Advanced Topics in Molecular
Dynamics: Sampling & Solvation

Vijay Pande
OpenMM Workshop, February 13, 2009
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Challenge: timescales
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¢ Kinetics: reaching experimental timescales

* Thermodynamics: convergence
e Are the results independent of initial conditions”?
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New Application: OpenMM Zephyr_

e Goals
e make MD easy to run
® casy but correct setup
(not just PDB -> MD,
but think about
protonation,
missing residues, etc)
e casy to run on GPU’s
¢ visual feedback

e Under the hood
¢ \Wrap GPU enabled MD code
¢ use MMtools (Pande group, SImTk.org) or n macs set up tools
e Use VMD IMD interface for visualization (leverage a standard in molecular
visualization)

e Use of real time visualization
e immediate feedback is not just fun, but can be useful
e key to correct setup, etc




Large speed increases seen using GPU

. | GFLOPS | GFLOPS
Molecule | # atoms | ns/day | speedup (GPU) (x86)
fip35 544 576 128 311 657
villin 582 529 136 328 692
lambda 1254 202 255 547 1153
* | 5078 17 735 805 | 1702
spectrin

(*comparing a GTX280 to a single core of a

3GHz core 2 duo using the AM

SE

R code)




(Shirts, Snow, Zagrovic, et al)

How accurate are atomistic physical models?
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Case stuay:
Implicit solvent




How does Generalized Born (GB) work?

e Break down water into dielectric and hydrophobicity
AGSO?\' = AGeZ + AGnoneIa

e Make an ansatz for the form of the dielectric

q:q ;
AG, =AG,, =—1 ]
St %fcg(u,R R))

Fop = [,.; + R,R, exp(-12/4R,R j)]
e Must calculate the Born Radii (Ri)

R* = p— L j (Il — p;) i d’r
" ' Aré S o

e Can include salt effects

=K f3b,
AGc’f:AGob:_lZ qq{ (1_(' )
il i fGB(' ij* R .R )




Can this be put on a more formal ground?

e Limiting case: single ion of radius r yields the Born eq

AG,=-11-—)
- Ep

lq2
r

e For the linearized PB equation, one can derive the exact
result in a spherical geometry (Kirkwood equation), which
yields .

AGC; ~ Ang — _%z 1:‘ 1

7 Jea(y: Ry, R ;)
firkwood = | Fi? + Ri Rj]\?

Jo = ['3 + R;R; eXP(—)';/4Ri.Rj):|:

* The exp term can be considered an empirical fix for non-
spherical geometries




Different Generalized Born models

e All have the same general form

44
AGC‘; = AGQ — —1? | it
e ) % fGB(r;'js R‘.-, R_,-‘)

e But differ in the calculation of the Born radii
e Still (Original)
e Hawkins, Cramer, Truhlar (“HCT”)
e Onufriev, Bashford, Case (“OBC”)
¢ Mongan, Simmerling, McCammon, Onufriev, Case
(“GBneck”)

e Goal is to best model the nature of the dielectric region




Large number of force fields to choose

 AMBER

e ffO4: too helical (explicit solvent)

e ffO0: 100 beta sheet (explicit solvent)

e f99: not helical enough (explicit
solvent)

¢ ff99sb: modifications to improve
torsions

¢ f{03: latest, intended to be balanced

e OPL
o OP
o OP
o OP

| S-ua (unified atom)
| S-aa; classic all atom force field

| S-aa/l.: new torsions

e CHARMM
¢ CHARMMA19 (unifed atom)
e CHARMMZ27 (latest)

e CHARMM
e CHARMM™19 (unifed atom)
e CHARMMZ7 (latest)
e CMAP (new torsions for use
with CHARMMZ27 or other
CHARMM ff’s)

e Other
e GROMOS (van G.)
e GROMACS
e Encad (Levitt)

e Polarizable force fields
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(Scott Shell, UGSB; Ken Dill, UCSF)

Test systems
<= W
protein G hairpin EK peptide
16 residues 14 residues

multiple force fields

X multiple solvent models

X two test peptides

X three runs each

X 10 ns REMD runs

~ 12 us aggregate simulation time

~ 60 CPU-years of compute time
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(Scott Shell, UGSB; Ken Dill, UCSF)

Results for AMBER ff’s
HCT OBC GBn HCT OBC GBn
ff96
ffooSB
nafive f\ | .
ff03

color key: hydrophobics, polar, positively charged, negatively charged
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Case stuay:
protein
thermodynamics




Sampling methods

e NVE MD: Constant energy
¢ Ooften used to be most faithful to kinetics
e important test of an MD code (no bugs or numerical iIssues)

e NVT MD
® Uses a thermostat
e \/jay’s opinion (w/data): can be used for kinetics, if a
thermostat is used carefully

¢ Other thermodynamics methods
e ST. Serial Tempering
e REMD: Replica Exchange Molecular Dynamics (aka parallel
tempering)
e MSM: Markov State Models

14



Next steps: Generalized Ensemble (GE) methods

e Basic idea: define new form of kinetics to overcome long timescale

behavior
e must be able to recover Boltzmann weighted configurations
e pbut we can define what ever form of dynamics we want
e and we can create new potential forms, as
we can transform back

e generalization of methods like , ‘ “ . |
“parallel tempering” or REMD ‘, |

e Game plan
¢ dentify what are the factors limiting J
kinetics (high energy barriers? diffusion?) {
¢ pick states that drive against these factors | _ _ Figure from
e Define a new, reduced potential along these states ‘- H D. Chandler
e recover original Boltzmann weightings to calculated desireo ‘nergy

(this process will have similarities to the BAR step mentioned in the previous cases
-- the question will be given a set of data, what's the best prediction of free energies
and Boltzmann weights)

15



The reduced potential

We define the reduced potential for a state £ as a combination of terms

uk(x) = 05 [Ui(x) + p1V (%) + 1 N(x)]

Lyubartsev et al. New

with thermodynamic parameters for each state approach to Monte
5 nverse temperature Carlo calculations of the
k P free energy: Method of
Uk potential energy function expanded ensembles.
Pk external pressure JCP 96:1776, 1992.

M. chemical potential of exchangeable species

where
X microstate or configuration
V' (x) volume of simulation box
IN(x) number of each chemical species in system

The distribution function is given by
PE(X) = Z,;1 exp|—ug (x)] 7 = /dX exp|—ug(x)]

Covers many common thermodynamic ensembles: NVT, NPT, uVT, uPT

16



The method of expanded ensembles

Form an expanded ensemble by allowing transitions between thermodynamic states:

p(x, k) = Z71 exp[—ur(x) + gi]

with partition function K
Marinari and Parisi. Europhys. Lett. 19:451, 1992
Mitsutake and Okamoto. Chem. Phys. Lett. 332:131, 2000.
Z — Zk- eXp [gk;] Lyubartsev et al. JCP 96:1776, 1992.
k=1

where we have introduced log weights g; to bias sampling of states.

Current configuration now consists of (x, &) pair.

How do we conduct the simulations?

A g A
: MC state : :
MDorMC i change attempt | :
> plklx) | : T
p(x[k)  PUEE ) A
; > >
one iteration weight/state
adaptation

MD or MC moves can be used, or HMC if exact sampling is required.
Sampling could include grand-canonical moves for constant pH (and/or salt concentration).

Multiple ways to conduct MC state change move.




How do we choose states?

e High temperature barriers?

¢ use high temperature replicas to overcome
energy barriers: choose states as different
temperatures (“simulated tempering”)

¢ use umbrella sampling to drive the system
throughout configuration space: choose states
to be different anchor points for umbrella
sampling calculations

¢ Alchemical transformations
e (Goal: calculate free energy difference between
two Hamiltonians, via a scaling factor HN)

=NH + (1-N) Ho

e Convenient side effect
® in many cases, we actually want the free
energy as a function of the state, and this is
obtained directly from the GE weights

Figure from
D. Chandler

18



How do we choose the weights?

1. Start with a good initial guess

Estimates of <u>; from short simulations of each state can provide an excellent guess.

Sanghyun Park and Vijay S. Pande. Choosing weights for simulated tempering. PRE 76:016703, 2007.

Even initial energies can provide a good initial guess.

2. Several options for automatic updating

€
=
5  Wang-Landau method
% Wang and Landau PRE 65:056101, 2001. DP Landau et al. Am. J. Phys. 72:1294, 2004. Comm Phys Comm 175:36, 2006.
GCJ Wei Yang et al. JCP 126:024106, 2007.
g
Bennett acceptance ratio (BAR)
/:E: Bennett. J. Comput. Phys. 22:245, 1976. Shirts, Bair, Hooker, and Pande. PRL 91:140601, 2003. Shirts and Pande. JCP 122:144107, 2005.
= Weighted histogram analysis method (WHAM) or mulitistate BAR (MBAR)
g Kumar, Bouzida, Swendsen, Kollman. J. Comput. Chem. 13:1011, 1992,

Shirts and Chodera. Statistically optimal samples from multiple equilibrium states. Submitted, 2007 .

Adaptive Bayesian WHAM (ABWHAM)

Sanghyun Park, Daniel L. Ensign, and Vijay S. Pande. Bayesian update method for adaptive weighted sampling. PRE 74:066703, 2006.

All are extremely simple to implement!

19



(Park)

Adaptive Bayesian WHAM

e Setup

e Consider a system that can be in K different states, and let Estimate of p
pi be the probabillity for the i-th state

e Wwe want to estimate the parameters pi by means of adaptive l
weighted sampling

e \We seek an adaptive weighted sampling scheme as Weight w;
outlined on the right weighted

e Based on the estimates pi™" from the previous iteration sampling
step, new weights .
wi" are determined in a way that leads to efficient histogram h
sampling of states l

e Adaptive scheme
e Therefore, we attempt to develop a method in which only
new data are needed for the update of estimates
e \We want to determine a new estimate pi from the

Analysis (WHAM)

knowledge of the new histogram hi, the new weight wi™, Sanghyun Park, Daniel L. Ensign,
, , and Vijay S. Pande. Bayesian
and the previous estimate pi"-1 update method for adaptive

weighted sampling. PRE
74:066703, 2000.

20



ABWHAM converges quickly

(Park)
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Sanghyun Park, Daniel L. Ensign, and Vijay S. Pande. Bayesian update method for adaptive weighted sampling. PRE 74:066703, 2006.
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Application: Fs-Peptide é':“:::]g:)‘

C-a RMSD from ideal helix for a few representative replica walkers in SREM simulations.

1 Ir
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A few transitions between folded and extended states for each replica are observed, indicating there
IS Reversible Folding.

22

http://folding.stanford.edu © Vijay Pande 1999-2006
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Application: Fs-Peptide

Folded Initial Structure
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(Huang &

Bowman)
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WHAM is used.

J.D. Chodera, Swope W.C., Pitera J.W., Seok Chaok, K.A. Dill. JCTC, 3, 26--41 (2007)

http://folding.stanford.edu

23
© Vijay Pande 1999-2006
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Case stuay:
small molecule
arug aesign




(Shirts, Bair, Hooker)
Efficient free energy calculation: use forward

and backward work distributions

Generalization of Bennett Acceptance Ratio (BAR) Method (Shirts,
et al, PRL, 2004)

1 1
<1 +exp[ P (M+W — AG)]>f B '<1 +exp[B (M+W - AG)]>b

M = kT In[ N/N,, |

’ Pl,an Prev(W)
e find P{W) and P (W) :

e average in a new way
 Find AG as the balancing point

e Benefit

e two distributions are statistically
linked

e use one distribution to help flesh out
the tails of the other

F
The tails of P{W) are constrained by the bulk
of P,(W) and vice versa

http://folding.stanford.edu © Vijay Pande 1999-2006
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How does this work? (Shirts, Bair, Hooker)

1. Start from Crooks’ fluctuation theorem
[ PEW) T

| "[PR.—W.»_ o

2. Use Bayesian method + normalization

= BIW — AF),

P(W|F) _P(F|W)P(R)y _ P(F|W) P(R)

o — : PIFIW)+ P(R|W)=1
P(WIR) P(RIW)P(F) | — P(F|W)P(F) (FIW) |

P(FIW) BM + W — AF) M= KT In[ P(F\W) / PRIW) ]
FHW) | |

In .
3. This leads 10 thé probabilities

1 | — l
P(F|W.) = P(R|Vt,—} = , - —
‘ | +expl—BM+W. — AF)] . | +exp[B(M + W, — AF)]
These probab|l|t|e§) E\oﬁ] f’or all d|sﬁ|b31t|ons: not parametric!

(Shirts, et al, PRL, 2004)

http://folding.stanford.edu © Vijay Pande 1999-2006
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How does this work? (Shirts, Bair, Hooker)

4. Define the likelihnood

"y g

LIAFy=||PFIw) | | P(RIW:) (Shirts, et al,
[ [Pawa [ [ PRiw, PRL, 2004)

5. FInd maximum likelihood

=0

) AT nj 1 N 1
dInL(AF) _ Z B Z
IAF =1 +exp[BM + W, — AF)] 1 +exp[—B(M + W, — AF)]

6. Result: new way to average

1 1
1 +exp[p (M+W - AF)] \ 1 +exp[p (M+W - AF)]>
. Find the value of AF which sétlsﬁes the above

http://folding.stanford.edu © Vijay Pande 1999-2006
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_ ] ] _ (Shirts)
Application: solvation free energies

* In our hands, BAR is most efficient
2 FEP is a limiting case of BAR
2 BAR appears to be more efficient than Tl too

 Example test:
2 3-methlyindole (Trp sidechain analog)

2 1.0 ns at each intermediate Sl AN
2 We see BAR yields more precise answers for the same CPU tlme

Method # Intermediates Value (kcal/mol) Precision (kcal/mol)
TI 61 3.69 0.05
TI 8 4.41 0.21
BAR 8 3.68 0.05
FEP (O->A) 8 3.43 0.19
FEP (A->0) 8 6.01 0.43
FEP Average 8 4.72 0.24

http://folding.stanford.edu

© Vijay Pande 1999-2006




Comparison with experiment

Hydration Free Energy of Amino Acid Sidechains
Ala Val Leu lle Ser Thr Phe Tyr Cys Met Asn Gin Trp Hid Hie

0.

-2
-4 :
-6 Experiment [l
| AMBER [J
-8 CHARMM @ |
~ OPLS-AA @ |

-10
Ala Val Leu lle Ser Thr Phe Tyr Cys Met Asn Gin Trp Hid Hie

Kcal / mol

RMS deviations from experiment (kcal/mol):
AMBER 1.35 CHARMM 1.31 OPLS-AA 0.85

nttp://folding.stanford.edu © Vijay Pana® 1999-2000
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Case stuay:
protein folding
Kinetics




Progress of MD & experiment

Longest Simulation Fastest folding experiment
BPTI (Karplus) BPTI
1975 A (]
Protein A (Brooks) SH3
1995 —
Villin (Kollman) -repressor (Oas)
1998 — —
BBAS (Pande) BBAS (Gruebele)
2002

- s> ]
HEEEEEREEEE

101> 1012 10° 10°° 103 109

femto pico nano micro milli seconds

Bond Isomer- Water Helix Fastest typical slow
vibration ation dynamics forms folders folders folders
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A very fast folding protein: Kioa ~1/1s

2.24
& 22 -
> T(K)
€ 220 - Sos— o %
2 o
2 218 e
. entd T $ 04 -
£ Sl g
< 3-0.2- -
2:16 - < —
275 280 285 290
1000/T (K'")
107 10° 10
Time (s)
structure folding kinetics

villin headpiece
mutant designed by the Eaton Lab
(Kubelka et al, JIMB 20006)
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Let’s look at a 1us trajectory for villin:
we see stochastic behavior

One trajectory of thousands, each on the >1 us timescale
Ensign, Kasson, & Pande. JMB (2007)

(Ensign, Kasson)

http://simtk.org

e Simulation details

¢ villin headpiece (36
residues)

e Eaton mutant (0.7us
folding time)

¢ explicit solvent

e 20,000 atoms total

e AMBER2003 force
field

e MD Engine
e GROMACS 3.3.99
(CVS) code
e SMP on FAH

e Visualization (VMD)
e spacefill: aromatic
resides
e |icorice: backbone
e rest: sticks
e color: N-C gradient

33


http://simtk.org
http://simtk.org

(Ensign, Kasson)
Looking at ensembles of simulations

e Starting structures

e O different structures

e generated by high
temperature unfolding

¢ different degrees of native
like structure

¢ some have helices, other
contacts

e some have no native
structure at all

e Ensemble of trajectories
¢ hundreds to thousands of
trajectories per structure
e cach trajectory ~1-2 us
timescale (longer than
experimental folding
timescale of 0.7us)

Ensign, Kasson, & Pande. JMB (2007)

34



(Ensign, Kasson)

Ensemble data agrees with experiment

(explicit solvent)
10+ (a)
0.8 ~
= 0.6 c
o L2
e 0.4 e
O
I e Q7
O |
Y S T T T T 1 Eh T T T T 1
0 200 400 600 800 1000 4] 200 400' 600 800 1000
C time / ns time / ns
O 1.0 - (C) 1.0 - (d)
4
Q 0.8 — 0.8
qV
N all other structures
ST S 0.6 1 g 0.6 -
e 0.4 - < 0.4 -
0.2 - S 8 0.2 -
= T T T T T 1 B T T T T T ]
0 200 400. 600 800 1000 4] 200 400 600 800 1000
time / ns time / ns

Fraction folded (via Tro-His distance) vs time
Ensign, Kasson, & Pande. JMB (2007)
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(Ensign, Kasson)

But is the experimental assay looking at folding?

(explicit solvent)
1.0 - (a) 1.0 (b)
0.8 0.8 -
c 0.6 c 0.6
S o
- —
O o
E 0.4 ~ £ 0.4 4
S7
0.0 4 0.0 -
| 1 1 1 1 | I I I 1 I 1
0 200 400 600 800 1000 0 200 400 600 800 1000
time / ns time / ns
(c) (d)
0.6 — 0.8 -

all other structures

0.6 - 0.6 -

S8

0.2 = ” 0.2 <
0.0 — ‘ | 0.0 - - ey e e IR~ S Ny Y
1 ] 1 ] 1

1 1 1 1 1 | I
0 200 400 600 800 1000 0 200 400 600 800 1000

time / ns time / ns

Fraction folded (via comparison to xray structure) vs time
Ensign, Kasson, & Pande. JMB (2007)

fraction
fraction

0.4 -
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Comparison between explicit and implicit
(a)

(explicit'solvent)

(Ensign)

S SY
e T T T T T ] O T T T T T 1
0 200 400 600 800 1000 0 200 400 600 800 1000
: time / ns time / ns
O 4 7
1 . 0.6 j‘ L L
wjd i
0 05 - I
m ! 0.6
S 0.4+ I
L i |
03 0.4
02 f :
I 0.2 |
0.1 S 4 i 87 :
00 i\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | OO ;\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time (ns
(implicit solvent) (ns)

Fraction folded (via comparison to xray structure) vs time
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(Ensign)

We find a heterogeneous set of folding pathways

e Do we see a single pathway or many

different?

e Test this with a simple question:

“Is the order of helix formation

consistent between simulations?”
e for 3 helices (villin), there are 3! = 6 possible

orderings

¢ histogram shows a very wide variation of

pathways seen

e Other variations possible too
¢ which key core contacts form first”

e A single trajectory (or even a few)
would give a misleading picture of

the folding dynamics

20 30 40 50 60 70

odv
dov
ovd
vOd
dvO
vdO

Histogram of folding kinetics:
what is the order of formation of
each helix A, B, C?
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What have we learned about how proteins fold?

e What did we see in that trajectory?
e starts with non-specific hydrophobic collapse
e unfolds, breaks most contacts
e refolds, with little native structure
® some native persist over numerous
folding/refolding cycles
e cventually gets everything right

e What about other trajectories?
¢ similar behavior in general, but different details
e great heterogeneity in folding paths

e General lessons?
e Folding is a stochastic process
(if the folding time is 1ms, then it’s not 72 folded at 0.5 m
e Dynamics of even small molecules can be complex & very heterogeneous
e Even a few long trajectories aren’t enough to inform us about the true
nature of the complex phase space -- we need a statistical picture

39



Case study:
long timescale
adynamics




How to overcome long timescales:
stochastic kinetic sampling methods

Folding is a stochastic process with exponential kinetics

Fraction that fold:

o

f(t) = 1 — exp(-kt) .
%0.8
. S 3
At short times, we get = 0.6 < 0.004
= = 0.003
f(t) ~ K t 0.4 £ 0.002
é §0.0(H
- 0.2 0 0,01 0.02 0,03 0.04
What if we run M T time (13)
Slmulathns in parallel 0 10 20 30 40 50 60
each of time t? time (Ls)

Mkt will fold

Putting in real numbers: number that fold = Mkt =
10,000 simulations x 10,000ns! x 100ns = 100 events!

http://pande.stanford.edu
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How about a new model based on states & rates

For example, consider villin with 3 helices A, B, & C

42



Run MD simulations from these initial states

Run ~100 trajectories from each state

U aB(
Abc )= C
A abC

(one can use many different means to generate initial
conformations for MD; this is just an example)

43



Find new states and then repeat ...

Run a state decomposition algorithm to find new
states, and then repeat

(p)
i1y .
y '9“’ >

P~

9
o
: ‘%

VAR
Ok
Key concept: timescales between states (small circles) are
much faster than between U -> F

ab
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.. until convergence

May take several (~5) rounds to converge

vields a complete description of long timescale kinetics &
thermodynamics (predict rates, thermodynamics, & structure)

45



ITERATE

Automatic State Decomposition:
An interative algorithm

SPLIT l K-meqoid partitioning
of entire sampled space

MICROSTATES

LUMP l maximize trace o.f' '
macrostate transition matrix

http://folding.stanford.edu

_--~"| MACROSTATES

5 SPLIT l K-medoid partitioning
on each macrostate

REFINED
MICROSTATES

LUMP l lump over all microstates
to maximize trace

REFINED
MACROSTATES

100 [ &

-100 30

-150 1

150

100

-100 SRR

£y - e

e

-150 :
-

Alanine dipepide

150 | SN

macrostates

final result

microstates

(Chodera &
Singhal)

Collaboration between
Swope, Dill, and Pande labs

Iterative refinement attempts to
locate states for which there is a
separation of timescales between fast
intrastate dynamics and slow
interstate dynamics.

V(a)

© Vijay Pande 1999-2006
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Macrostates reveal a richer decomposition of (Chodera &

configuration space than hypothesis-driven study Singhal)
states from Pitera et al. automatic state decomposition

native
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"unfolded"

In collaboration with Bill Swope & Jed
Pitera (IBM Almaden) and Ken Dill
(UCSF).

nttp://folding.stanford.edu

© Vijay Pande 1999-2006
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(Singhal)

Adaptive sampling: a big step forward In efficiency

e Molecular simulation as a
statistical problem

e Bayesian error analysis

methods
¢ allows for on-the-fly adaptive
methods
e add simulations only where
needed (to improve uncertaintity)

e Impact
e Optimize trajectory choice based
on uncertainty
e 100x to 1000x speed up --
calculate just what you need, not
any more

Variance of k2

Variance of 7‘2

equilibrium

simple system
(alanine dipeptide)

ada,ot/'vé

10° 10"
Total number of samples

L] '.I. 1 [
reail 1] ] ||
.,"_Il lllllli"llll“
|

(L
lllllllllllllllllll

|
equilibrium

complex system

(protein folding

T of a 36-residue
S protein)

| adaptive ==
10°
Total number of samples

Singhal and Pande, JCP (2007)
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Conclusions: a paradigm shift in simulation?

phase space

e Simulations are typically viewed as

computational experiments
® run, probe, then analyze
e however, typically done anecdotally (<10 trajectories) due
to computational expense

* New perspective i
e use simulations to build statistical models of the underlying discretized phase space
phenomena

e Bayesian inferential view of simulations -- simulations are
used to parameterize our model

e Benefits
¢ more powerful methods -- much longer timescales
e g statistical view of the phenomena of interest l
(uncertainties, etc) ] rate matrix )
e more much scalable than traditional MD ki ki R
e much more efficient (only simulate what you need to ko
simulate)
kNt Enn
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A solution to the long timescale challenge?

Bond lsomer- Water Helix Fast Slow
vibration ation dynamics forms conf change conf change

10 1012 10 10° 1078 100

femt PICO nano mic milli second
M long where we where we’d
step MD run need to be love to be

e Use a series of complementary methods
e default: single CPU does ~ 1ns/day (10°x gap)
* Distributed computing (10%x to 10°x; cluster: 10°x)
e GPU’s/streaming (10%x to 10°x)
e MSMs/adaptive sampling (10°x to 103x)
e total: (10%x to 10''x = 0.1 to 100 seconds per day)
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Where to learn more

eBooks:
o| cach, Molecular Moadeling: Great first resource
e Gromacs manual (http://gromacs.orq): has full
derivations and detailed explanations

eWikipedia
epelieve it or not, it's pretty well written and has lots of
iInformation

Folding@Home:
http://folding.stanford.edu
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