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1) Description of the optimal control problem 

Parameterization of states and controls 

The direct collocation method consists of discretizing the states in several intervals (x0, x1, … xN). 

These intervals are, in turn, discretized with some collocation points, for example 
0 0 0

1 2 3, ,x x x  for 

the interval between x0 and x1, 
1 1 1

1 2 3, ,x x x  for the interval between x1 and x2, and so on (see Fig. 1). 

All state points are design variables in the optimization problem. States are considered to be 

parameterized within each interval as Lagrange polynomials. The Lagrange parameterization has 

the following form: 

         (1) 

where r are the collocation points, and j are the number of polynomials that define the polynomial 

basis (one for each point of the interval). Then, a state variable at time t can be approximated as a 

function of the state values at the collocation points of the time interval i. If the time discretization 

is regular (with time intervals of width h), the expression of the state becomes: 
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Figure S1. Discretization of states and parameterization with Lagrange polynomials 

 

Controls are usually only optimized at the beginning of each time interval (u0, u1, … uN), as in this 

study. However, to avoid having a constant control at each time interval, we can approximate them 

as Lagrange polynomials within each time interval as well. In this case, the polynomial bases 

consists of two polynomials, at the beginning and at the end of each time interval: 
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Then, the expression of the control values within a time interval is quite simple:  
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Variables derived from states and controls 

With the introduced state discretization, the derivative of the states becomes quite straightforward. 

If the time discretization is regular along all intervals, the expression of state derivative at time 
i

jt  

(time j of time interval i) is: 
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where C is a constant matrix for all time intervals.  

In the optimization, we will need to impose continuity constraints, therefore we will need to impose 

a constraint between the last point of an interval and the first of the following one. With the 

introduced discretization, we can approximate the state at the last collocation point of an interval 

as a function of the states at collocation points as follows: 
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where D is a vector constant for all time intervals (as long as the time discretization is regular). 

Integrals of variables parameterized with Lagrange polynomials also have simple expressions. 

For instance, the integral of a state becomes as follows: 
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Where B is a vector constant for all time intervals (as long as the time discretization is regular). 

The linear dependence of state values, state derivative and integrals respect to state values at 

collocation points facilitates the direct collocation formulation. 

 

Design variables 

Phase A: 

States (one value at each 

collocation point) 

Coordinates: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q   

Velocities: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q  

Accelerations: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q  

Controls (one value per mesh 

interval) 

Jerks 

, , , , , , , ,
x foot y foot r foot h ankle h knee h hip e ankle e knee e hipq q q q q q q q qu u u u u u u u u  

Joint torques 

, , , , ,
h ankle h knee h hip e ankle e knee e hipT T T T T Tu u u u u u  

Ground-reaction forces (in global frame) 

,GRF GRF

x yu u  

Parameters 

Foot-ground contact parameters: 

Stiffness (k), damping (c), locations of the centre of the spheres 

with respect to the calcaneus frame (
front sphere

calcaneusx  , 
front sphere

calcaneusy , 

heel sphere

calcaneusx  , 
heel sphere

calcaneusy ) 

 

where q , q , q  and q  are the coordinates of the model and their derivatives (velocities, 

accelerations and jerks), respectively. h stands for human, e for exoskeleton, T for torque, and GRF 

for ground reaction force. 
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Phase B: 

States (one value at each 

collocation point) 

Coordinates: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q   

Velocities: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q  

Accelerations: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q  

Controls (one value per 

mesh interval) 

Jerks: 

, , , , , , , ,
x foot y foot r foot h ankle h knee h hip e ankle e knee e hipq q q q q q q q qu u u u u u u u u  

Joint torques: 

, , , , ,
h ankle h knee h hip e ankle e knee e hipT T T T T Tu u u u u u  

Ground-reaction forces (in global frame): 

,GRF GRF

x yu u  

Subject-exoskeleton contact forces (in local human body frame) 

, , , , ,SEC pelvis SEC pelvis SEC femur SEC femur SEC tibia SEC tibia

x y x y x yu u u u u u  

Parameters 

Subject-exoskeleton contact parameters: 

For each spring-damper system (at the pelvis, femur and tibia): 

Translational and rotational stiffness (kx, ky, kr) and location of the 

origin of the spring-damper in the corresponding human body (
origin

humanbodyx  , 
origin

humanbodyy  ). 

 

where SE C stands for subject-exoskeleton contact force. 

 

Phases C1 and C2: 

States (one value at each 

collocation point) 

Coordinates: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q   

Velocities: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q  

Accelerations: 

, , , , , , , ,x foot y foot r foot hankle hknee hhip eankle eknee ehipq q q q q q q q q  

Controls (one value per 

mesh interval) 

Jerks: 

, , , , , , , ,
x foot y foot r foot h ankle h knee h hip e ankle e knee e hipq q q q q q q q qu u u u u u u u u  

Joint torques: 

, , , , ,
h ankle h knee h hip e ankle e knee e hipT T T T T Tu u u u u u  

Ground-reaction forces (in global frame): 

,GRF GRF

x yu u  

Subject-exoskeleton contact forces (in local human body frame) 

, , , , ,SEC pelvis SEC pelvis SEC femur SEC femur SEC tibia SEC tibia

x y x y x yu u u u u u  

Parameters - 
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Note that foot-ground and subject-exoskeleton contact forces can be calculated as a function of 

kinematics. However, we included them as controls to get a better convergence. During the 

optimization, those values can change and only at the optimal solution will be equal to the ones 

calculated as a function of kinematics. 

 

Formulation of constraints 

In all phases we included the following constraints: 

- Continuity constraints. The state value at the end of each mesh interval must be the same 

as the first value of the following interval. Following Eq. (6): 

1 1

0 0 0i ix x           (8) 

 

- Dynamic constraints. The derivatives of the state variables at the intermediate collocation 

points of each mesh interval must be consistent with the approximated values calculated 

using the Lagrange polynomials (Eq. (5)): 

    0i i i

j jx t x t          (9) 

- Path constraints. Since we used an implicit dynamic formulation, the equations of motion 

are included as constraints at the beginning of each mesh interval: 

     M , 0T GRF SECq q C q q G q            

where M is the mass matrix of the multibody system, C is the vector of centrifugal terms, 

G is the vector containing the gravity terms and T , GRF  and SE C  are the the vectors of 

generalized forces due to joint torques, GRF and subject-exoskeleton interaction, 

respectively. 

Additionally, since we considered foot-ground and exoskeleton contact forces as controls, we 

included, at the beginning of each time interval, the constraints to impose that those controls are 

equal to the ones calculated as a function of kinematics: 
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where F0 = 300 Nm was used to normalize GRF (ground reaction forces) and 
SE CF (subject 

exoskeleton contact forces). 
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Cost function terms 

The expression of the cost function contains minimization and tracking terms: 

- Minimization terms: 

Joint torques  

(Phase A) 
2

min i

nT

T T

i

J w u                                                                          (12) 

Jerks 

(All phases) 
2

min i

nDOF

q q

i

J w u                                                                        (13) 

Subject-exoskeleton 

(Phase B – only 

components with no 

experimental 

information, Phase C – 

all components) 
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- Tracking terms: 

Joint torques 

(Phases B, C1 and C2) 
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Ground reaction forces 

(All phases) 
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Coordinates 

(Phases A and B) 
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Velocities 

(Phases A and B) 
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Subject-exoskeleton 

contact forces  

(Phase B) 

 
2

mod exp

nSEC
SEC SEC

trSE i i

i

J w F F                                                        (19) 

 

with the weights min 1Tw  , 1trThw  , 10trTew  , min 0.1qw  , 1
xtrGRFw  , 100

ytrGRFw  , 

100trCOPw  , 0.1trqhw  , 1trqew  , 1trSEw  , min 10SECw   
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2) Parameter identification analysis for foot-ground contact model 

Following the method of Van den Hof et al. (Model. Control Bridg. Rigorous Theory Adv. Technol. 

125: 125–143, 2009), the parameter identification consists of calculating the singular value 

decomposition of the second derivatives (Hessian matrix) of the contact force with respect to the 

parameters of the contact model. 

 

Foot-ground contact model parameters 

We used a compliant foot-ground contact model. The relation between those forces and kinematics 

is non-linear. The second derivative of the vertical contact force at the heel sphere with respect to 

the parameters of the model is the following: 

2

2

vGRF
H

w





           (20) 

where GRFv is the vertical component of the ground reaction force and w a vector containing the 

five parameters of the foot-ground contact model affecting this force: stiffness and damping 

parameters (equal for front and heel spheres), horizontal and vertical positions of the centre of the 

sphere with respect to calcaneus, and the radius of the sphere. The singular value decomposition 

results for H are the one shown in Figure S2. 

The redundancy produced by two input variables with the same effect on the ground reaction force 

makes the convergence of the optimization difficult. The first unit vector shows that the vertical 

position of the spheres (yheel) is coupled with the radius of the sphere (rheel). This means that, for 

example, a decrease of yheel would have the same effect as an increase of rheel. This is true when 

considering that the foot orientation is flat with respect to the ground (the case in sit-to-stance 

movements). 
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Figure S2. Singular value decomposition of the hessian matrix obtained as the second derivative of the 

vertical GRF with respect to the foot-ground contact parameters. 
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3) Values of the optimized parameters 

Foot-ground contact parameters obtained in Phase A: 

Stiffness k: 1.32·107 [N/m2]2/3 Damping c: 6.19 m-1 See equations (2) and (3) 

from the Appendix 1 

xheel = -0.09 m yheel = 0.006 m x and y coordinates are 

relative to the calcaneus 

frame 
xfront = 0.30 m yfront = 0.01 m 

Subject-exoskeleton contact parameters obtained in Phase B: 

 Pelvis Thigh Ankle  

x (m) 3.9 0.0 -0.1 x and y coordinates are relative to the human 

pelvis, thigh or shank body respectively 
y (m) 1.3 -4.8 -0.1 

Krz [Nm/rad] -9.7 -49.0 -7.5  

Ktx [N/m] -0.6 -423.5 -1000  

Kty [N/m] -29.8 -0.8 1000  

 

 


