
Choosing SNPs Using Feature Selection

 Tu Minh Phuong+  Zhen Lin           Russ B. Altman* 
 Department of Information Technology Department of Genetics 
 Post & Telecom. Institute of Technology   Stanford University 
 Hanoi, Vietnam  Stanford, CA, 94305 USA
 phuongtm@fpt.com.vn  zlin@helix.stanford.edu   russ.altman@stanford.edu 

Abstract

A major challenge for genomewide disease asso-
ciation studies is the high cost of genotyping large 
number of single nucleotide polymorphisms (SNP). The 
correlations between SNPs, however, make it possible 
to select a parsimonious set of informative SNPs, 
known as “tagging” SNPs, able to capture most varia-
tion in a population. Considerable research interest 
has recently focused on the development of methods for 
finding such SNPs. In this paper, we present an effi-
cient method for finding tagging SNPs. The method 
does not involve computation-intensive search for SNP 
subsets but discards redundant SNPs using a feature 
selection algorithm. In contrast to most existing meth-
ods, the method presented here does not limit itself to 
using only correlations between SNPs in local groups. 
By using correlations that occur across different 
chromosomal regions, the method can reduce the num-
ber of globally redundant SNPs. Experimental results 
show that the number of tagging SNPs selected by our 
method is smaller than by using block-based methods.

Supplementary website:
http://htsnp.stanford.edu/FSFS/.

1. Introduction

The abundance of single nucleotide polymorphisms 

(SNPs) in the human genome provides powerful tools 

for studying the association between sequence varia-

tion and the genetic component of common diseases. 

Although genome-wide SNP scans can give the most 

complete information for association studies, it is cur-

rently expensive to genotype all available SNPs across 

the human genome. An alternative strategy in this 
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situation is to genotype enough SNPs to provide the 

majority of information required for association stud-

ies, and ignore the ones those are redundant given 

typed SNPs. This strategy is enabled by the correla-

tions between SNPs as manifested by as linkage dis-

equilibrium (LD). A subset of SNPs that are selected to 

represent the original information embedded in the full 

set of SNPs is referred to as the set of tagging SNPs.  

The problem of finding this set of tagging SNPs is 

called tagging SNP selection problem. 

Several algorithms have been proposed for select-

ing tagging SNPs. A common approach is to define a 

measure of goodness for SNP sets and search for SNP 

subsets that: i) are small in size, and ii) attain high 

value of the defined measure [2, 23, 24]. Unfortu-

nately, examining every SNP subset to find good ones 

is computationally infeasible for all but smallest data 

sets. To overcome this difficulty, investigators have 

exploited apparent features of haplotypes, which some-

times form haplotype blocks of limited diversity. Auto-

matic algorithms first partition chromosomal regions 

into haplotype blocks [18, 25, 26, 13], then subsets of 

tagging SNPs are searched within each haplotype 

block. This approach is widely known as the block-

based approach. 

A main drawback of block-based methods is that 

the definition of blocks is not always straightforward 

and there is no consensus on how blocks must be 

formed. In addition, selecting tagging SNPs based only 

on the local correlations between markers of each 

block ignores inter-block correlations. Recent empiri-

cal studies reported LD distances with upper range 

extending to hundreds of Kb [7], which are much 

longer than maximum block sizes reported by [10, 27]. 

Tagging SNP selection therefore can benefit from us-

ing information about these global correlations.  A 

recent study [1] shows that using long range LD re-

duces the number of tagging SNPs. 

Another approach to selecting tagging SNPs uses 

data reduction techniques such as principal component 
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analysis (PCA) to find subsets of SNPs capturing ma-

jority of the data variance [16, 15]. Although not re-

quiring exponential search time, PCA is still computa-

tionally complex, especially for large chromosomal 

data sets. The “sliding windows” method proposed by 

[16], which applies PCA repeatedly to short chromo-

somal regions, can make PCA more efficient. 

Approaches that look for tagging SNPs globally are 

known as block-free approaches [21, 2, 11]. Sebastiani 

et al. [21] represent non-tagging SNPs as boolean func-

tions of tagging SNPs and use set-theoretic techniques 

to reduce search space. Bafna, Halldorsson and their 

colleagues [2, 11] allow their algorithm to search for 

subsets of markers that can come from non-consecutive 

blocks. They reduce the search space by introducing 

the notion of neighborhood of markers, which in some 

sense is an extension of the block notation.  

In this work, we take a block-free approach to make 

use of all the LD information. To avoid computational 

complexity, we do not look for subsets of SNPs but 

discard redundant markers using a feature selection 

method. While this strategy does not guarantee optimal 

solutions, it can give better performance on large data 

sets when exhaustive search can only be applied lo-

cally to short chromosomal regions.  

2. Methods 

Assume we are given N haploid sequences consist-

ing of m bi-allellic SNPs. The N sequences can be rep-

resented as a matrix of size m×N where rows are se-

quences and columns are SNPs. Each element (i,j) of 

the matrix is the allele of the i-th sequence at the j-th
SNP locus and can be 0, 1 or 2 where 1 and 2 are the 

two alleles and 0 indicates missing data. 

We treat the problem of selecting tagging SNPs as 

a feature selection problem. Each haploid chromoso-

mal sequence (row) is a learning instance belonging to 

a class. Each class consists of identical rows. SNPs 

(columns) are attributes or features, based on which 

sequences can be classified into classes. The problem 

is to select a subset of SNPs that can be used to classify 

the haploid sequences with the accuracy close to that of 

classification using all the SNPs.  

There are a number of feature selection methods in 

the literature, which obviously are not equally good for 

our purposes. A feature selection method which is suit-

able for selecting tagging SNPs must have the follow-

ing characteristics: 1) it should scale well for large 

number of SNPs; 2) it should not require explicit class 

labeling and should not assume the use of a specific 

classifier because classification is not the goal of tag-

ging SNP selection; 3) it should allow the user to select 

different numbers of tagging SNPs for different 

amounts of tolerated information loss; 4) it should have 

good performance among the methods satisfying the 

three first conditions. 

Methods for selecting features fall into two catego-

ries: filter methods and wrapper methods.  Filter algo-

rithms are general preprocessing algorithms that do not 

assume the use of a specific classification method. 

Wrapper algorithms, in contrast, “wrap” the feature 

selection around a specific classifier and select a subset 

of features based on the classifier’s accuracy using 

cross-validation. While there are strong arguments in 

favor of both approaches, wrapper algorithms are gen-

erally slower and do not satisfy condition 2). There-

fore, we will consider only filter methods that do not 

require explicit class labeling. 

Here we adopt the filtering feature selection 

method described in [17], which has all the characteris-

tics mentioned above including good reported per-

formance. The method uses feature correla-

tion/similarity to remove redundant features and does 

not require knowledge about class labels. It has a pa-

rameter that can be used to control the degree of in-

formation loss (condition 3). It is fast because it does 

not explicitly search for subsets of features. We next 

describe the method, which is called  Feature Selection 

using Feature Similarity (FSFS) [17]. 

A feature is a good feature not only if it is good to 

differentiate classes by itself or in combination with 

the other features in a feature subset, but also if it is not 

redundant given the other features. FSFS involves 

grouping features in clusters so that features within 

each cluster are similar. A single feature from each 

cluster is then selected to present the other cluster 

members. The next two subsections describe FSFS in 

more detail.

2.1. Measures of feature similarity

In order to use FSFS, we need to define a measure 

of similarity between a pair of features (SNPs in our 

case). There are a number of pairwise correla-

tion/similarity measures between two random vari-

ables. These measures can be categorized as linear or 

non-linear as they give the amount of linear or higher 

dependency between the two variables. Examples of 

linear measures are well-known correlation coefficient

ρ  , the LD measure r2
 [8], and the least squared re-

gression error e. The authors of FSFS also introduced 

a linear measure of similarity between two numerical 

random variables called maximal information com-

pression index 2λ . An example of non-linear similarity 
measures is symmetrical uncertainty SU [19].

It has been proved that if there is a linear depend-

ency between some features, and if the data are linearly 
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separable in the original representation, then the data 

remain linearly separable if all but one feature of the 

linearly dependent features are removed [6]. It is also 

easy to demonstrate that haplotype classes are linearly 

separable when there are only two alleles at a locus. 

Linear similarity measures are therefore more suitable 

when using FSFS to select tagging SNPs.  

In our experiments, we used r2
 to measure the simi-

larity/correlation between two SNPs:  

baBA

aBababAB

pppp

pppp
r

...

)..( 2
2 −=

where A and a are the two possible alleles at one locus, 

B and b are the two possible alleles at the other locus; 

xyp  denotes the frequency of observing x and y to-

gether in the same haplotype; xp  denotes the fre-

quency of x. A 2r  value of 1 indicates the highest LD 

or highest similarity while the value of 0 indicates no 

LD. The LD measure 2r  is directly related to recom-

bination rate; the value of 2r  decreases as a function 

of genetic distance between the pair of markers. More 

details on the biological meaning and appropriateness 

of r2
 for genetic mapping can be found in [8,20]   

2.2. Tagging SNP selection using FSFS 

FSFS selects features by first grouping them into 

homogeneous subsets and then choosing a representa-

tive feature from each subset. In what follows the 

terms “feature” and “SNP” are exchangeable.

Let the original SNP set of N SNPs be 

},...,1:{ NiFS i ==  . Let ),( ji FFD  denote the dis-

tance or dissimilarity between SNPs  iF  and jF  (the 

notion of distance used here should not be confused 

with chromosomal distance between SNPs). The 

higher ),( ji FFD  the less similarity between the two 

features. ),( ji FFD  may be computed using one of 

similarity measures mentioned above, e.g. 

),(1),(
2

jiji FFrFFD −= . Let R denote the reduced 

tagging SNP subset to be selected. The FSFS algorithm 

is given in figure 1.  

FSFS takes as input a set S of SNPs, a parameter k,

where k is an integer less than the number of SNPs in S

and returns a reduced set R of tagging SNPs. In the 

first step, the algorithm initializes R to S. It then dis-

cards SNPs from R through a number of iterations 

(step 2-7). During an iteration, for each feature iF  of 

R, FSFS calculates the distance i
kd  between iF  and 

its k-th nearest neighbor SNP (step 2). The neighbor-

hood is defined in term of dissimilarity between SNPs 

and should not be confused with the subset of SNPs 

located nearby in the chromosome. The algorithm then 

finds SNP 0F  for which 0
kd  is minimum, retains this 

SNP (seed SNP) in R and discards its k nearest SNPs 

from R (step 3). By doing that, the algorithm always 

discards SNPs from the most compact cluster and 0F

is the SNP for which removing k nearest neighbors 

causes minimum information lost (figure 2). For the 

first iteration, a constant error threshold θ is set 

0
kd=θ . Step 4 compares the cardinality of R after 

step 3 with k and adjusts k if necessary. In step 6, FSFS 

gradually decreases k and recomputes 0
kd  until 0

kd  is 

not greater than threshold θ. This ensures that no SNP 

which is more θ -dissimilar to a seed will be discarded. 

The algorithm ends when no SNP in R can be dis-

carded with error less than or equal to θ.

Input: ),...,,( 21 NFFFS   // original SNP set S 

k  ( 1−≤ Nk )    // a parameter k

Output: R // a tSNP subset R.

1. SR ←  // initialize R to S.
2. for each RFi ∈ do

),( i
k

ii
k FFDd = where i

kF  is the k-th near-

est neighbor of iF  in R.

end for 
3. find 0F  such that )(minarg0 i

k

RF

k dd
i∈

=

 let 00
1

,...,
kFF  be the k nearest SNPs of  0F

},...,/{ 00
1 kFFRR ←

if first iteration then set 0
kd=θ

4. if 1|| −> Rk then 1|| −= Rk

5. if 1=k goto 8. 

6. while θ>0
kd do

1−= kk

if 1=k goto 8 

recompute 0
kd .

end while 
7. goto 2 
8. return R

Figure 1. The FSFS algorithm 
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FSFS has one parameter k – the number of the 

nearest neighbors of each feature. As noted by Mitra et

al. [17], the choice of k controls the representation of 

data at different degrees of details and provides a direct 

way to control the maximum information loss when 

choosing features. In general, different values of k re-

sult in different reduction degrees of the feature set. 

The bigger k, the more features are discarded and vice 

versa.  

Figure 2. Feature clusters for different k

In the context of choosing tSNPs, there are two 

possible ways to select k. 1) Select k so that the dis-

tance between a seed SNP to its k-nearest neighbor is 

less than some threshold, which implies that for any 

non-tagging SNP there exist a tSNP such that the r2

between them is greater than some threshold. For ex-

ample, in [4], a r2
 threshold of 0.8 was used for choos-

ing tSNPs. 2) Select k to achieve desired prediction 

accuracy via cross-validation. The accuracy evaluation 

will be given in more detail in section 3. 

The computational complexity of FSFS with re-

spect to number of features N is )( 2NO . If the data set 

contains m rows (m sequences in the current problem), 

the complexity of computing the similarity of a pair of 

features depends on the chosen similarity measure. In 

particular, the complexity of computing 2r  is )(mO .

Thus the overall complexity of the method is 

)( 2mkNO  taking into account the iteration number. 

For large data sets with N achieving tens of thou-

sands, the complexity )( 2NO  is still high. In our im-

plementation for such large data sets we added a pre-

processing step. In this step all SNPs that are in perfect 

LD with each other ( 12 =r ) are considered identical 

and only one of them is retained. The algorithm is then 

run on the reduced SNP set where there are no SNP 

pairs with 12 =r . For shorter-sequence data sets 

(N<5000) the preprocessing step is not necessary.

2.3. Evaluation methods

There are several ways to assess the accuracy of a 

tagging SNP selection method. Stram et al. [23] intro-

duced a quality measure 2R , which is the measure of 

association between the true numbers of haplotype 

copies defined over the full set of SNPs and the pre-

dicted number of haplotype copies where the predic-

tion is based on the subset of tagging SNPs. This 

measure assumes diploid data and explicit inference of 

haplotypes from genotypes and thus is not suitable for 

our purpose. 

Another assessment method due to Clayton (Clay-

ton web site) is based on a measure of the diversity of 

haplotypes. The diversity is defined as the total number 

of differences in all pairwise comparison between hap-

lotypes. The difference between a pair of haplotypes is 

the sum of differences over all the SNPs. The Clay-

ton’s diversity measure can be used to define how well 

a set of tagging SNPs differentiate different haplo-

types. This measure is suitable only for haplotype 

blocks with limited haplotype diversity and it is not 

clear how to use it for large data set consisting of mul-

tiple haplotype blocks. 

Some recent works [15, 11] evaluate tagging SNPs 

selection algorithms based on how well the tagging 

SNPs can be used to predict non-tagging SNPs. The 

prediction accuracy is determined using cross-

validation such as leave-one-out or hold out. In leave-

one-out cross-validation, for each sequence in a data 

set, the algorithm is run on the rest of the data set to 

select a minimum set of tagging SNPs. The alleles of 

the left out haplotype are then predicted from “typed” 

SNPs (tagging SNPs). The prediction precision is cal-

culated as

allelespredictedall

allelespredictedcorrectlyofnumber

The precision is then averaged over all sequences 

to give the measure of accuracy for a tagging SNP al-

gorithm on the data set.  

Depending on how tagging SNPs are selected, dif-

ferent prediction methods have been used during cross-

validation process. Halldorsson et al. [11], who select 

tagging SNPs based on their ability to differentiate 

haplotypes, use a modification of the kNN machine 

learning method to predict the left-out haplotype. First, 

the training haplotypes that are most similar to the left-

out haplotype are determined. The similarity is defined 

as the Hamming distance over tagging SNP. Then, the 

alleles are predicted by a majority vote of the respec-

tive alleles from the most similar training haplotypes.  

In contrast, Lin and Altman [15] predict the alleles 

of a non-tagging SNP n from the tagging SNPs that 

k=4

k=3

k=2

0
4d

0F
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have the highest correlation coefficient with n. If a 

single highly correlated tagging SNP t is found, the 

alleles are assigned so that their frequencies agree with 

the allele frequencies of t. When multiple tagging 

SNPs have the same (high) correlation coefficient with 

n, the common allele of n has advantage. It is easy to 

see that in this case the prediction method agrees well 

with the selection method, which uses principal com-

ponent analysis on the matrix of correlation coeffi-

cients between SNPs. 

Since the method of selecting tagging SNPs de-

scribed here is based on the pairwise similarity of 

SNPs, we take the prediction method similar to that of 

[15]. In particular, for each non-tagging SNP n we look 

for the most similar tagging SNP t, which is the seed of 

the corresponding cluster (see algorithm above). The 

allele nA  of n is then chosen so that it agrees well with 

the corresponding allele tA  of t. In other words, nA  is 

chosen so that )|( tn AAP  is maximum, where 

)|( tn AAP  is the conditional probability that nA  ap-

pears in a haplotype at locus n when tA appears in the 

haplotype at locus t.

2.4. Dealing with diploid data 

To compare with other methods, the evaluation was 

done only on haploid data sets. In practice, experimen-

tal determination of haploid data is much more difficult 

than of diploid data. The use of LD measure 2r  can 

overcome this problem by computationally inferring 

haplotype frequencies, e.g. using the EM algorithm of 

[9], over each pair of SNPs, for which 2r  needs to be 

computed. This approach was used to compute 2r

from diploid data in [7]. The exact phase of a haplo-

type is not required. 

3. Experiments and results

3.1. Data sets 

To assess the method, we used two data sets of dif-

ferent sizes. First, to see the performance of the method 

in large scale data sets, we use the data set of human 

chromosome 21 described in [18]. The data set consists 

of 24047 SNPs typed on 20 haploid copies of chromo-

some 21. Despite the small number of sampled chro-

mosomes and the high rate of missing data, the data set 

was used as a test set in a number of studies [25, 

26,11]. In our experiments we ignored alleles with 

missing data. The cross-validation procedure was done 

on full data set as well as on the first 1000 SNPs of the 

set.  

The second data set is the IBD 5q31 data set from 

an inflammatory bowel disease study of father-mother-

child trios [5]. Here we used the haploid version of the 

data set described in [15], in which the haplotype phase 

was solved by applying PHASE 2.0.2 [22]. The hap-

loid data set after phasing contains 103 biallelic non-

singletons from 774 phased chromosomes. This data 

set contains no missing data. 

These two data sets present different experimental 

conditions to evaluate tagging SNP selection methods. 

While the former contains genome-wide sequences of a 

small number of samples, the latter contains relatively 

shorter sequences of a large number of samples. 

3.2. Comparison 

We compared the method using FSFS with the 

block-based method of [26]. This method was chosen 

because it can deal with large data sets. Another 

method that can be used for large data set is the block-

free method by Halldorsson et al. [11]. Unfortunately, 

we could not obtain the code that implements this 

method for our experiments. 

The method presented in [26] uses dynamic pro-

gramming algorithms to partition chromosomes into 

blocks of limited haplotype diversity and searches for 

tagging SNP within each block. In our experiments we 

used the program Haploblock version 3.0 which is the 

implementation of the algorithms. To select tagging 

SNP subsets of different sizes we ran Haploblock in 

“Block partition with a fixed number of tag SNPs”
mode with the chromosome coverage for each tagged 

SNP set to 1. We also ran FSFS with different values 

of k to select tagging SNP subsets of different sizes. 

3.3. Results 

To limit the amount of computation, we followed 

[11] and performed leave-one-out cross-validation of 

FSFS and the block-based dynamic programming 

method on the first 1000 SNPs of the chromosome 21 

data set. As noted by those authors, this subset is 

highly representative for the overall data set. Figure 3 

shows the cross-validation accuracy plotted against the 

number of tagging SNPs selected by each method. As 

mentioned above, different numbers of tagging SNPs 

selected by FSFS resulted from different values of k.

The fraction of correctly predicted non-tagging 

SNPs is higher for FSFS than for the block-based 

method for most selected SNP numbers. The accuracy 

of the two methods increases rapidly until reaching 

about 85%, after that a more gradual improvement is 

observed, which may be explained by the presence of 

rare haplotypes. 
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Figure 3. Results of leave-one-out experiments on the first 1000 SNPs of the chromosome 21 data set. The solid and doted 

curves present the results when using the FSFS, and the block-based method of Zhang et al. [26] respectively. The x-axis shows 

the number of selected tagging SNPs; the y-axis shows the fraction of correctly predicted non-tagging SNPs. The results are 

plotted with 1-std error bars. 

Due to relatively large number of sequences of the 

IBD1 data set, we performed 10-fold cross-validation on 

it. The results are plotted in figure 4. The FSFS-based 

method results in smaller tagging SNP sets to achieve a 

slightly better accuracy than that of the block-based 

method. A possible explanation for the better perform-

ance of FSFS on the IBD1 data set is that despite the rela-

tively small number of SNPs considered, the data set con-

sists of several small haplotype blocks. The block-based 

method does not remove SNPs that are correlated with 

SNPs from other blocks and therefore are redundant. A 

closer look at the output of the block-based algorithm 

verifies this hypothesis. The algorithm partitions the 

chromosome region into from 5 to 11 blocks depending 

on the input parameters. 

3.4. Cluster organization 

The method presented in this works uses the correla-

tions between SNPs that are located across the chromo-

some region considered and thus the performance of the 

method depends largely on how correlated SNPs are dis-

tributed. To understand the behavior of the method, we 

analyze the clusters created when running the algorithm. 

The algorithm was run on the full chromosome 21 data 

set and k was chosen to achieve 80% cross-validation 

accuracy. These settings resulted in 3009 tagging SNPs in 

average. The size and content of clusters created during 

selection process were saved and visualized graphically. 

In all, 1993 clusters were chosen by the algorithm when 

discarding SNPs. The maximum size of the neighbor-

hood/cluster created (in the first iteration) is 481. In fig-

ure 5, the locations of SNPs from the six largest clusters 

are presented. 

In figure 5, each triangle corresponds to one cluster. 

The interpretation of triangles is as follows. The whole 

chromosome consisting of 24047 SNPs is divided into 81 

regions; each contains 300 consecutive SNPs (the last 

region has only 47 SNPs). Each row/column corresponds 

to one such region. Each cell contains the number of the 

cluster’s members from the respective row multiplied by 

the number of the cluster’s members from the respective 

column. For example, if a cluster has 5 SNPs coming 

from region x and 10 SNPs coming from region y, then 

cell (x,y) of the respective triangle contains value 

5*10=50. Gray-scale levels are used to present digital 

values. Black denotes 0, and white denotes maximum 

number. Other gray levels denote values between 0 and 

maximum. 
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Figure 4. Results of tenfold cross-validation experiments on IBD1 data set. The solid and doted curves present the results when 

using the FSFS, and the block-based method of Zhang et al. [26] respectively. The x-axis shows the number of selected tagging 

SNPs; the y-axis shows the fraction of correctly predicted non-tagging SNPs. The results are plotted with 1-std error bars. 

The figure shows that large clusters consist of SNPs 

from different regions of the chromosome. Since the al-

gorithm groups SNPs into clusters based on within clus-

ter LD distances, this figures shows that SNPs, which are 

in high LD can be located distantly but not only within 

haplotype blocks. This observation is consistent with the 

findings reported in [6], which show the high LD be-

tween distantly located SNPs. 

4. Conclusion 

We investigated an efficient block-free SNP-tagging 

method and compared it to an existing block-based 

method.  The new block-free method showed good per-

formances in finding smaller tagging SNP set to achieve 

the same cross-validation prediction accuracy in two ex-

perimental datasets. 

The method has two major characteristics. First, it 

does not involve subset search. Instead, SNPs are re-

moved individually to form tagging sets based on pair-

wise similarity. Second, global similarity/correlations 

between SNPs across chromosomes are used to find re-

dundant markers. While the first characteristic does not 

allow finding tagging SNPs that in combination with 

other tagging SNPs can predict non-tagging ones [24], it 

makes computation less complex. This enables the reali-

zation of the second characteristic. The overall effect is 

that while being not optimal, the method presented here 

can have performance comparable or better than methods 

based on block-partitioning when applied to chromosome 

regions with high haplotype diversity. 

The main reason our method finds smaller sets of tag-

ging SNPs is that it takes advantage of using both local 

and long range LD across chromosomes.  This is demon-

strated from the analysis of SNP clusters formed during 

FSFS’s iterations. The presence of such long-range LD 

and the benefits of using them to select tagging SNPs 

have also been reported in a recent paper [1]. These re-

sults together give more support to block-free approaches 

to finding tagging SNPs.  With more block-free tagging 

methods become accessible, we can further analyze them 

and compare them to FSFS. 
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Figure 5. The largest six clusters created by FSFS from the chromosome 21 data set. Each triangle corresponds to one cluster. 

Rows and columns are regions in the chromosome. Each cell presents the product of the numbers of clusters members from the re-

spective row and column. Black denotes low numbers and white denotes high numbers. Thus, the first cluster (upper left) has mem-

bers from all along the chromosomal segment. 
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