Bioengineering 215

An Introduction to Molecular Dynamics for Biomolecules

David Parker

May 18, 2007

Introduction

A principal tool to study biological molecules is molecular dynamics simulations (MD).

MD studies both thermodynamic properties and/or time dependent (kinetic) phenomenon of interacting atoms.

MD simulations permit the study of complex, dynamic processes that occur in biological systems on a scale too small or too fast to observe experimentally

- Protein stability
- Conformational changes
- Protein folding
- Molecular recognition: proteins, DNA, membranes, complexes
- Ion transport in biological systems

Molecular Mechanics

Simulating electron and nuclei motion using quantum mechanics is the most accurate for computing all properties from first principles (ab initio) but ...

- Computationally expensive (number of particles, time scale 10⁻¹⁶)
- Don't need this level of detail for many applications

Molecular mechanics uses classical models of forces, geometry and motions of atoms

- Model atom as a sphere without considering electrons explicitly
- Treat a molecule as a collection of interconnected masses
 - masses represent the nuclei
 - connections represent bonds between atoms
- Energy and geometry of a molecule are approximated using a force field
 - collection of atom types
 - parameters (for bond lengths, bond angles, etc.)
 - equations (to calculate the energy between atoms)

Molecular Dynamics

Molecular dynamics is based on Newton's second law

- The equation of motion for each atom in a system is F_i = m_ia_i
- Knowing the force on each atom you can compute its acceleration
- Integration of the equations of motion yields a trajectory that describes the positions, velocities and accelerations of the atoms as they vary with time
- Can convert this microscopic information to macroscopic observables such as pressure, energy, heat capacities, etc., using statistical mechanics (averaging)

The force F(R) on each atom is computed from a potential function U(R)

- Function of the atomic positions, \mathbf{R} , of all the atoms in the system $\mathbf{R} = \{\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N\}$
- Sum of bonded and non-bonded terms (assume pair-additive)
- The force on atom *i* is the gradient of the potential function $\mathbf{F}_i = -\text{grad}_i \, \mathbf{U}(\mathbf{R})$
- Form and parameters for U(R) is defined by a particular MD force field

MD simulations are computationally expensive

• Small time step (2 fs) limits simulations to ns range

Molecular Dynamics

Example: 12 ns MD simulation of calmodulin binding to a target peptide

- 177 amino acids (1827 atoms)
- 13,833 water molecules (41,784 atoms)
- Compute time: 4 days on 6 CPU machine (2.8 ns / day)
- Actual binding time ~ 2.8 ms (1,000,000 days = 2810 years to compute)

Molecular Dynamics

Example: 100 fs MD simulation of 11 amino acid helix.

Time and Length Scales

Biological molecules exhibit a wide range of time scales over which specific processes occur. Motions are chaotic due to thermal forces.

_ocal Motions (0.01 to 5 Å, 10⁻¹⁵ to 10⁻¹ s)

- Atomic fluctuations
- Sidechain Motions
- Loop Motions

Rigid Body Motions (1 to 10Å, 10⁻⁹ to 1s)

- Helix Motions
- Domain Motions (hinge bending)
- Subunit motions
- ∟arge-Scale Motions (> 5Å, 10⁻⁷ to 10⁴ s)
 - Helix coil transitions
 - Dissociation/Association
 - Folding and Unfolding

Units

Basic units

Length: nanometer (nm) = 10⁻⁹ m

Mass: atomic mass unit (amu) = $1.6605402 \times 10^{-27}$ kg

Time: picosecond (ps) = 10^{-12} s

Charge: electronic charge = $1.60217733 \times 10^{-19}$ C

Temperature: K

Derived units

Energy: $kJ \text{ mol}^{-1} = 7 \text{ pN nm} = 7 \text{ x } 10^{-21} \text{ N m}$

Force: kJ mol⁻¹ nm⁻¹

Velocity: $nm ps^{-1} = 1000 m/s$

Thermal energy = $k_BT = 4$ pN nm at 298K

Potential Energy Function

Potential energy is a function of atoms, from:

- Bonded neighbors (covalent bonds)
- Non-Bonded atoms
 - · other atoms in the same molecule
 - atoms from different molecules (e.g. water)

The total potential energy U is a sum over appropriate atom groups

Potential Energy Function: Bond Stretch

The bond stretching energy equation is based on Hooke's law

$$U_{\text{bond-stretch}} = \frac{1}{2} K_b (r - r_0)^2$$

$$K_b$$
 = bond stiffness r_o = reference length

Example: sp3 C – sp3 C

$$K_b = 310.0 \text{ kcal/(mol } Å^2)$$

$$r_0 = 1.526 \text{ Å}$$

Source: experiment

Potential Energy Function: Bond Bending

The bond bending energy equation is based on Hooke's law

$$U_{\text{bond-bend}} = \frac{1}{2} K_{\theta} (\theta - \theta_0)^2$$

$$K_{\theta}$$
 = bond stiffness θ_{0} = reference angle

$$\theta_0 = 109.50^{\circ}$$

$$K_{\theta} = 40.0 \text{ kcal/(mol radian}^2)$$

Source: experiment

Potential Energy Function: Bond Rotation

The bond rotational energy equation is modeled as a periodic function

$$U_{\text{bond-rotation}} = \frac{1}{2} K_{\tau} [1 + \cos(n\tau - \varphi)]$$

 K_{τ} = barrier to rotation

 τ = torsion angle

n = number of minima

 φ = phase angle

Example: CH3-CH3 (ethane)

$$K_{\tau} = 1.4 \text{ kcal/mol}$$

$$n = 3$$

$$\varphi = 0$$

Potential Energy Function: van der Waals

Atoms with no net electrostatic charge attract each other at short distances

- Fluctuation of electrons create charge separation (dipole)
- This can create an induced dipole in an approaching atom
- Atoms will be attracted to each other

Model using the Lennard-Jones potential for two atoms at distance r

$$U(r) = 4\epsilon \left[\left(\frac{A}{r} \right)^{12} - \left(\frac{B}{r} \right)^{6} \right]$$

- r⁶ term is attractive energy
- r¹² term repulsive energy (electron cloud overlap)
- A, B and ε describe shape of potential (from quantum mechanics)
- Energy decreases rapidly with distance

Potential Energy Function: Electrostatics

Coulomb's law models electrostatic forces with charges treated as point charges centered on atoms.

For two charges q₁ and q₂ separated by distance r

$$U(r) = \frac{q_1 q_2}{4\pi\epsilon_0 r}$$

 $1/4 \pi \epsilon_0$ is the electrostatic constant.

Electrostatic energy decreases slowly and affects atoms over a significant distance.

Potential Energy Function

$$U(\mathbf{r}^{N}) = \sum_{bonds} \frac{K_{i}}{2} (r_{i} - r_{i0})^{2} + \sum_{angles} \frac{\Theta_{i}}{2} (\theta_{i} - \theta_{i0})^{2} + \sum_{torsions} \frac{V_{n}}{2} (1 + \cos(n\omega - \gamma)) + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(4\epsilon_{ij} \left[\left(\frac{A_{ij}}{r_{ij}} \right)^{12} - \left(\frac{B_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\epsilon_{0}r_{ij}} \right)$$

Bond stretching and bending DOF are very stiff so energy and conformational changes for a molecule are mainly due to torsional and non-bonded energy.

Energy Term	Scale (kcal/mol)				
Bond stretching	100				
Angle Bending	10				
Torsion	1				
Hydrogen Bond	2				
Electrostatic interaction	0.5				
Van der Waals	0.1				

Force Fields

A force field refers to the functional form and parameters used to describe the potential energy of a system of atoms. Parameters are derived using small organic molecules from

- Experiments (bond lengths, spring constants)
- Quantum mechanical calculations (atom partial charges)

Parameters depend on

- Atom type
- Bonding patterns

Parameters include values for

- atomic mass
- partial charge for individual atoms
- equilibrium bond lengths and angles

Different force fields are included in some MD software packages Gromacs has: AMBER, GROMOS, OPLS, ENCAD

Force Fields: Amber

- AMBER has 40 atom types.
- 13 types of carbon: sp3 carbon, carbonyl sp2 carbon, aromatic sp2 carbon, ...
- Bond stretch and angle parameters for each valid combination of atom types
- 1 to 3 torsion parameters for many combinations of atoms and there are 30 improper orsions

Van der Waals parameters for each atom type (combined for each pairwise interaction)

Bond Parameters												
bond	K_{Γ}^{b}	$r_{ m eq}^c$	bond	$K_{\rm r}^{b}$	$r_{\rm eq}{}^c$	bond	$K_{\rm r}^{b}$	$r_{ m eq}^c$	bond	K_r^b	$r_{ m eq}^c$	
C-CA	469.0	1.409	CA-HA	367.0	1.080	СМ-НА	367.0	1.080	CT-S	227.0	1.810	
C-CB	447.0	1.419	CA-N2	481.0	1.340	CM-N*	448.0	1.365	CT-SH	237.0	1.810	
C-CM	410.0	1.444	CA-NA	427.0	1.381	CN-NA	428.0	1.380	CV-H4	367.0	1.080	
C-CT	317.0	1.522	CA-NC	483.0	1.339	CQ-H5	367.0	1.080	CV-NB	410.0	1.394	
C-N	490.0	1.335	CB-CB	520.0	1.370	CQ-NC	502.0	1.324	CW-H4	367.0	1.080	
C-N*	424.0	1.383	CB-CN	447.0	1.419	CR-H5	367.0	1.080	CW-NA	427.0	1.381	
C-NA	418.0	1.388	CB-N*	436.0	1.374	CR-NA	477.0	1.343	H-N	434.0	1.010	
C-NC	457.0	1.358	CB-NB	414.0	1.391	CR-NB	488.0	1.335	H-N*	434.0	1.010	
C-O	570.0	1.229	CB-NC	461.0	1.354	CT-CT	310.0	1.526	H-N2	434.0	1.010	
C-O2	656.0	1.250	CC-CT	317.0	1.504	CT-F	367.0	1.380	H-N3	434.0	1.010	
C-OH	450.0	1.364	CC-CV	512.0	1.375	CT-H1	340.0	1.090	H-NA	434.0	1.010	
C*-CB	388.0	1.459	CC-CW	518.0	1.371	CT-H2	340.0	1.090	HO-OH	553.0	0.960	
C*-CT	317.0	1.495	CC-NA	422.0	1.385	CT-H3	340.0	1.090	HO-OS	553.0	0.960	
C*-CW	546.0	1.352	CC-NB	410.0	1.394	CT-HC	340.0	1.090	HS-SH	274.0	1.336	
C*-HC	367.0	1.080	CK-H5	367.0	1.080	CT-HP	340.0	1.090	O2-P	525.0	1.480	
CA-CA	469.0	1.400	CK-N*	440.0	1.371	CT-N	337.0	1.449	OH-P	230.0	1.610	
CA-CB	469.0	1.404	CK-NB	529.0	1.304	CT-N*	337.0	1.475	OS-P	230.0	1.610	
CA-CM	427.0	1.433	CM-CM	549.0	1.350	CT-N2	337.0	1.463	ow-hw	553.0	0.9572	
CA-CN	469.0	1.400	CM-CT	317.0	1.510	CT-N3	367.0	1.471	s-s	166.0	2.038	
CA-CT	317.0	1.510	CM-H4	367.0	1.080	CT-OH	320.0	1.410				
CA-H4	367.0	1.080	CM-H5	367.0	1.080	CT-OS	320.0	1.410				

MD Simulation (Big Picture)

The key ingredients in an MD simulation are

- 1. Initial conditions
 - Initial structure: atoms, coordinates, topology
 - Initial atom velocities (temperature)
 - Add water, ions
- 2. Boundary conditions
 - How to simulate finite system
- 3. Energy Minimization
- 4. Computing forces given an interaction potential
 - Efficiently compute atom-atom forces
- 5. Numerical integration of equations of motion
 - Efficiently and accurately integrate equations of motion
- 6. Extracting useful data from simulation

Initial Structure

nitial atom types and coordinates from protein X-ray or NMR crystallographic structures

Insulin crystals (1mm)

2D section of crystal lattice

PDB 1B9E

Compute atom connectivity for force field computations

Propane C₃H₈

10 bonds, 18 valence angles, 18 torsional terms, and 27 non-bonded terms

Total = 27 terms

Add hydrogen atoms, create a box around the protein, and fill it with water.

Initial Velocities

Initial velocities for each atom can be assigned via statistical mechanics

- At temperature T, the average velocity of an atom is $\langle v_i^2 \rangle = k_B^* T / m$
- Average kinetic energy of an atom is $<1/2 \text{ m} |\mathbf{v}|^2 > = 3/2 \text{ k}_B \text{T}$
- To scale velocities to a target temperature T#

```
equate original velocities \langle v_i^2 \rangle = k_B T / m
with scaled velocities \langle (sv_i)^2 \rangle = s^2 \langle v_i^2 \rangle k_B T^\# / m
to get s = sqrt(T^\# / T)
```

We can assign random initial velocities using the algorithm:

- 1. For each atom i and direction j assign velocity v_{ij} a uniform random number from [-1, 1]
- 2. Remove mass center motion (subtract average velocity from from each atom)
- 3. Compute $\langle v_{ij}^2 \rangle$ and multiply v_{ij} by $sqrt(k_B T^{\#} / \langle mv_{ij}^2 \rangle)$

Boundary Conditions

In biological systems, proteins are immersed in a sea of water molecules so want to place in a box and fill it with water.

A box of water interfacing to a vacuum will have significant surface tension. How can these surface effects be eliminated?

Surround simulation box with virtual images of itself

- Effectively creates an infinite system
- Atoms interact with atoms in virtual images
- Atoms leaving one side appear on other
- Ignore atoms at large distances from each other

Energy Minimization

Before running an MD simulation we need to perform an energy minimization to eliminate excessively large forces from

- Starting configuration
- Adding water

Steepest descent

- Robust and easy to implement
- Move atom coordinates in the direction –grad U

$$\mathbf{r}_{\text{new}} = \mathbf{r}_{\text{old}} + \mathbf{h}^* \mathbf{F}$$

- Compute F from new configuration and repeat
- Slow convergence

Computing Forces

Computing non-bonded forces in an MD simulation is expensive

- Need to compute forces between all atoms
- Ignore certain forces for atoms at large distances from each other (cutoff)
- Electrostatic force is long-range so can't use small cutoff

Speed up non-bonded force calculation by using neighbor lists

- For each atom, store list of atoms within cutoff range
- Update lists as atoms move closer and further away

An MD simulation solves Newton's equations of motion for a system of N interacting atoms with mass m_i and position \mathbf{r}_i

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}_i(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \quad i = 1, 2, \dots, N$$

$$\mathbf{F}_i(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = -\nabla_{\mathbf{r}_i} U(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

Numerical integration of the equations of motion will advance the system by a small time step dt

- Forces on the system are considered approximately constant during dt
- Coordinates as a function of time represent a trajectory of the system
- Energy and momentum should be conserved

For MD, we want a fast and accurate integrator with:

- 1. High accuracy
- 2. Large range of stability (wrt time step)
- 3. Reversibility (wrt time)
- Speed (computation time per step)
- 5. Low memory requirement
- 6. Conserve energy
- 7. Simple form and easy to implement

In MD, forces are rapidly changing, (e.g., van der Waals forces) so stability is very important.

Euler's Method:
$$x(t + dt) = x(t) + x'(t)dt$$

- Low accuracy
- Unstable integrating nonlinear terms of potential

2nd Order Runge-Kutta Method:

$$k1 = f(t_i, x_i)dt$$
 $k2 = f(t_i + t, x_i + k1)dt$
 $y_i+1 = y_i + a*k1 + b*k2$

- Good accuracy and stability
- Expensive: need multiple evaluations of forces
- Poor energy conservation
- Not time reversible

Verlet Method:

$$r(t + dt) = r(t) + v(t)dt + \frac{1}{2} a(t)dt^{2}$$

 $v(t + dt/2) = v(t) + \frac{1}{2} a(t)dt$
 $v(t + dt) = v(t + dt/2) + \frac{1}{2} a(t+dt)dt$

- Good accuracy and stability
- Time reversible
- Conserves energy
- Single force evaluation per time step

Verlet belongs to a class of integrators called symplectic ntegrators that conserve energy, are time reversible and conserve phase space area.

Analyzing Results

What are the results of an MD simulation?

- Trajectory: atom positions, velocities
- System potential and kinetic energy
- Energy between groups of atoms
- Temperature, pressure, density, ...

What to look at

- Animations of trajectory
- Geometric measures
 - Root Mean-Squared Deviation (RMSD): measure structural similarity

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(v_{ix}-w_{ix})^{2}+(v_{iy}-w_{iy})^{2}+(v_{iz}-w_{iz})^{2}}$$

Radius of gyration: useful estimate of the size of a molecule

$$\frac{1}{N} \sum_{k=1}^{N} (\mathbf{r}_k - \mathbf{r}_{mean})^2$$

Energy, temperature, pressure plots

MD Algorithm

The steps in an MD simulation are:

- 1. Input initial conditions
 - Interaction potential U as function of atom positions
 - Positions r of all atoms
 - Velocities v of all atoms

2.

- Compute forces on all atoms **F** = -grad U
 - Compute forces between non-bonded atoms
 - Compute forces between bonded atoms
- 3. Update atoms positions
 - Compute acceleration using a = F / m
 - Solve for velocity using dv / dt = a
 - Solve for position using dx / dt = v

$$a_{new} = F / m$$
 $r_{new} = r_{old} + v_{old} + \frac{1}{2} a_{old} dt^2$
 $v_{1/2} = v_{old} + \frac{1}{2} a_{old} dt$
 $v_{new} = v_{1/2} + \frac{1}{2} a_{new} dt$

- Output trajectory, energy
- 5. Go to 2 until computer explodes or universe ends
- 6. Analyze results

Example: Argon

Argon is an inert element that interacts via van der Waals energy only

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \mathbf{F}(r) = -\nabla V(r) = -\frac{d}{dr} V(r) \hat{\mathbf{r}} = 4\epsilon \left(12 \frac{\sigma^{12}}{r^{13}} - 6 \frac{\sigma^6}{r^7} \right) \hat{\mathbf{r}}$$

The appropriate parameter values for this system are

- $\varepsilon = 1.03235 \times 10^{-2} \text{ eV}$
- $\sigma = 3.405 \text{ Å}$
- m = 39.948 amu

For MD use the following basic units

- eV be energy unit
- Å length unit
- · amu be mass unit
- fs be time unit

Forces will then be expressed in units eV / Å.

References

- T. Schlick, "Molecular Modeling and Simulation", Springer, 2003.
- A. R. Leach, "Molecular Modeling. Principles and Applications, Prentice Hall, 2001.
- Molecular Dynamics Tutorial at EMBnet

http://www.ch.embnet.org/MD tutorial/index.html