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Conformational States of Biological Molecules
Protein Folding

↓
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Conformational States of Biological Molecules
GPCR Dynamics

Jean-Francois Deleuze, 2010
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Conformational States of Biological Molecules
Riboswitches

Breaker et al

Key Points:

I Importance of conformation

I Multiple States

I Dynamics

4 / 39



Molecular Dynamics

Molecular dynamics simulations capture equilibrium and kinetic
properties of biomolecules.
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How should we analyze simulation?

1. Direct, quantitative connection to experimental observables

2. Intuitive explanation (coarse-graining)

3. Statistically optimal use of limited data

4. Computationally tractable and easy-to-use

5. Compatible with both many and few-state behavior

Markov State Models achieve these goals!
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States and Rates
Experimentalists view biomolecules through the lens of “states and rates”

Dobson, 2006.
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States and Rates
Markov State Models provide a “states and rates” view on conformational dynamics

Voelz et al.
8 / 39



Markov State Models in a Nutshell

1. Define states by clustering.

2. Estimate rates between states.
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Markov State Models

Suppose we have an ensemble of molecular dynamics trajectories:
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Markov State Models

Cluster the conformation space into disjoint states: {1, 2, 3, 4, 5}
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3

4

5
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Markov State Models

Estimate the transition probabilities by counting jumps between states:
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Estimating Transition Probabilities

Suppose we slice our trajectories every ∆t picoseconds (lagtime) and
count the observed transitions:

Cij = Ci→j
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Estimating Transition Probabilities

To get the transition probabilities, we simply “normalize” the counts:

Tij = Ti→j =
Cij

∑k Cik
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Dynamics in an MSM

Suppose that at time zero a protein sits in state i .

After lagtime ∆t, jump to another state with probabilities Tij .

15 / 39



Dynamics in an MSM

Suppose have an ensemble of proteins occupying different states–we
describe this by a population vector x(0).

x(t) = Tx(0)
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Eigenvalues and Eigenvectors
Equilibrium

Tv = λv

Setting λ = 1 gives us the equilibrium populations:

Tπ = 1π = π

At long times, the system approaches equilibrium populations:

x(t)→ π
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Eigenvalues and Eigenvectors
Dynamics

Tv = λiv

For the remaining eigenvalues, λi < 1.
These eigenvalues correspond to characteristic timescales at which

different populations approach equilibrium.

τi = −
∆t

log λi
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Eigenvalues and Eigenvectors
Projection

Suppose we have an experiment that monitors a single variable y(t).

y(t) = ∑
i

ci exp(− t

ti
) < vi, x(0) >

Englander
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What can you do with a Markov State Model?
Ligand Binding
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What can you do with a Markov State Model?
Predict Experiments
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What can you do with a Markov State Model?
Construct Simple Models
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What can you do with a Markov State Model?
Extract Pathways
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Introduction to MSMBuilder

After lunch, we will be having a complete tutorial session. You will need:

1. Linux or OSX

2. Enthough Python Distribution or a Ubuntu 12.04 VM

3. MSMBuilder

4. CPU with SSE3 support.

5. GCC 4.2 or later (with OpenMP support)

6. pymol (optional for visualization)

24 / 39



Introduction to MSMBuilder
Typical MSMBuilder Workflow

1. Data preparation

2. Build microstate model (clustering)

3. Build macrostate model using lumping

4. Investigate macrostates
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Data Preparation

Copy XTC files from MSMBuilder tutorial files:

cd ~/msmbuilder/Tutorial

tar -xvf XTC.tar

Convert XTC trajectories into MSMBuilder (HDF: .lh5) files:

ConvertDataToHDF.py -s native.pdb -i XTC

MSMBuilder can read XTC, PDB, DCD, and other formats.
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Cluster your data

To define microstates, clusters your data using the RMSD metric with
hybrid k-centers k-medoids clustering.

Cluster.py rmsd hybrid -d 0.045 -l 50

1. Use the “rmsd” distance metric

2. Use the hybrid k-centers k-medoids clustering algorithm

3. Stop clustering when cluster radii are less than 0.045 nm

4. Refine clusters with 50 iterations of hybrid k-medoids
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How to get help

Access help at command line with “-h” option.
Some help menus are context dependent:

I Cluster.py -h

I Cluster.py rmsd -h

I Cluster.py rmsd hybrid -h
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Clustering Output Files

By default, Cluster.py will produce three files:

Data/Assignments.h5 is the set of state assignments.

Data/Assignments.h5.distances is the set of distances from each frame to
its assigned cluster.

Data/Gens.lh5 is the set of cluster centers.
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Choosing a lagtime
What is a lagtime?

MSM calculations require the user to pick a fixed lagtime.

Lagtime = the time window used when counting transitions.

The lagtime can any integer multiple of the trajectory output frequency.
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Implied Timescales

The eigenvalues of the transition matrix provide the “implied timescales”
of the model:

Implied timescales serve three roles:

1. Choose the number of macrostates via the “spectral gap”

2. Choose the macrostate lagtime via “leveling-off”

3. Experimental observables decay via a sum of exponentials with these
timescales.
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Calculating Implied Timescales

CalculateImpliedTimescales.py -l 1,25 -i 1 -o \

Data/ImpliedTimescales.dat

PlotImpliedTimescales.py -d 1. -i Data/ImpliedTimescales.dat
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Determine the number of macrostates

The top 3 timescales are separated by a spectral gap.
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Three slow timescales suggests building a four macrostate model.
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Build a Macrostate Model

1. Build a transition matrix with lagtime of 1 ps

2. Use the transition matrix as input to PCCA+ algorithm

BuildMSM.py -l 1 -o L1

PCCA.py -n 4 -a L1/Assignments.Fixed.h5 -t L1/tProb.mtx \

-o Macro4/ -A PCCA+
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Visualize Macrostates

python PlotDihedrals.py Macro4/MacroAssignments.h5
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Note the agreement with a manual state decomposition from Tobin
Sosnick.
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Errors in Markov State Models

MSM modeling requires that the data be Markovian, or memoryless.

We can use implied timescales to check that data is truly Markovian:

τ = − ∆t

log(λ)

This implied timescale should be independent of the lagtime (∆t) used to
slice your trajectories!
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Validate Macrostate MSM

CalculateImpliedTimescales.py -l 1,25 -i 1 \

-o Macro4/ImpliedTimescales.dat \

-a Macro4/MacroAssignments.h5 -e 3

PlotImpliedTimescales.py -i Macro4/ImpliedTimescales.dat -d 1
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Build a “converged” model

Note the convergence at 6 ps.
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BuildMSM.py -l 6 -a Macro4/MacroAssignments.h5 -o Macro4/
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Save PDBs

SavePDBs.py -s -1 -a Macro4/MacroAssignments.h5 -c 1

pymol PDBs/State0-0.pdb PDBs/State1-0.pdb PDBs/State2-0.pdb \

PDBs/State3-0.pdb
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