the CTD folds independently from the

enzymatic domain and forms a hexamer [37,38]. These

studies suggest that the CTD is able to associate with

each other and likely to initiate the trimerization of

endosialidases.

Another example is fibril-forming collagen, which con-

tains both an N-terminal and a C-terminal propeptide.

The C-terminal propeptide of the collagen prevents

premature fibril formation [39]. It was also reported that

the C-terminal propeptide of collagen plays a crucial role

in the triple helix formation [40]. Recent structural

studies suggest that it may be acting as an intramolecular

chaperone [41]. Other studies suggested its role in net-

work-forming collagen for superstructure formation. In

this case, however, the C-terminal propeptide remains

uncleaved and becomes essential for the network struc-

ture retention [42]. It was also proposed that the N-

terminal propeptide is important in fibril association of

the collagen triple helix [40]. Therefore, it is likely that

the C-propeptide acts as intramolecular chaperone for

collagen quaternary structure formation, while the N-

terminal propeptide is required for higher order struc-

ture. Recently, the von Willebrand factor (VWF) was

reported to contain an N-terminal propeptide, which

functions as an intramolecular chaperone [43]. The pro-

peptide of VWF consists of two homologous D domains.

The functional VWF consists of a large multimeric

protein complex. The propeptide is proteolytically pro-

cessed in the functional multimer. It was proposed that

VWF forms a dimer through an intermolecular disulfide
d protein folding, Curr Opin Struct Biol (2008), doi:10.1016/j.sbi.2008.10.005
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bridge at the C-terminal domain followed by multimer-

ization mediated by the N-terminal propeptide [44]. A

single mutation at the propeptide (Tyr87Ser) caused

VWF to form a dimer with partial function [43,45].

However, it remains to be elucidated if the N-terminal

propeptide functions as an intramolecular chaperone for

VWF folding.

Discussion
All structural studies, which demonstrate the requirement

of the intramolecular chaperones for protein folding to

date, have been carried out in vitro using entire proteins

containing the intramolecular chaperones. However, it is

important to note that in the cell, the protein folding is

likely to be initiated before its synthesis is complete.

Therefore, it remains to be elucidated if the intramole-

cular chaperone-mediated protein folding studied in vitro
is identical to that in vivo. In this regard, it is intriguing to

study the folding of premature protein fragments contain-

ing the intramolecular chaperone. N-terminal intramole-

cular chaperone is possibly involved in tertiary structure

formation at an early stage of protein folding, through

structure nucleation or simply through prevention of

misfolding and aggregation. As they assist the tertiary

structure formation, most N-terminal intramolecular cha-

perones are classified into the type I category. However, a

C-terminal intramolecular chaperone has been identified

in aminopeptidase A (APA) [46] and belongs to the type I

category. Since folding of APA involves dimerization,

further structural studies are needed to elucidate the

precise mechanism of its action. On the contrary, the

formation of the higher order structure using type II

intramolecular chaperones may be a prerequisite for

the completion of the tertiary structure formation. As

expected, most type II intramolecular chaperones are

found at the C-terminus of the functional domain.

Since various human proteins involved in diseases are

found to contain the sequence extensions, which prob-

ably function as intramolecular chaperones, it is important

to decipher their precise roles in protein folding. In

particular, it is important to note that mutations in the

intramolecular chaperone can cause misfolding of the

functional domain resulting in distortion of their function

leading to human diseases, even if the primary structures

of the mature functional domains are identical. Such

mutations termed protein-memory mutations have been

discovered for subtilisin [11�]. More recently, a mutation

(Val66Met) in the propeptide of brain-derived neuro-

trophic factor (BDNF) caused loss of memory in humans

even if the patients have BDNF, with a primary structure

identical to that of the wild-type BDNF [47�]. Such

diseases caused by mutations in intramolecular chaper-

ones may be called in general as protein-memory dis-

eases, many of which may be wildly prevailing and not

always identified. Existence of various types of intramo-

lecular chaperones, which work through different mech-
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anisms, makes it difficult to propose a single general

mechanism governing intramolecular chaperone-

mediated protein folding. However, further structural

and fundamental studies of individual intramolecular

chaperones will provide important clues to our under-

standing of the general molecular mechanisms of protein

folding.

Conclusions
The study of the role of intramolecular chaperones in

protein folding is unique and important, as it provides

clues for our understanding of not only the basic principle

of protein folding but also the etiology of some human

diseases caused by protein-memory mutations. Recent

advances in technologies for protein structural studies,

such as single protein production (SPP) system [48], in-

cell NMR [49,50], and cotranslational structural studies

[51��] now open an avenue to study protein structures and

folding in the cell. This, in turn, offers great foundation

for investigating the mechanisms of intramolecular cha-

perone-mediated protein folding in vivo.
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