% Optimization: Here, we compare the results of the optimization % parameters (with 47 muscles) when doubling the number of samples % and iterations. full_task_normal = [0.00146818; 0.000921463; 0.0433757; 0.00309512; 0.120331]; full_effort_normal = [0.0270352; 0.0465972; 0.0328721; 0.0428094; 0.0520095]; full_total_normal = [0.0524473; 0.063266; 0.085116; 0.0578125; 0.195558]; %results when doubling nbr samples and iterations full_task_long = [0.000419565; 0.000401436; 0.0373835; 0.00117259; 0.112164]; full_effort_long = [0.0337676; 0.0349085; 0.0302181; 0.0328348; 0.0498393]; full_total_long = [0.0469417; 0.0462018; 0.0802636; 0.0392155; 0.169948]; task_weight = 5; task_diff = sqrt(full_task_normal/task_weight) - sqrt(full_task_long/task_weight); display('mean difference in cm'); mean(task_diff) * 100 display('standard deviation in cm'); std(task_diff) display('mean effort ratio:'); mean(full_effort_long./full_effort_normal) display('standard deviation effort ratio:'); std(full_effort_long./full_effort_normal)