Project spec for CPodes: coordinate projection
In CVODES, phase 1

Radu Serban*, Michael Sherman’
DRAFT Version 0.0, May 1, 2006.

Abstract

Multibody dynamics is a key part of the core software offerings from the NIH-funded
National Center for Biomedical Computing at Stanford (Simbios), embodied in the
Simbody' code. It is critical to the success of the project that the best available numerical
methods be used to solve the resulting Index-3 DAE systems, which range widely in size,
stiffness, and numerical conditioning, and are used both for simulations and sensitivity
studies. Simbios has identified the DOE’s CVODES? code as the most promising method
available in the public domain; however, CVODES does not currently accept problems in
the Simbody form. This is a specification for a set of minimal additions to CVODES,
suitable for incorporation in the CVODES source distribution, which would allow it to
solve these Index-3 DAEs using the Coordinate Projection scheme.” It is expected that this
will be widely useful for other mechanical systems, perhaps with some additional
enhancements. However, we focus here first on a specific deliverable which can efficiently
solve problems as formulated by Simbody, and discuss possible future extensions. We
propose to do this work as a collaboration between Simbios and DOE’s Center for Applied
Scientific Computing, with funding from Simbios.

1 Backgroundccocveiivienieiieiiceeeeeeee e 1
2 The form of a Simbody mechanical system 2

2.1 Implicit iNteZrationc..ccceceeerierenienieiereeeereniennens 4

2.2 SeNSItIVIEY..c.eoiiririirieniiieeeeeeeiene sttt 5

2.3 Some practical considerationscceecververrennenne. 5
3 Specific changes to CVODEScccoceeviiieiennen. 5
4 Future dir€Ctions........cceeeeeeeeienieieenieeeeeeeeeeeeee e 6
S LOISHICS cvvreevieeieieieetieieete et e eeestee e sre e eae e ees 6
Acknowledgments.........ccecuereerieniiecieeie e 7
References.c.eeeeienieneniiincrcteeeee e 7

1 Background

Large scale mechanical systems arise frequently in models of biological structures, from biomechanical
studies of gait to molecular dynamics simulation of biopolymers. Many of these systems are most
naturally formulated as differential equations in internal (relative) mechanical coordinates, restricted by a
smaller number of algebraic constraints. To address the need to model these systems, the NIH National
Center for Physics-based Simulation of Biological Structures at Stanford (Simbios) is developing the
Simbody™ code. Simbody is part of the SImTK Core suite of software being produced by Simbios.

Each evaluation of the system equations representing these models is extremely expensive, especially for
molecular systems, due to the complex force models that must be used to model biological systems.
Sophisticated numerical integration methods must be employed with these systems in order to minimize

" Lawrence Livermore National Laboratory, Center for Applied Scientific Computing.

T Stanford University, Simbios Center for Physics-based Simulation of Biological Structures.

the number of function evaluations required to simulate a given length of time. Multistep methods can be
extremely effective since they achieve high order with minimal function evaluations, especially when the
systems are non-stiff, which is often but not always the case. The CVODES integrator provided as part of
the DOE Sundials suite would be ideal for this purpose for many reasons, including high order stiff and
nonstiff multistep methods, sensitivity analysis, suitability for large-scale problems, high-quality modern
software engineering, and public domain availability (BSD license).

However, the set of equations resulting from a Simbody model forms an Index 3 DAE, which would seem
to preclude use of an ODE integrator like CVODES. In fact, there are few options for solving Index 3
DAEs directly—for example, the popular DASSL code and the Sundials DAE solver IDA are limited to
Index 2 problems. Fortunately, the special structure of internal coordinate multibody systems permits
them to be efficiently converted to an ODE which automatically satisfies the Index 1 (acceleration level)
constraints, leaving only a problem of gradual drift of Index 2 and 3 constraints away from their
manifolds. There are two common methods for dealing with this, Baumgarte stabilization* and Coordinate
Projection. The former has theoretical and practical difficulties, but is very easy to implement and results
in just an ODE. Instead, we intend to employ Coordinate Projection which is a theoretically rigorous and
in practice extremely robust method for dealing with this problem. Coordinate Projection requires only an
ODE integrator combined with a projection scheme for eliminating drift, and some minor changes to error
estimation and step size selection. The projection scheme not only eliminates the drift, it also provably
reduces the integration error at each step so permits larger step sizes than would otherwise be possible.

We propose here to develop the necessary minor modifications to CVODES that would permit it to be
used as a high-quality Coordinate Projection scheme for solving Index 3 DAEs of the particular form
generated by Simbody (and many other mechanical modeling codes) and described below.

2 The form of a Simbody mechanical system

The numerical integration literature has many examples of mechanical systems; see for example section
VIL7 in Hairer and Wanner.” Of necessity, these have been simplified examples to make the issues clear.
Simbody on the other hand must deal with the fully general systems that arise in biosimulation, so many
of the simplifying assumptions made in the literature are not valid. This has a significant practical impact
on the interface between the model and the numerical integrator.

Here are some of the real-world issues we have to address:

o large size: ~1000 coupled coordinates, ~100 constraints. (For multiscale systems we also expect
to couple to time-dependent PDEs which are much larger but structured differently.)

e deviation from pure 2" order structure (more position coordinates than velocity coordinates, and
the presence of auxiliary 1% order ODEs)

e poorly conditioned and rank-deficient (redundant) constraints; state-dependent rank changes
o differing numbers of constraints at the position, velocity, and acceleration levels

o the necessity and ability to exploit special problem structure to replace matrix operations with
linear-time operators, and to directly satisfy the acceleration constraints.

Conceptually, Simbody formulates the following overdetermined Index 3 system:

(la) d =Qu kinematics

(1b) Mu=f-A"A1 dynamics

(Ic) Au=hb acceleration constraints
(1d) v(t,q,u) =0 velocity constraints

(Ie) p(t,q) =0 position constraints
(f) 7 =2(t,q,u,2) auxiliary odes

However, multibody systems have significant exploitable structure to be described below.

Here the g’s are the n, generalized coordinates (position variables), U’s are the n, < n, generalized speeds
(velocity variables), t is time and overdot represents differentiation with respect to time. z is a set of n,
auxiliary differential equations which can affect forces but not positions or velocities. A are m, unknowns
(Lagrange multipliers) associated with the acceleration constraints such that AT\ are the internal forces
needed to enforce the constraints.

Q=Q(q) is an nyxn, matrix mapping U’s to q time derivatives. In practice it is an identity matrix except for
quaternions, where there are four q’s but three u’s and a 4x3 block on the diagonal. M=M(Qq) is a square,
dense, symmetric, positive definite, well conditioned mass matrix. f=f(t,q,u,z) is the system of applied and
internally-generated forces, mapped to act along the generalized speeds. In most problems, almost all the
CPU time goes into computing f, so it is very important to reduce the number of required evaluations of
eq. 1b.

A=A(q) is an m,xn,, poorly conditioned or rank deficient matrix, sometimes with state-dependent rank
changes, and b=Db(t,q,u). Many, but not all, of the acceleration constraints come from differentiating
velocity constraints. Similarly, many of the m, velocity constraints are just time derivatives of the m,
position constraints, but new ones are also introduced at that level (“non-holonomic” constraints). Also,
the use of quaternions at the position level introduces normalization constraints which exist only at that
level; there are no corresponding velocity or acceleration constraints for them because the change of
variables to U’s replaces four dependent states with three independent ones. Each of the constraint
equations involves only a subset of the state variables (often disjoint), and knowledge of that structure
allows efficient solution of constraint equations as a series of small decoupled least squares problems.

Simbody is able to evaluate equations 1b and 1c simultaneously in O(n) time using the recursive structure
of the multibody system. This leads to the following system, suitable to be solved with a Coordinate
Projection scheme:

(2a) q =Qu kinematics

(2b) u=u(,q,u,z) dynamics

(2¢) Z=1(,09,u,2) auxiliary odes

(2d) v(t,q,u) =0 velocity constraints
(2¢) p(t,q) =0 position constraints

Note that the acceleration constraints have been eliminated; they are satisfied automatically by equation
2b. In practice, then, a Simbody system provides operators for instantaneous solution of the above
equations, rather than access to the individual matrices, which in most cases are never formed at all. In

general, it is not necessary to distinguish among the three kinds of state variable or between the two kinds
of constraints to be maintained. So the above equations can be reduced for external purposes to just these
two operations:

(Ba) y=1f(,y) derivatives
(3b) y=g(tY) projection

representing the solution through coordinate projection of the following ODE with invariants:

y="1(y
0=g(ty)

Equation 3a provides the state derivatives Y = {(,U,Z} as a function of time and state. Then equation 3b
takes a state ¥ = {{,U, 2} which violates equation 2d or 2e and performs a normal projection back to the
constraint manifold.

Because projection defined this way eliminates errors normal to the constraint manifold, the integrator’s
error vector should be projected before it is used to determine whether the required accuracy has been
obtained. I think that requires a routine something like this:

(Bc) € =0,(,Y,¢) error projection

There may be some additional interface requirements due to scaling of both the state variables and
constraint errors—see “practical considerations” below.

2.1 Implicit integration

In many cases Simbody can efficiently calculate the analytical system Jacobian J =38y /dy so we expect

to use the explicit Jacobian interface to CVODES. Problem sizes are such that dense linear algebra is
likely to be most effective, with cluster parallelism generally being used to evaluate the forces rather than
the linear system. Some mechanical systems are so stiff that a finite or central difference Jacobian is
inadequate and only an analytic or automatic differentiation Jacobian is good enough.

At some point it may be useful to exploit the internal structure of this matrix for efficiency. The system
Jacobian has block structure:
Jo Jau Ja a4/6q o6q/ou oq/oz 0 | 0

J=|3, J. J,|=|0u/eq ou/eu aufez|~|eu/eq ou/eu aye

uu uz

Juy Ju Iz 0z/oq oi/ou ooz arjoq alu aja
Except for some minor annoyances due to quaternions, the 2™-order structure of the system makes the top
half of the matrix trivial, and typically n,<ng=n,, so it can be very effective to exploit this structure when
factoring the iteration matrix 1-hJ. Some integrators provide direct support for 2™-order systems in this
form (e.g. Radau5), but because of the not-quite-2""-order problems we produce a general method won’t
work while a slightly customized one can.

Attainable speedup with this trick is about 2X, which in many cases will not be significant, so exploiting
the internal structure of J does not need to be supported in phase 1 of this project. We mention it just as a
possible future improvement should the dense linear algebra become a bottleneck, and so it can be kept in
mind when designing the interface.

2.2 Sensitivity

A Simbody model contains many parameters p in addition to the state variables g, u, and z. The sensitivity
with respect to those parameters of a small number of functions calculated over an integrated trajectory is
often of great interest. We would thus like to be able to use the sensitivity features of CVODES along with
the coordinate projection method. Again it is not necessary to provide any specific support for this in
phase 1, but we note it for future consideration.

2.3 Some practical considerations

With generalized coordinates, scaling is very different for different variables and can be state dependent.
Also, many variables are cyclic and thus need to be integrated using only absolute tolerances. So Simbody
provides a scaling for all its variables. Scaling is an efficient calculation so can be reasonably done every
time step.

Both the derivative calculation and the projection can fail in recoverable ways which should cause a
reduction in step size. Thus the integrator must be prepared to get all the way through a step and then fail
at the final projection, in the same way it would for a recoverable failure in the derivative routine.

Q: Radu, how does scaling interact with the error projection? I think the error estimates in absolute terms
should be projected, with the result being scaled only to determine whether desired per-variable accuracy
has been achieved. Is that right?

Constraint tolerances: although acceleration constraints are always satisfied, we do not necessarily have to
project the position and velocity constraints at every step, and when we do we need only project to a
certain tolerance. Like the states, these have scaling differences that must be dealt with, and only the
Simbody system can know the significance of various constraint violations.

Q: Radu, how should we deal with constraint tolerances? We could ask Simbody to pass back to
CVODES the actual vectors of constraint violations. These would then have to be weighted using
additional Simbody-supplied information. An alternative would be to have the CVODES user specify a
constraint tolerance, e.g. 0.001, to be interpreted as the acceptable fraction of “unit error” that the user is
willing to tolerate. Then Simbody could return a scalar which would indicate the amount by which it
considers constraints to be violated by the current state (in terms of Simbody’s internally-weigthed
definition of “unit error”).

A: Scaling of both the states and the constraints can be taken into account through weighting in the
appropriate norm evaluations. Indeed, the weighted-residual means square norm (WRMS), ubiquitously
used in CVODES, will be also used in the projection step, thus including, through the absolute tolerances,
variable scale information. For the constraint violation on the other hand, we will use a weighted norm
with weights based on constraint scales provided by Simbody. These later scales could also be used in
“preconditioning” the iteration matrix for the Newton iteration in the projection step.

3 Specific changes to CVODES

We propose to make the following specific changes to CVODE[S] to provide a coordinate projection
capability for DAEs and/or ODEs with invariants:

e Modify the nonlinear solver to conditionally perform a projection step to correct for any drift
from the constraint manifold after a successful step (based on the Nordsieck history array of
previous projected solutions). Mathematically, the projection defines a minimization problem
which can be solved efficiently by Newton iterations. In practice, an approximate solution to the
minimization problem will suffice (corresponding to a slight relaxation of the orthogonality of the
projection).

Modify the CVODES error controller to use the projected error estimate of the original BDF
method as the error estimate of the projected method. In addition, include an error test decision
loop to allow for a step rejection based on the performance of the projection step itself. This error
test will parallel the existing one (which attempts to control errors in the integration of the
underlying ODE, regardless of the constraint violation) in the sense that, based on the outcome of
the projection, it will either mark the step as successful or trigger one of the recovery attempts
(Jacobian update, stepsize and/or method order modification, etc.)

Extend the user interface to allow for specification of additional information, such as constraint
scaling, constraint tolerances, and (possibly) user-provided functions for computing the weighted
constraint violation norms and maybe even user-provided functions to replace the internal
projection mechanism.

The above modifications will allow CVODE[S] to solve, through coordinate projection, any ODE system
with invariants of the form (3a)+(3b). To enhance efficiency and solver performance, additional
modifications can be made to take advantage of the special structure of mechanical systems in the form
generated by Simbody:

Implement automatic relative scaling of the position and velocity constraints based on the
constraint Jacobian provided by Simbody.

Taking advantage of the fact that, for BDF methods (the underlying linear multistep method in
CVODE), semi-explicit index-1 DAEs behave under discretization like ODEs, it may be more
effective to iteratively solve (1b)+(1c) instead of (2b). In this form, one of the blocks in the BDF
Jacobian can be used as the iteration matrix for the modified Newton used in the projection step,
thus avoiding the cost of evaluating A (recall that the Simbody multibody formalism evaluates
with complexity O(n) the products Au and ATA, but not A itself).

4 Future directions

Upon successful completion of phase 1, we may wish to continue on to a phase 2. The specifics of that
phase have yet to be determined, but here are some possibilities:

While the BDF Jacobian of the underlying ODE obtained after explicitly excluding the Lagrange
multipliers (Eq. 2b) is typically dense, the Jacobian of the index-1 DAE represented by Egs.
1b+1c has the sparsity pattern of a so-called “optimization matrix”. A direct sparse linear solver
could significantly reduce the cost of the linear algebra involved in the implicit time stepping.

To enable additional types of analyses (e.g. model reduction, design optimization, optimal
control), sensitivity analysis (SA) - evaluating derivatives with respect to problem parameters of
the solution and/or functionals of the solution - provides a critical ingredient. The coordinate
projection solver resulting from phase 1 could be extended to simultaneously integrate the
continuous sensitivity equations (forward SA) and/or integrate backwards in time the adjoint of
the linearized forward system (adjoint SA) to provide sensitivity capabilities.

5 Logistics
Funding for this project will be provided by the Simbios center, under supervision of Executive Director
Jeanette Schmidt. We expect the total cost of phase 1 to be $40,000 with completion expected in July,

2006. Personnel involved will be Radu Serban from LLNL, and Michael Sherman and Jack Middleton
from Simbios.

Acknowledgments

Simbios is funded by the National Institutes of Health through the NIH Roadmap for Medical Research,
Grant US54 GM072970. Information on the National Centers for Biomedical Computing can be obtained
from http://nihroadmap.nih.gov/bioinformatics.

The work of Radu Serban is supported under the auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

References

!https://simtk.org/home/simbody

2 http://www.lInl.gov/CASC/sundials/main.html

3 Eich, E. Convergence results for a coordinate projection method applied to mechanical systems with algebraic
constraints. SIAM J. on Numerical Analysis 30(5):1467-1482 (1993).

* Baumgarte, J., Stabilization of constraints and integrals of motion in dynamical systems, Comp. Methods Appl.
Mech., 1 (1972), pp. 1-16.

> Hairer, E. and Wanner, G. Solving Ordinary Differential Equations I1: Stiff and Differential-Algebraic Problems,
2" revised ed., Springer, 1996.

