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Conformational States of Biological Molecules
GPCR Dynamics
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Conformational States of Biological Molecules
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Key Points:

» Importance of conformation
» Multiple States

» Dynamics



Molecular Dynamics

Molecular dynamics simulations capture equilibrium and kinetic
properties of biomolecules.
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How should we analyze simulation?

Direct, quantitative connection to experimental observables
Intuitive explanation (coarse-graining)

Statistically optimal use of limited data

Computationally tractable and easy-to-use

Compatible with both many and few-state behavior

Markov State Models achieve these goals!
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States and Rates

Experimentalists view biomolecules through the lens of “states and rates”
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States and Rates

Markov State Models provide a “states and rates” view on conformational dynamics
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Markov State Models in a Nutshell

1. Define states by clustering.
2. Estimate rates between states.
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Markov State Models

Suppose we have an ensemble of molecular dynamics trajectories:
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Markov State Models

Cluster the conformation space into disjoint states: {1,2,3,4,5}
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Markov State Models

Estimate the transition probabilities by counting jumps between states:
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Estimating Transition Probabilities

Suppose we slice our trajectories every At picoseconds (lagtime) and
count the observed transitions:

Cij = Cisj
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Estimating Transition Probabilities

To get the transition probabilities, we simply “normalize” the counts:
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Dynamics in an MSM

Suppose that at time zero a protein sits in state /.

After lagtime At, jump to another state with probabilities T;;.
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Dynamics in an MSM

Suppose have an ensemble of proteins occupying different states—we
describe this by a population vector x(0).

x(t) = Tx(0)
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Eigenvalues and Eigenvectors
Equilibrium

Tv=Av

Setting A = 1 gives us the equilibrium populations:

Tn=1n=n

At long times, the system approaches equilibrium populations:

x(t) = m
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Eigenvalues and Eigenvectors

Dynamics

Tv=Ajv

For the remaining eigenvalues, A; < 1.
These eigenvalues correspond to characteristic timescales at which
different populations approach equilibrium.

At
log A;

T, =
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Eigenvalues and Eigenvectors

Projection
Suppose we have an experiment that monitors a single variable y(t).

y(6) = L rem(—) < vi,x(0) >
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What can you do with a Markov State Model?

Ligand Binding

Complete reconstruction of an enzyme-inhibitor
binding process by molecular dynamics simulations

Ignasi Buch *, Toni Giorgino * , and Gianni De Fabritiis *
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Figure 3. Identification of metastable states. (a) Potential of mean force
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What can you do with a Markov State Model?

Predict Experiments

Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding
Revealed by Simulation and Experiment

Vincent A. Voelz ™" Marcus Jiger,* Shuhyai Yao,? Yujie Chen,®* Li Zhu, 22 Steven A. Waldauer, %
Lisa J. Lapidus,® Shimon Weiss,*"

Gregory R. Bowman, - Mark Friedrichs, ¥
and Vijay S. Pande* ™

Olgica Bakajin, &
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What can you do with a Markov State Model?

. Construct Simple Models
Simple few-state models reveal hidden

complexity in protein folding

Kyle A. Beauchamp?, Robert McGibbon®, Yu-Shan Lin®, and Vijay S. Pande®'
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What can you do with a Markov State Model?
. Extract Pathwavs .
Constructing the equilibrium ensemble of folding
pathways from short off-equilibrium simulations
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Introduction to MSMBuilder

After lunch, we will be having a complete tutorial session. You will need:

1.

o v AW

Linux or OSX

Enthough Python Distribution or a Ubuntu 12.04 VM
MSMBuilder

CPU with SSE3 support.

GCC 4.2 or later (with OpenMP support)

pymol (optional for visualization)
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Introduction to MSMBuilder

Typical MSMBuilder Workflow

Data preparation eo H

Build microstate model (clustering) % v

Build macrostate model using lumping Ace - Ala-Nme

Investigate macrostates

PR
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Data Preparation

Copy XTC files from MSMBuilder tutorial files:

cd ~/msmbuilder/Tutorial
tar -xvf XTC.tar

Convert XTC trajectories into MSMBuilder (HDF: .Ih5) files:
ConvertDataToHDF.py -s native.pdb -i XTC

MSMBuilder can read XTC, PDB, DCD, and other formats.
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Cluster your data

To define microstates, clusters your data using the RMSD metric with
hybrid k-centers k-medoids clustering.

Cluster.py rmsd hybrid -d 0.045 -1 50

. Use the “rmsd” distance metric
. Use the hybrid k-centers k-medoids clustering algorithm

. Stop clustering when cluster radii are less than 0.045 nm

B W N =

. Refine clusters with 50 iterations of hybrid k-medoids
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How to get help

Access help at command line with “-h" option.
Some help menus are context dependent:

» Cluster.py -h
» Cluster.py rmsd -h
» Cluster.py rmsd hybrid -h
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Clustering Output Files

By default, Cluster.py will produce three files:

Data/Assignments.h5 is the set of state assignments.

Data/Assignments.h5.distances is the set of distances from each frame to
its assigned cluster.

Data/Gens.|h5 is the set of cluster centers.
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Choosing a lagtime

What is a lagtime?

MSM calculations require the user to pick a fixed lagtime.

Lagtime = the time window used when counting transitions.

The lagtime can any integer multiple of the trajectory output frequency.
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Implied Timescales

The eigenvalues of the transition matrix provide the “implied timescales”
of the model:

Implied timescales serve three roles:
1. Choose the number of macrostates via the “spectral gap”
2. Choose the macrostate lagtime via “leveling-off”

3. Experimental observables decay via a sum of exponentials with these
timescales.



Calculating Implied Timescales

CalculateImpliedTimescales.py -1 1,25 -i 1 -o \

Data/ImpliedTimescales.dat

PlotImpliedTimescales.py -d 1. -i Data/ImpliedTimescales.dat
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Determine the number of macrostates

The top 3 timescales are separated by a spectral gap.

Relaxation Timescales versus Lagtime
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Three slow timescales suggests building a four macrostate model.
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Build a Macrostate Model

1. Build a transition matrix with lagtime of 1 ps

2. Use the transition matrix as input to PCCA+ algorithm

BuildMSM.py -1 1 -o L1

PCCA.py -n 4 -a L1/Assignments.Fixed.h5 -t L1/tProb.mtx \
-0 Macro4/ -A PCCA+
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Visualize Macrostates

python PlotDihedrals.py Macro4/MacroAssignments.hb

Alanine Dipeptide Macrostates
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Note the agreement with a manual state decomposition from Tobin
Sosnick.
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Errors in Markov State Models

MSM modeling requires that the data be Markovian, or memoryless.

We can use implied timescales to check that data is truly Markovian:

Y
log(A)

This implied timescale should be independent of the lagtime (At) used to
slice your trajectories!

T =
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CalculateImpliedTimescales.py -1 1,25 -i 1 \

Validate Macrostate MSM

-0 Macro4/ImpliedTimescales.dat \
-a Macro4/MacroAssignments.hb5 -e 3

PlotImpliedTimescales.py -i Macro4/ImpliedTimescales.dat -d 1

Relaxation Timescale

Relaxation Timescales versus Lagtime
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BuildMSM.py

Build a “converged” model
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Note the convergence at 6 ps.

Relaxation Timescales versus Lagtime

0
.
.
.
.... Ce ..
. ° 0ee®
. ...
.e
.
.
-5 [ B 10 15 20 25
Lag Time

30

-1 6 -a Macro4/MacroAssignments.h5 -o Macro4/

38/39



Save PDBs

SavePDBs.py -s -1 -a Macro4/MacroAssignments.h5 -c 1
pymol PDBs/State0-0.pdb PDBs/Statel-0.pdb PDBs/State2-0.pdb \
PDBs/State3-0.pdb
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