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The circadian clock generates 24 h rhythms that drive physiological and behavioral pro-
cesses in a diverse range of organisms including microbes, plants, insects, and mammals.
Recent experimental advances have produced improved understanding of the molecular
mechanisms involved in circadian rhythm generation at the single cell level. However,
the intercellular mechanisms that allow large populations of coupled pacemaker cells to
synchronize and coordinate their rhythms remain poorly understood. The purpose of this
article is to review recent progress in dynamic modeling of the circadian clock with a focus
on multicellular models required to describe cell population synchronization. Mammalian
systems are emphasized to illustrate the highly heterogeneous structure and rich dynam-
ical behavior of multicellular circadian systems. Available multicellular models are charac-
terized with respect to their single cell descriptions, intercellular coupling mechanisms,
and network topologies. Examples drawn from our own research are used to demonstrate
the advantages associated with integrating detailed single cell models within realistic mul-
ticellular networks for prediction of mammalian system dynamics. Mathematical modeling
is shown to represent a powerful tool for understanding the intracellular and intercellular
mechanisms utilized to robustly synchronize large populations of highly heterogeneous
and sparsely coupled single cell oscillators. The article concludes with some possible direc-
tions for future research.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The circadian clock generates 24 h rhythms that provide
robust regulation of a variety of physiological and behav-
ioral processes in a diverse range of organisms, such as the
fungus Neurospora [65,78], the plant Arabidopsis [105], the
fly Drosophila [46,48], and mammals [99,100,133]. Recent
advances in the understanding of the molecular basis for cir-
cadian rhythms have revealed details on the organization of
circadian systems at the single-cell level [110]. However,
the intercellular mechanisms that allow large populations
of oscillatory neurons to synchronize and coordinate their
rhythms are not well understood. Experimental evidence
strongly suggests that robustness in timekeeping precision
emerges in the collective behavior and not at the single-cell
level [50]. The study of coupled biological oscillators has at-
tracted considerable attention [38,132] and is part of a
broader movement towards research on complex network
systems [113]. Such systems are intrinsically difficult to
understand because network nodes are high dimensional,
network connectivity is heterogeneous across the popula-
tion, and wiring between nodes can change over time.

In mammals, the suprachiasmatic nucleus (SCN) of the
hypothalamus is the dominant circadian pacemaker that
drives daily rhythms in behavior and physiology [59].
Experimental studies demonstrate that SCN neurons can
sustain circadian rhythms without periodic input and indi-
cate that a pacemaker within the SCN is required to drive
near 24-h rhythmicity in other regions of the brain
[1,117]. Individual SCN neurons in in vitro cultures can
express firing rate rhythms with different periods [51,71].
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These results show that the SCN is a multioscillator system
and suggest that individual SCN cells can act as autono-
mous circadian pacemakers. In vivo, these cells must syn-
chronize to environmental cycles and to each other.
Although intercellular communication within the SCN has
been the focus of significant experimental effort, little is
known about how SCN cells synchronize to each other to
coordinate behavior [9,72].

Mathematical modeling of circadian rhythm generation
has been proposed as a means to understand the design
principles of circadian systems in particular and coupled
biological oscillators more generally. A number of mathe-
matical models for the circadian clocks in Neurospora
[32,40,68,103,108], Drosophila [37,40,66,108,118,119],
and mammals [31,67,80], and more recently in cyanobac-
teria [104] and plants [97], have been presented. These sin-
gle cell oscillator models range from simple limit cycle
oscillators [6] to detailed descriptions of interconnected
transcriptional and translational feedback loops [31,80]
to Hodgkin–Huxley type models of neuron electrophysiol-
ogy [107]. Modeling of circadian neuron populations for
the purpose of studying synchronization also has received
substantial attention. Conceptual models constructed from
simple differential equation models of an oscillating neu-
ron and phenomenological descriptions of intercellular
coupling have been proposed for studying circadian
rhythm generation [4,6,39,62,71,90]. While conceptually
appealing and computationally efficient, such models can-
not be directly related to specific molecular events. Multi-
cellular models based on more mechanistic descriptions of
circadian gene regulation have been presented for Dro-
sophila [27,96,120], the cockroach Leucophaea maderae
[96], and more recently for mammals [15,41,116].

The purpose of this article is to review recent progress
in multicellular modeling of the circadian clock with a fo-
cus on mammalian systems due to their clear relevance
to human health and performance. First a brief overview
of experimental studies on the mammalian circadian clock
is provided to demonstrate the heterogeneous structure
and rich dynamical behavior of this multicellular system.
Then a summary of available multicellular models is pre-
sented to distinguish the broad range of modeling ap-
proaches and to illustrate the associated modeling
challenges and opportunities. Examples drawn from our
own research are used to demonstrate the advantages
associated with integrating detailed single cell models
within realistic multicellular networks for prediction of
mammalian circadian behavior. Finally, some possible
directions for future research are outlined.
2. The mammalian circadian clock

Due its impact on various mood [75,102] and sleep dis-
orders [60,133] in humans, the mammalian circadian sys-
tem has been widely studied through both experimental
and modeling approaches. The objective of this section is
to summarize the current state of knowledge about the
mammalian circadian system with regards to its heteroge-
neous structural features and complex dynamical behav-
iors as a prelude to the modeling studies described in the
subsequent sections. In mammals, most physiological and
behavioral events are subject to well controlled daily oscil-
lations generated by an internal self-sustained master
clock located in the suprachiasmatic nucleus (SCN) of the
hypothalamus. The SCN clock consists of approximately
20,000 individual neurons whose activities are coordinated
to produce 24 h cycles in gene expression and firing fre-
quency [130]. The complexity of the SCN network arises
not only from its large size but also from the complex dy-
namic behavior of each neuron and the heterogeneous
topology connecting individual neurons.

2.1. Single cell oscillations

Oscillations at the single cell level are produced by a
well characterized gene regulatory network that involves
a number of interlocking positive and negative feedback
loops in which three Period (Per) and two Cryptochrome
(Cry) genes genes occupy central positions [100]. As part
of the core transcription-translation negative feedback
loop, PER and CRY proteins synthesized in the cytosol form
PER–CRY dimers that are transported into the nucleus. Two
transcription factors CLOCK and BMAL1 synthesized in the
cytosol are transported into the nucleus to form CLOCK–
BMAL1 dimers that activate transcription of the Per and
Cry genes and inhibit transcription of the Bmal1 gene. This
activation is rhythmically suppressed and reestablished by
PER–CRY dimers, which block the activity of CLOCK–
BMAL1 dimers and negatively autoregulate transcription
of the Per and Cry genes. With the exception of CLOCK
and the CLOCK–BMAL1 dimer, each protein and protein
complex can be phosphorylated and subsequently de-
graded. Activation is rhythmically suppressed and restored
approximately every 24 h as the inhibitory PER and CRY
proteins accumulate and then degrade.

Circadian modulation of neural firing causes a number
of electrophysiological properties of the cell membrane
to fluctuate over the course of the day [19]. In vitro stud-
ies of the SCN have demonstrated daily modulation of
neural firing [53], resting potential [61] and membrane
resistance [95], as well as daily oscillations in a number
of ionic currents [55,77]. A direct association between
membrane excitability and core-clock rhythms has been
reported, providing evidence for a positive correlation
between Per gene transcription and firing frequency
[89,98].

2.2. Cellular and network heterogeneity

The SCN consists of a broad range of neural subgroups,
typically differentiated according to their neuropeptide
content [122], their afferent [81] and efferent [64]
connections with other regions of the brain, and their
oscillatory behavior [64,106]. Morphological studies in a
variety of mammals [3,22] have demonstrated that the
SCN is organized into two structurally and functionally dis-
tinct subdivisions. The two regions, differentiated based on
their neuropeptide content and network architecture, have
been designated as the ‘‘core’’ and the ‘‘shell’’ [3,101]. The
core refers to the ventral region of the nucleus comprised
of approximately 40% of all SCN neurons. Core neurons
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primarily produce vasoactive intestinal peptide (VIP) co-
localized with c-aminobutyric acid (GABA) [82,83]. The
shell surrounds the core and contains approximately 60%
of the SCN cell population. Shell neurons primarily produce
arginine vasopressin (AVP) [56] co-localized with GABA
[82,83]. Synaptic connections within the shell are confined
mostly between proximal neurons [94,111]. By contrast,
axons originating from VIP synthesizing cells of the core
extend densely over the entire SCN establishing synaptic
connections between core neurons [26] as well as with
shell neurons [56]. Further contributing to heterogeneity
of the circadian network, SCN neurons differ in their
intrinsic rhythmic behavior in the absence of
cell-to-cell communication. Treatments that desynchro-
nize rhythms among SCN neurons have revealed that only
30% of the population behaves as self-sustained oscillators
[10].

2.3. Intercellular signaling

Circadian rhythmicity is ensured not only by autono-
mous intracellular mechanisms within individual cells
[100] but also by intercellular communication that coordi-
nates functionally and structurally distinct cell types
across the SCN [42,72]. Studies have shown that VIP is a
critical neuropeptide involved in the generation and syn-
chronization of circadian rhythms [9]. VIP is synthesized
in the core by approximately 10–20% of the 20,000 SCN
neurons, while the VIP receptor VPAC2 is expressed by
60% of the neurons across the SCN [58]. Mice lacking VIP
[54] or VPAC2 [47] have been reported to express multiple
circadian rhythms or single rhythms with greatly reduced
periods and lower amplitude oscillations than wild-type
mice [9,17,18]. While the 70% of wild-type SCN neurons
that fired in a circadian pattern displayed similar periods
and phases, only 30% of VIP and VPAC2 deficient neurons
produced daily oscillations and these oscillatory neurons
displayed a significantly broader range of periods [9]. The
ubiquitous neurotransmitter GABA interacts with GABAA

and GABAB receptors, producing inhibitory responses
through membrane hyperpolarization that effectively
shunts transmembrane voltage shifts [23,82,83]. In the
case of GABAA receptors, GABA binding produces hyperpo-
larization by increasing chloride flow into the neuron
[14,24]. A continuing point of controversy concerns the
role of GABA in synchronization of the SCN network.
Although daily application of exogenous GABA has been
shown to synchronize firing rhythms of dispersed SCN
neurons [70], GABA blockade had no effect on synchroniza-
tion and was not required for the expression of a coherent
signal within SCN slices [11].

The mechanism by which single cells produce synchro-
nized rhythms in neural firing, gene expression, and neuro-
peptide secretion is believed to involve intracellular
signaling instigated by cytosolic calcium [115]. Calcium is
a second messenger that affects not only core-clock tran-
scriptional mechanisms, but also electrophysiological
properties of the circadian system. Cytosolic calcium has
been demonstrated to activate Ca2+/calmodulin dependent
kinases, which in turn phosphorylate the cAMP-response-
element binding (CREB) protein, ultimately leading to
Per1 gene induction [115]. Decreased Ca2+concentrations
have been shown to abolish daily Per1 mRNA oscillations
in SCN slices [73].
2.4. Light stimulation

One of the most important attributes of the SCN is its
ability to perceive photic signals and adapt its periodicity
to various light and dark schedules. The core receives
direct photic input, as retinohypothalamic tract (RHT) pro-
jections have been shown to terminate almost exclusively
within the ventral region of the SCN overlapping the distri-
bution of VIP synthesizing neurons [82–84]. By contrast,
the shell does not receive direct photic input but rather
is entrained by light through long-range synaptic connec-
tions from core neurons. Light sensing is primarily
achieved via glutamate and pituitary adenylate cyclase
activating peptide (PACAP) neurotransmitters released
within the retinorecipient core region [44]. Stimulation of
glutamate receptors is associated with increased calcium
influx [35], which has been shown to activate a number
of protein kinases that ultimately induce core-clock gene
transcription [93] via activation of CREB [36]. Upon bind-
ings its receptors, PACAP has been shown to instigate a sig-
naling cascade involving a cAMP/protein kinase dependent
pathway [43], which in turn stimulates the phosphoryla-
tion of CREB and ultimately induces core-clock gene
expression [127].
3. Multicellular models of circadian rhythm generation

The circadian core clock is inherently complex due to its
highly heterogeneous properties, which include neuropep-
tide content, uncoupled rhythmicity, and photic input at
the single cell level and connectivity type, directionality,
and strength at the cell population level. Mathematical
modeling of the core clock offers the potential to integrate
existing knowledge and to generate experimentally test-
able hypotheses about system dynamics and function.
While single neuron models can provide insights into the
molecular machinery responsible for individual cell
oscillations, they cannot address critical questions about
the effects of cellular heterogeneity and intercellular com-
munication on cell population dynamics and collective
rhythm generation.

A typical multicellular model of the core circadian clock
consists of an ensemble of coupled single cell oscillators.
These models can be used to better understand population
synchronization and other complex system dynamics that
result from intracellular gene regulation, intercellular sig-
naling, and cellular heterogeneity. There is a vast literature
on the synchronization of heterogeneous populations of
coupled oscillators that has application to circadian
rhythm generation [63,79,112,131,132]. A prototypical
problem involves a population of limit-cycle oscillators
with natural frequencies drawn from a random distribu-
tion that are coupled through weighted sinusoidal func-
tions depending on differences between the oscillator
phases. In the absence of coupling, each oscillator produces
its natural frequency and a coherent overall rhythm is not
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observed. When the coupling weight is sufficiently large,
the system exhibits a phase transition where some oscilla-
tors self-synchronize with complete synchronization ob-
served in the limit of a large coupling weight [112].
While such conceptual models are useful for gaining in-
sights into general synchronization phenomena, they are
not sufficiently realistic for understanding circadian sys-
tem behavior.

Table 1 contains a listing of representative multicellular
circadian models that are differentiated with respect to the
Table 1
Representative list of multicellular models of the circadian core clock.

Lead
author
(year)

Cell model Cell
number

Coupling agent

Petri
(2001)a

Gene regulatory
network

2 Doubly phosphorylated PER
protein

Oda
(2002)a

Limit cycle
oscillator

2 Coupling weights

Ueda
(2002)a

Gene regulatory
network

100 Various

Antle
(2003)

van der Pol
oscillator

1000 Gating mechanism

Kunz
(2003)

Van der Pol
oscillator

100–
10,000

Coupling weights

Gonze
(2005)

Goodwin
oscillator

10,000 Generic neurotransmitter

Bush
(2006)

Leaky integrate
& fire

20–100 Generic neurotransmitter

Antle
(2007)

van der Pol
oscillator

200 Gating mechanism

Bernard
(2007)

Gene regulatory
network

6–309 Generic neurotransmitter

To (2007) Gene regulatory
network

400 VIP signaling network

Diekman
(2009)

Integrate & fire 10,000 GABA with coupling weight

Gu (2009) Goodwin
oscillator

1001 Generic neurotransmitter with
distributed coupling strength

Li (2009) Goodwin
oscillator

30 Generic neurotransmitter

Ullner
(2009)

Goodwin
oscillator

10,000 Generic neurotransmitter

Vasalou
(2009)

Gene regulatory
network

400 VIP signaling network

Abraham
(2010)

Poincare
oscillator

2 Coupling weight

Nagai
(2010)b

Protein
interaction
network

2 KaiC protein

Fukuda
(2011)
[33]

Phase oscillator 800–
8000

Coupling weight

Komin
2011

Goodwin
oscillator

200–
1000

Generic neurotransmitter

Oda
(2011)a

Limit cycle
oscillator

2 Coupling weights

Vasalou
(2011)

Gene regulatory
network

400 VIP & GABA signaling networks

Vasalou
(2011)

Gene regulatory
network

425 VIP & GABA signaling networks

Diambra
(2012)a

Gene regulatory
network

50 Doubly phosphorylated PER
protein

Hafner
(2012)
[41]

Gene regulatory
network

200 Generic neurotransmitter

All mammalian models unless other indicated.
a Drosophila models.
b Cyanobacteria model.
type and number of single cell oscillators, the intercellular
coupling agent and mechanism, and the main focus of the
modeling study. Most models have been developed for the
mammalian circadian clock, although several studies have
been focused on Drosophila due to the abundance of exper-
imental data available for this organism. A stochastic mod-
el for the reconstructed in vitro circadian oscillator in
cyanobacteria has recently been proposed [85]. These
multicellular models have been most often used to investi-
gate phase synchronization and light entrainment of cell
Coupling scheme Focus

Bidirectional Period of synchronization populations

Bidirectional Spitting of oscillator populations in
constant light

Local Effect of coupling mechanisms on
synchronization

Phase resetting Synchronization of heterogeneous
populations

Local Synchronization of heterogeneous
populations

Mean field Synchronization & light entrainment

Local, global, small-
world networks

Synchronization of conceptual single cell
model

Phase resetting Light entrainment of heterogeneous
populations

Random, local, & their
combination

Effect of network topology & cell number
on synchronization

Local Synchronization of heterogeneous
populations

Variable connectivity
from 0% to 100%

Effect of connectivity on synchronization

Mean field Effect of coupling strength on period
distribution

Unconnected & global Synchronization & light entrainment of
core & shell regions

Mean field Synchronization with variable coupling
strengths

Small-world Synchronization & light entrainment of
small-world networks

Mean field Effect of intracellular coupling on light
entrainment

KaiC monomer
shuffling

Synchronization of mixed samples with
different phases

Mean field Phase wave generation & synchronization

Mean field Effect of cellular heterogeneity on
synchronization & light entrainment

Bidirectional Entrainment by two independent
zeitgebers

Small-world VIP & GABA mediated synchronization

Combination of small-
world & local

Synchronization of core & shell regions

Mean field Effect of PER nuclear transport & non-
photic PER degradation

Random, local, &
scale-free networks

Effect of network topology on
synchronization & light entrainment
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populations that are heterogeneous with respect to their
uncoupled oscillation periods.

The single cell models used in these studies include van
der Pol oscillators that simply display oscillatory dynamics,
Goodwin oscillators that capture minimal features of the
main gene regulatory feedback loop, and more detailed
gene regulatory models that capture the interplay between
gene products and transcriptional regulation in interlock-
ing positive and negative feedback loops. More detailed
single cell models allow the molecular basis of individual
cell oscillations and their synchronization to be investi-
gated (e.g. [126]). In principle, synchronization and
entrainment of circadian oscillators can be examined with
as few as two cells with reciprocal connections (e.g. [96]).
Some studies use two oscillators to represent two distinct
cellular populations, such as ‘‘morning’’ and ‘‘evening’’
oscillators for capturing splitting of locomotor activity in
hamsters [90,91]. Small cell populations can be sufficient
to investigate synchronization and entrainment of identi-
cal oscillators (e.g. [2]). However, much larger cell popula-
tions representative of actual core clocks are required to
adequately capture cellular heterogeneity and to compute
important population statistics such as the period distribu-
tion (e.g. [116]).

With the exception of models that use non-rhythmic
‘‘gate’’ cells to periodically reset the phase of uncoupled
oscillator cells (e.g. [6]), the individual oscillators must be
coupled to phase synchronize and generate a coherent
overall rhythm. A wide variety of intracellular coupling
agents and schemes have been proposed to model cell-
to-cell communication. A simple approach is to use a single
state variable of the oscillator as the coupling agent and to
introduce weighted values of this variable from each cell as
rhythmic inputs to the other cells. An extension of this cou-
pling weight approach is to assume that each cell synthe-
sizes a generic neurotransmitter (e.g. mimicking VIP in
the mammalian clock) and utilizing this neurotransmitter
as the coupling agent. More detailed signal transduction
models involving the intracellular production and intercel-
lular action of neurotransmitters such as VIP and GABA
have been developed for the mammalian circadian clock
[116,126].

Several alternative coupling schemes have been pro-
posed for the action of the coupling agent from one cell
on the remaining cells in the population. Mean field cou-
pling is based on the assumption that the cellular network
is globally coupled (i.e. each cell is connected to every
other cell) and that the times scale of coupling agent trans-
mission is fast compared to the 24 h circadian cycle. In this
case, the average value of the coupling agent across the cell
population multiplied by a coupling weight is used as the
input to all cells [33]. In random coupling, each cell is
placed on a grid (or possibly a lattice) and connections be-
tween cells are assigned randomly according to a chosen
probability with all connections having the same coupling
weight (e.g. [121]). In local coupling, a particular cell only
receives input from cells in close proximity (i.e. nearest
neighbors). The coupling weights can have uniform values
(e.g. [15]) or vary inversely with the distance between cells
(e.g. [62]). Small-world [128] and scale-free [12] network
topologies have been proposed as plausible models of the
heterogeneous connection patterns observed between cir-
cadian neurons. These networks are characterized by a
large number of local connections between nearest neigh-
bors and a relatively small number of long-range connec-
tions between randomly chosen cells (e.g. [41]) [125].
Combinations of different coupling schemes have been
used to model cell-to-cell connectivity observed in the core
and shell regions of the mammalian SCN (e.g. [15,124]).
4. Biophysically-based multicellular models of the
mammalian circadian clock

While minimal multicellular models of the circadian
clock are useful for qualitative analysis, detailed biophysi-
cal models offer the possibility of directly connecting
molecular interactions to system behavior such as popula-
tion synchronization and light entrainment. An ideal bio-
physical model has the following characteristics: (1) a
detailed description of the gene regulatory network
responsible for single cell oscillations and the electrophys-
iological mechanisms that allow transmission of cellular
information; (2) a plausible description of the signaling
network responsible for neurotransmitter release and
post-synaptic action; (3) single cell heterogeneity with re-
spect to oscillatory behavior (self-sustained and damped),
oscillation period, neurotransmitter release (producing
and non-producing), and post-synaptic action (binding
and non-binding); and (4) a heterogeneous network topol-
ogy that captures non-uniform cell-to-cell communication
and photic input. This section focuses on multicellular
models of the mammalian circadian clock that possess sev-
eral of these characteristics.
4.1. VIP signaling model of cell-to-cell communication

Experimental studies have demonstrated that the
neuropeptide VIP is critical for the generation and syn-
chronization of circadian rhythms [11]. VIP rhythmically
released by a particular cell influences another cell by
binding its VPAC2 receptors and triggering a signaling
cascade that eventually modulates transcription of the
PER gene in the core clock of the target cell [74].
However, VIP signaling is highly heterogeneous as the
neuropeptide is only synthesized by approximately
10–20% of neurons in the core region, while the receptor
VPAC2 is expressed by about 60% of neurons across the
SCN [58]. When VIP signaling was eliminated in VPAC2
and VIP deficient neurons, only 30% of the neurons pro-
duced daily oscillations and they displayed a broad range
of periods [11].

Along with Erik Herzog (Washington University) and
Frank Doyle (University of California, Santa Barbara), we
developed a multicellular model of the mammalian circa-
dian clock that explicitly included VIP signaling [116].
The core oscillator was obtained by modifying a previously
published gene regulation model [67] to allow the incorpo-
ration of VIP mediated cell-to-cell communication (Fig. 1).
While more detailed models of VIP signaling are available
[45], we developed a comparatively simple signaling mod-
el because the molecular mechanisms involved are not
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Fig. 1. Schematic representation of VIP mediated cell-to-cell communi-
cation used in a multicellular model of the mammalian core clock [116]. A
core transcription-translation negative feedback loop provides the drive
on rhythmic communication between cells and responds to synchroniz-
ing signals from neighboring cells. Within this loop, two transcription
factors (CLOCK and BMAL1) form dimers to activate transcription of the
period gene. This activation is rhythmically suppressed and restored
approximately every 24 h as the inhibitory PER and CRY proteins
accumulate and then degrade. One hypothesized output of this clockwork
is the circadian regulation of VIP release. VIP binds to the G-protein
coupled receptor, VPAC2, to increase intracellular calcium and activate
CREB. At specific phases in the circadian cycle, activated CREB induces Per
transcription and shifts the phase of the circadian clock. Increases in
intracellular calcium also mediate the phase-resetting effects of light and
the release of available VIP.
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completely understood. In this signal transduction cascade,
VIP was bound by the VPAC2 receptor to increase intracel-
lular calcium and activate the CREB protein, which induced
Per transcription to modulate the oscillator phase. VIP re-
lease in constant darkness was circadian with a constant
phase relation to Per transcription, while the VIP release
rate was assumed to be sufficiently large during constant
light to induce complete saturation of VPAC2 receptors.
Photic input was further assumed to result in increased
intracellular calcium levels. An ensemble of individual cells
was placed on a two-dimensional grid, and variable cou-
pling weights that decreased linearly with distance be-
tween cells were used to describe non-uniform VIP
contributions across the network. End effects on the grid
were eliminated by implementing periodic boundary con-
ditions such that neurons located at an edge were con-
nected to corresponding neurons at the opposite side of
the grid, thereby producing a symmetric lattice.

Dynamic simulations were performed with 400 cells
placed on a 20-by-20 grid, resulting in a multicellular mod-
el with 6800 ordinary differential equations. Parameter val-
ues for the core oscillator model were obtained from the
original Ref. [67], while parameter values associated with
VIP signaling were chosen within biologically plausible
ranges to mimic experimentally observed synchronization
and desynchronization behavior. Asynchronous initial cell
states were generated with a previously published method
developed for yeast cell population simulations [49]. Each
model neuron was assigned a randomly perturbed value
of the Per mRNA basal transcription rate with 10% standard
deviation such that approximately 40% of the neurons pro-
duced sustained oscillations in the absence of VIP coupling.
To achieve a broad distribution of uncoupled periods, ran-
dom perturbations with 10% standard deviation were also
introduced into eight kinetic parameters associated with
the core oscillation model. The instantaneous degree of
phase synchrony after each oscillation cycle was quantified
with the synchronization index [112], which reflects the
synchronization index reflects the instantaneous amplitude
of the ensemble rhythm and yields values between zero (no
synchronization) and one (perfect synchronization).

The multicellular model was used to investigate the ef-
fects of VIP signaling on synchronization dynamics and the
distribution of oscillator periods under constant darkness.
A highly synchronized initial cell state was generated by
simulating the VIP coupled cell ensemble for approxi-
mately 10 circadian cycles. To mimic the loss of VIP signal-
ing, the extent of VPAC2 saturation was set to zero at 72 h.
Nearly 60% of neurons failed to exhibit rhythmicity two cy-
cles after VIP coupling was eliminated, and synchrony was
rapidly lost in the remaining self-sustained oscillators
(Fig. 2A). mRNA concentrations were averaged across the
cell ensemble to independently assess the effect of VIP sig-
naling on synchrony among cells and the state of their
pacemaker mechanism. Rhythms in Per, Bmal1 and Cry
mRNAs damped out after approximately three days due
to a loss of intracellular rhythmicity and intercellular syn-
chrony (Fig. 2B). While the coupled cell population con-
sisted of 156 self-sustained oscillators with tightly
distributed periods and a relatively large average period,
loss of VIP signaling reduced the mean period by approxi-
mately 5 h and broadened the period distribution (not
shown). The synchronization index (SI) exhibited a sharp
decrease following VIP removal and eventually settled at
a small value indicating a near complete loss of synchrony
(Fig. 2C). The model recapitulated experimental findings
that removal of VIP signaling leads to a loss of rhythmicity
in a majority of cells and reduced synchrony within the
SCN of mice, as well as a shortening of the mean circadian
period among the remaining rhythmic cells that mimics
mice or SCN with disrupted VIP signaling [8,17,18].

The multicellular model was also used to investigate
the effect of photic input on circadian synchrony and
rhythmicity by exposing the heterogeneous population of
400 cells to different light schedules. The light effect was
implemented by increasing the extent of VPAC2 saturation
and the light-induced calcium stimulus to their maximum
values of unity. Light–dark cycles were simulated by
changing these two parameters from their constant light
values to their constant dark values every 12 h. Compared
to constant darkness, light–dark cycles produced a more
coherent overall rhythm with fewer cells that failed to syn-
chronize (Fig. 3A and C). The Per mRNA level peaked during
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Fig. 2. The effect of eliminating VIP signaling on the synchronization of 400 model neurons under constant darkness [116]. (A) Per mRNA dynamics of
individual neurons. (B) Ensemble averaged Per, Bmal1, and Cry mRNA dynamics. (C) The synchronization index.
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the late day with a period of 24 h, indicating the rhythm
had entrained as seen in vivo [100]. These results support
the experimental observation that entrainment to a 24 h
cycle further improves the precision of the ensemble
rhythm compared to free running conditions in constant
darkness [50]. Although all neurons were rhythmic under
constant light, the population failed to synchronize despite
intercellular coupling by VIP signaling (Fig. 3B and C).
These results may explain data showing that individual
SCN cells remain rhythmic in constant light, but lose syn-
chrony with the population [92].
4.2. Small-world network model of intercellular coupling

The complexity of the SCN neural network arises not
only from the complex dynamic behavior of each neuron
but also from the heterogeneous coupling between individ-
ual oscillators. To relate the dynamics of such complex net-
works to their structural characteristics, techniques have
been developed to allow the general mathematical repre-
sentation of numerous biological and engineered networks
[5,113]. Various neural systems in the mammalian brain
have been shown to be adequately characterized by
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small-world networks [87]. The small-world topology com-
bines local circuits of tightly coupled cells with random
connections between cells, thereby introducing long-range
connections that substantially reduce the average path
length between cells [88,128]. One of the most important
attributes of the small-world topology is its ability to pro-
duce synchronous signals as readily as globally connected
networks for which the mean field assumption is applica-
ble. However, small-world networks contain much lower
degrees of interconnectedness than the mean-field model
and can considered as low ‘‘energy’’ alternatives.

Small-world [21] and related scale-free [41] network
models of the SCN have been developed to investigate
synchronization phenomenon. Along with Erik Herzog
(Washington University), we developed a multicellular
model which incorporated a detailed gene regulatory cell
model into a heterogeneous network of coupled oscillators
[125]. Our study was motivated by anatomical evidence
suggesting the presence of both short-range and long-
range VIP mediated connections in the core region of the
SCN [26]. Each model cell was described by a detailed gene
regulatory network model [67]. Cellular heterogeneities
were introduced via random perturbations with 10% stan-
dard deviation in the basal Per transcription rate such that
40% of the model neurons were self-sustained oscillators
and in the Bmal1 transcription and mRNA degradation
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rates with 2% standard deviation such that that distribu-
tion of uncoupled periods of the self-sustained oscillators
ranged between 18 and 30 h. Intracellular communication
was described with the VIP signaling cascade model from
our previous study (see Section 4.1) modified such that
all synaptic connections had a coupling strength of unity.

Small-world neural networks were constructed through
the following procedure, which extended an established
method for one-dimensional lattices [88] to the two-
dimensional grids. We placed 400 heterogeneous cells on
a 20 � 20 rectangular grid, with each cell connected to its
four nearest neighbors to establish local connections
(Fig. 4A). Additional connections (referred to as shortcut
connections) were established at the beginning of each
simulation between random pairs of cells according to a
probability p. Extreme values of p produced the nearest
neighbor topology (p = 0, Fig. 4A) and the fully connected,
mean field topology (p = 1, Fig. 4C). Intermediate probabil-
ity values produced networks between these two ex-
tremes, with values in the range 0.01 < p < 0.1 referred to
as small-world network topologies [88], Fig. 4B. Following
standard graph theory [109], we did not allow multiple
connections between the same neuron pairs or connec-
tions of a neuron with itself. VIP heterogeneity was cap-
tured by randomly zeroing VIP production from 80% of
the model neurons and eliminating all connections from
these non-VIP producing cells. Therefore, the 20% of VIPer-
gic neurons could establish bidirectional connections,
Fig. 4. Schematic representation of SCN network topologies on a two-
dimensional grid [125]. (A) Nearest neighbor network with each neuron
connected to its four nearest neighbors. (B) Small-world network with
additional shortcut connections added to the nearest neighbor network
according to a probability p. (C) Mean field network with each neuron
connected to every other neuron. (D) The small-world network that
results when VIP production is randomly eliminated from a fixed
percentage of neurons, yielding a heterogeneous network with both
reciprocal and non-reciprocal connections.
while the 80% of non-VIPergic neurons could only receive
connections from other cells (Fig. 4D). For each p value
investigated, we constructed 10 network realizations for
statistical calculation of structural and dynamic network
properties. In addition to the synchronization index (SI),
we calculated the order parameter (R) [34] for the overall
degree of synchrony over the specific time period of 200 h.

We varied the probability p to determine the effect of
adding shortcut connections on the synchronization
behavior of different network architectures under constant
darkness. Per mRNA time profiles of 10 randomly selected
cells showed that limited long range connectivity across
the small-world network (p = 0.05) eliminated arrhythmic
cells and produced a highly phase synchronized population
(Fig. 5A). The predicted SI value of 0.93 obtained at the end
of the simulation was close to the SI value of 0.90 calcu-
lated from SCN slice data (data not shown). By contrast,
the nearest neighbor model (p = 0) with no long range con-
nections produced a fraction of arrhythmic cells and a
poorly phase synchronized population (Fig. 5B). Rapid
and nearly complete synchronization was observed for
both the small-world (p = 0.05) and mean field (p = 1)
models (Fig. 5C). While the small-world networks obtained
for p = 0.01 exhibited a rapid increase in SI following cou-
pling, the extent of long range coupling was not sufficient
to achieve the same degree of synchronization as obtained
for larger p values. Despite its extensive local coupling, the
nearest neighbor model (p = 0) was not able to produce a
well synchronized population and exhibited greater vari-
ability in SI values with time. The probability p had similar
effects on SI values computed at the end of eight cycle sim-
ulations and R values computed over the last eight cycles
of these simulations, suggesting that the effective dynamic
range of the small-world network was 0.001 < p < 0.05
(Fig. 5D). Comparatively small standard derivations in the
synchronization measures were obtained for p > 0.05,
showing that the small-world networks were able to con-
sistently synchronize the cell populations despite cellular
and network heterogeneities.

We varied the probability p for different light schedules
to determine their combined effects on network synchro-
nization behavior. Three schedules were considered: con-
stant darkness (DD), constant light (LL), and 12 h of
constant light followed by 12 h of constant darkness (LD).
As in our previous model [116], photic input was assumed
to enhance Per transcription through the VIP signaling cas-
cade. The DD results repeated from Fig. 5D show that a
highly synchronized population was only achieved for p
values in and above the small-world region including our
nominal value p = 0.05 (Fig. 6). LD cycles produced larger
SI values regardless of the p value, suggesting that long
range connections were less critical under conditions of
light entrainment. By contrast, LL failed to produce a syn-
chronized population regardless of the p value. Such
behavior is supported by experiments in which exposure
to constant bright light abolished circadian synchrony
across the population [92]. Our results suggest that the pri-
mary advantage of small-world networks is to promote
synchronization among sparsely connection populations
in the absence of light.



Fig. 5. Synchronization behavior of SCN network topologies when VIP was introduced at 150 h [125]. (A) Per mRNA time profiles of 10 randomly selected
cells for a small-world network model (p = 0.05). (B) Per mRNA time profiles of 10 randomly selected cells for the nearest neighbor model (p = 0). (C)
Synchronization index (SI) versus time for four values of the probability p, where circadian cycle 1 represents the time of VIP introduction. (D) Final SI
values computed at the end of eight cycles and R values computed over the last eight cycles as a function of the probability p. For each p value, mean SI and R
values (circles) and their standard deviations (error bars) were computed from 10 network realizations.

Fig. 6. The effect of different light schedules and SCN network topology
on the synchronization index SI [125]. For each light schedule and p value,
the mean (circle) and standard deviation (error bars) were computed
from 10 network realizations.
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4.3. Multicellular model of the core and shell regions

The SCN is organized into two structurally and
functionally distinct subdivisions termed the core and the
shell based on their neuropeptide content and network
architecture [3,101]. Distinguishing feature of the core in-
clude neurons that co-produce VIP and GABA [82,83], a
network characterized by short and long range connec-
tions between core neurons [94] as well as projections to
shell neurons [56], and direct photic input [52]. By con-
trast, the shell has neurons that produce GABA but not
VIP [82,83], a network characterized by short range con-
nections between shell neurons without projections to
core neurons [94], and no direct photic input [7]. Data con-
cerning the spatial organization of self-sustained oscilla-
tors across the SCN network remain controversial [74,129].

Multicellular models that attempt to capture
interactions between the core and shell regions have been
developed [15,41,69]. We have developed a detailed multi-
cellular model of structural and functional heterogeneities
within the SCN [124]. The single cell model included a gene
regulatory network submodel [67] that described the gen-
eration of autonomous oscillations and a firing rate-code
submodel [123] that described electrical events on the
SCN neuron membrane responsible for the generation of
action potentials. The electrophysiology submodel ac-
counted for the contributions of relevant ion channels as
well as extracellular synaptic stimuli mediated by neuro-
transmitters that influenced membrane excitability and
neural firing.
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Intercellular couplings amongst SCN model neurons
were mediated by VIP, GABA, and glutamate neurotrans-
mitters. The VIP release rate was assumed to increase with
the neural firing frequency, which was rhythmic and
peaked during the circadian day. Intercellular and intracel-
lular VIP signaling was formulated as in our previous single
cell model (see Section 4.2). GABA was assumed to be
rhythmically released as an increasing function of the fir-
ing frequency. GABA binding of its GABAA receptor was
modeled as an increase in inhibitory post-synaptic cur-
rents through activation of Cl- on the cell membrane and
an increase in Cl- influx into the cytosol. The amount of
GABA observed by a particular neuron was averaged over
the GABA released from the cells that had synaptic connec-
tions to that neuron. The glutamate pathway was modified
from our previous study [123] to include circadian oscilla-
tions in glutamate uptake as well as the combined effects
of AMPA and NMDA receptors. The model included the ef-
fects of photic stimuli conveyed via glutamate and PACAP
neurotransmitters. Retinal input was modeled to directly
affect core neurons, which in turn transmitted the signal
to the shell population.

To mimic the spatial organization of the SCN, different
connectivity schemes were used for the shell and core sub-
divisions (Fig. 7). A total of 425 neurons were distributed
across the two regions such that the core contained 40%
and the shell 60% of the neurons. The core was modeled
as a small-world network with 169 heterogeneous cells
placed on a 13 � 13 rectangular grid. Cell couplings within
Fig. 7. Schematic representation of the heterogeneous cellular network used to
world network with cell-to-cell couplings via VIP and GABA instigated signaling c
couplings was used to describe the shell. The two SCN compartments were coup
pcs, which extended from core and to the shell. Only the core received direct lig
the core network were established by VIP and GABA signal-
ing, with all cells producing GABA and only 50% of cells
producing VIP. The shell was modeled with a nearest
neighbor network to mimic the short range connectivity
observed experimentally. An ensemble of 256 heteroge-
neous cells was placed on a 16 � 16 rectangular grid. Each
neuron was assumed to establish connections with its four
nearest neighbors via GABA intercellular signaling. Because
the VPAC2 receptor is expressed by 90% of shell neurons
[56], every neuron in the shell was assumed to be capable
of receiving VIP signals from core neurons. We assigned a
probability (pcs) ranging from 0 to 1 according to which
directed connections from VIP-synthesizing core neurons
to shell neurons were introduced. The value pcs = 0 pro-
duced two independent networks, whereas the value
pcs = 1 produced maximal connectivity between the two
networks. Because GABA and VIP are co-expressed by
VIP-synthesizing model neurons of the core, cell couplings
extending from core to shell neurons were instigated by
both neurotransmitters. As in our previous model (see Sec-
tion 4.2), cellular heterogeneities were introduced through
random perturbations in the basal Per transcription rate,
the Bmal1 transcription rate, and the Bmal1 mRNA degra-
dation rate. For each pcs value, 10 network realizations
were simulated to allow calculation of the necessary
statistics.

The probability pcs was varied to determine the effects
of adding core-to-shell connections on system behavior
under conditions of constant darkness. Synchronicity was
mimic spatial organization of the SCN. The core was modeled as a small-
ascades. A locally connected architecture with nearest neighbor GABAergic
led via long range connections, randomly added according to a probability
ht input.
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evaluated at the end of 14 circadian cycles following the
initiation of intercellular coupling. As expected, synchro-
nicity remained constant across the core (SI = 0.9) over
the entire range of probabilities (Fig. 8A). SI values for
the shell monotonically increased as a function of pcs and
reached their upper asymptote of 0.9 for pcs = 0.05
(Fig. 8A). Increasing cell-to-cell coordination across the
shell affected the SI trend of the entire SCN network. While
fluctuations in core period variability were regarded as
insignificant, progressively larger pcs values resulted in an
increase in the average period and a decrease in period var-
iability across the shell and the entire SCN until pcs = 0.05
(Fig. 8B and C). Per mRNA and firing rate profiles of 20 neu-
rons randomly selected from the SCN population showed
Fig. 8. The effect of core-to-shell connectivity under conditions of constant dar
bars) were computed across 10 independent runs. The SI value (A), the average p
the probability pcs were calculated across the core, shell and entire SCN netwo
profiles of 20 randomly selected neurons for pcs = 0.05 when cell-to-cell coupling
with pcs = 0.05 for all cells within the coupled population (top panel) and for se
that core-to-shell connectivity generated at pcs = 0.05 was
sufficient to produce highly phased synchronized oscilla-
tions across the network (Fig. 8D and E). The average per-
iod across the synchronized SCN population at the end of
14 cycles was 23.5 h and the standard deviation was
0.3 h, while the average period across uncoupled self-sus-
tained oscillators was 22.5 h and the distribution of peri-
ods among these oscillators had a standard deviation of
0.7 h (Fig. 8F). These model predictions are consistent with
experiments demonstrating reduced periods and increased
period variability across the SCN population in the absence
of functional intercellular couplings [20,129].

The probability pcs was varied for different light
schedules to determine their combined effects on system
kness. For each pcs, value the mean (circle) and standard deviation (error
eriod of the population (B), and the period variability (C) as a function of

rks at the end of 14 simulations cycles. Per mRNA (D) and firing rate (E)
was introduced at 150 h. (F) Period distribution at the 14th cycle obtained
lf-sustained oscillators in the uncoupled population (lower panel).



Fig. 9. The combined effects of different photic stimuli and core-to-shell connectivity. For each pcs value, the mean (circle) and standard deviation (error
bars) were computed across 10 independent runs. The average period (A), period variability (C) and SI value (E) as a function of the probability pcs across the
core, shell and entire SCN networks in LD cycles. The average period (B), period variability (D) and SI value (F) as a function of the probability pcs across the
core, shell and entire SCN networks in LL.
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behavior. As pcs was increased in LD cycles, the average
period increased and period variability decreased across
the shell and the entire SCN network with asymptotic val-
ues reached at pcs = 0.05 (Fig. 9A and C). By contrast, the LL
schedule did not produce distinct period trends across the
shell population for the range of probabilities tested
(Fig. 9B and D). Synchronization across the core network
remained approximately constant for each light schedule,
with SI = 0.96 for LD (Fig. 9E) and SI = 0.15 for LL
(Fig. 9F). In LD cycles, SI values of the shell network mono-
tonically increased with increasing pcs, with a maximal SI
value of 0.94 achieved at pcs = 0.05. Compared to LD and
DD (Fig. 8A), exposure to LL produced decreased SI values
across the entire SCN population for the range of probabil-
ities tested. The modest increase in synchronicity with
increasing pcs can be attributed to improved coordination
of the shell population upon introduction of core-to-shell
links. The small SI values predicted for both the core and
shell networks are consistent with experiments reporting
disrupted circadian rhythms in the two regions due to con-
stant light exposure [13].
5. Conclusion and future directions

The circadian clock generates 24 h rhythms that drive a
broad range of physiological and behavioral processes in
diverse organisms. In mammal, the core clock located in
the suprachiasmatic nucleus (SCN) of the hypothalamus
consists of approximately 20,000 heterogeneous neurons
that coordinate their behavior to generate a coherent over-
all rhythm. While the molecular mechanisms involved in
circadian rhythm generation at the single cell level are well
characterized, the intercellular mechanisms that allow
large populations of coupled neurons to synchronize their
activities remain poorly understood. The goal of this paper
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was to provide a review of mathematical modeling efforts
aimed at developing multicellular descriptions of the circa-
dian core clock. With a focus on the mammalian clock due
to its relevance in human performance and health, we ar-
gued that detailed biophysical models comprised of de-
tailed single cell descriptions, plausible descriptions of
intracellular and intercellular neurotransmitter signaling
pathways, and heterogeneous descriptions of single cell
behavior and cell-to-cell connectivity are preferred for
integrating experimental data and understanding system
design principles. A review of our own modeling work
showed that limited long range connections combined
with more dense local coupling was sufficient to coordi-
nate heterogeneous cell populations organized in function-
ally distinct SCN regions.

While multicellular modeling of circadian neuron popu-
lations has seen rapid advancement, considerable work re-
mains to develop comprehensive models for data
integration, analysis, and prediction. Several modeling
problems that warrant additional work by the circadian re-
search community are described below. Collaborations be-
tween experimentalists and modelers will be essential for
development and validation of these models.

� Construction of increasingly detailed single cell models
that capture relevant gene regulatory and electrophysi-
ological behavior for connecting molecular components
to system behavior. Recently developed gene regulatory
[80], electrophysiology [107], and combined gene regu-
latory-electrophysiology [123] models are notable steps
in this direction.
� Development of intracellular and intercellular signaling

models that mechanistically describe the action of rele-
vant neurotransmitters and light on single cell and pop-
ulation behavior. Proposed models of VIP [45,116] and
combined VIP/GABA/glutamate [123,126] signaling
demonstrate the potential of this approach compared
to empirical coupling schemes.
� Construction of neural network topologies that better

capture non-uniform cell-to-cell communication than
current models, which are restricted to standard topol-
ogies and static coupling. Progress towards this goal
will be facilitated by the analysis and simulation of
experimentally derived spatial organization [29] and
coupling patterns, including those that evolve with sea-
son [76,86] and during circadian system development
[25] and ageing [30].
� Development of cell population simulations that cap-

ture single cell heterogeneity on a more mechanistic
basis than current models, which phenomenologically
ascribe heterogeneity in cellular phenotype to random
variations in chosen model parameters. Such simula-
tions could be advanced by experimental determination
of the molecular sources of cellular variability [114] as
well as the development of stochastic simulation tech-
niques [28,121] that allow the phenotype of a particular
neuron to vary with time.
� Development of improved simulation methods for com-

plex multicellular models, including those that describe
three dimensional tissues, contain large ensembles of
detailed cell models, include stochastic variability in
single cell properties, and allow time-varying network
topologies. Deterministic [16] and stochastic [57] simu-
lation techniques developed for other multicellular sys-
tems could be leveraged for this purpose.
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