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Abstract 

This paper describes a n  efficient recursive algo- 
rithm f o r  the computation of the  extended operational 
space inertia matr ix  of a n  n-link branching (tree-like) 
redundant robotic mechanism with multiple operational 
points. T h e  proposed algorithm behaves linearly with 
respect t o  n in practice. Therefore, as the  number of 
links increases, this algorithm performs significantly 
better than  the existing O(n3) symbolic method. The  
experimental results of this algorithm are presented us- 
ing real-time dynamic simulation. 

1 Introduction 

The extended operational space formulation [9] is 
an approach for the dynamic modeling and control 
of a complex branching (tree-like) redundant mecha- 
nism (Figure 1) at its task or end-effector level. This 
formulation is particularly useful for dealing with si- 
multaneous tasks of multiple end-effectors since its ba- 
sic structure provides dynamic decoupling among end- 
effectors’ tasks and the complex internal dynamics in 
their associated null space. 

In order for this formulation to be usable in real- 
time control of a complex n-link mechanism, however, 
the complexity O(n3) of the existing symbolic method 
[9] is not acceptable when n is large. This O(n3) com- 
plexity comes from the explicit inversion operation of 
the joint space inertia matrix of size O(n2) ,  required 
for the computation of the extended operational space 
inertia matrix. 

In this paper, we propose an efficient recursive algo- 
rithm for the computation of the extended operational 
space inertia matrix of an n-link branching redundant 
robotic mechanism with m operational points. Since 
m can be considered as a small constant in practice, 
we obtain the linear running time of O(n)  for this al- 
gorit hm. 
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Figure 1: A branching robot with a tree-like topology. 
In its corresponding tree structure, each link becomes 
a node and each joint becomes an edge of the tree. 

The next section 
provides background 
material describing a 
modified spatial nota- 
tion and basic spatial 
kinematic and dynamic 
quantities using this 
notation. In the third 
section, an efficient 
recursive algorithm is 
developed based on 
these spatial quantities 
and its O(n)  complex- 

Figure 2: Robot. ity is proved. Finally, 
real-time simulation 
results with a basic humanoid redundant robotic 
mechanism with n = 24 and m = 2 (Figure 2) are 
presented to illustrate the efficiency of the proposed 
algorithm. 

2 Background 

This section summarizes the unified spatial nota- 
t ion  used throughout the paper. Also, some of the 
spatial quantities, which are essential for developing 
the proposed algorithm in the next section, are pre- 
sented using this notation. 
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2.1 Unified Spatial Notation 

Spatial notation, introduced by Featherstone [l], 
has been widely used in the modeling of kinemat- 
ics and dynamics of complex robotic mechanisms 
[l, 8, 4, 5, 6 ,  71. In this subsection, we introduce the 
unified spatial notation which combines various ver- 
sions of existing spatial notations in order to utilize 
the results from various researchers in a unified way. 

In spatial notation, each quantity incorporates the 
appropriate linear and angular components and results 
in a concise form (6  x 1 vector or 6 x 6 matrix). For 
example, a spatial acceleration, x i ,  and a spatial force, 
f i ,  of link i are defined as: 

and f i  = [ ] 
where vi, wi,  fi, and ni, are 3 x 1 linear velocity, an- 
gular velocity, force, and moment vectors expressed in 
frame i, respectively. 

Ish Si t  .frame i 

joint h 

Figure 3: Basic notation. 

In Figure 3,  hri is a 3 x 1 position vector from the 
origin of frame h to the origin of frame i expressed in 
frame h, d, is a 3 x 1 position vector from the origin 
of frame i to the center of mass of link i expressed in 
frame i, and mi is the mass of link i. 

A spatial inertia matrix, I i  is a 6 x 6 symmetric 
positive definite matrix defined for each individual link 
i in its own frame: 

where Mi, H i ,  and I: are the Oth ,  lst, and 2nd mo- 
ments of inertia of link i, respectively. Notice that I: 
is the inertia tensor at the origin of frame i. Also, 1 3  
is a 3 x 3 identity matrix and I:i is the inertia ten- 
sor of link i in frame ci located at the center of %ass 
of link i with the same orientation as frame i. di is 
the cross-product operator associated with di shown 
in Figure 3. A cross-product operator associated with 
a 3 x 1 vector, p = [ p z  p ,  p ,IT,  is an anti-symmetric 
matrix defined as: 

0 -pz 
p z  0 :;’. ] 
-P, P x  0 

h 

The 6 x 6 spatial transformation matrix, ? X ,  trans- 
forms a spatial quantity from one frame (i) to the 
other (h):  

where ?R is the 3 x 3 rotation matrix which transforms 
a quantity expressed in fr2me i to the same quantity 
expressed in frame h and hri is the cross-product oper- 
ator associated with hri shown in Figure 3. For exam- 
ple, the spatial transformations of accelerations and 
forces between frames i and j are: 

xi = $TXh (3) 
f h  = “ X i  (4) 

Note that the origin of each frame is located at  
the joint and any variable without the reference frame 
number (front superscript) is expressed in its own 
frame. Also, if link i is a leaf (outermost) link, end- 
effector frame ei is located at  the tip (operational 
point) of link i (Figure 1). These conventions will 
be assumed throughout the paper. 

2.2 Supporting Spatial Quantities 

In this subsection, we present some of the essential 
spatial quantities using the unified spatial notation to 
support the proposed algorithm developed in the next 
section. 

The force propagator, CL, propagates a spatial force 
from link i to its parent link h across the actuated joint 
i in a dynamically consistent manner [5] :  

where f h  is the resulting spatial force of link h when 
the spatial force of link i, f i ,  is propagated across joint 
i. Force propagation is physically valid only if the spa- 
tial force is propagated in inward (tip-to-base) direc- 
tion. 

Similarly, the acceleration propagator defined as 
?LT propagates a spatial acceleration of link h to its 
child link i across the actuated joint i in a dynamically 
consistent manner [I, 51: 

xi = ;LT 2, ( 6 )  

where x i  is the resulting spatial acceleration of link i 
when the spatial acceleration of link h, xh, is propa- 
gated across joint i. Acceleration propagation is physi- 
cally valid only if the spatial acceleration is propagated 
in outward (base-to-tip) direction. 
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The force propagator, fL ,  and the acceleration 
propagator, fLT, are defined as [l, 51: 

(7) 
T ?L = tx [ 1 6 - S i s i ]  

?LT = [ 1 6 - s t s i ]  ?XT (8) 

where 1 6  is a 6 x 6 identity matrix and the general joint 
model, Si, is a 6 x ni matrix with full column rank, 
ni, when joint i has ni degrees of freedom (ni 5 6) 
[l, 51. Its columns (unit vectors) make up a basis for 
the motion space of joint i .  Notice that this matrix 
is constant since it is expressed in its own frame. For 
example, Si = [0  O O O O 1IT for a revolute joint 
around z-axis and Si = [ 0 1 0 0 0 0lT for a prismatic 
joint - along y-axis. 

Si is the generalized inverse of Si weighted by the 
corresponding inertia matrix and defined as: 

- 
Si = Kil S r  14 

The articulated-body inertia matrix of link i, I f ,  in- 
troduced by Featherstone [l], relates the spatial force 
and acceleration of a link, taking into account the dy- 
namics of the rest of the articulated body [l, 8, 51. 
Using the force propagator (7) and the acceleration 
propagator (8), the articulated-body inertia matrix of 
link h, I f ,  can be written as: 

(9) 

where I h  is the spatial inertia matrix (1) of link h 
and i represents the index of each child link of link 
h. This recursive equation shows that the articulated- 
body inertia of a link is the sum of its own spatial 
inertia and the dynamically consistent projection of 
the articulated-body inertia of each child link. Note 
that If = I h  if link h is a leaf link. 

Ki is the ni x ni full rank matrix projecting I f  onto 
the motion space of joint i with ni degrees of freedom: 

K~ = S ~ I ?  si 
Notice that the force propagator (7) has the same 

dynamic property as the dynamically consistent null 
space projection matrix for redundant robotic systems 
[2, 31. Both quantities guarantee that the resulting 
(propagated or projected) quantity does not produce 
any coupling effect in their corresponding motion (op- 
erational) space. 

A 6 x 6 inertia matrix, f l i  relates the spatial accel- 
eration of link i and the spatial force of the same link 
at the joint [8, 4, 51: 

(10) 2. - n.f.  a -  a a  

Finally, the 6 x 6 operational space inertia matrix, 
A,,, , of a single open-chain mechanism defined as [2]: 

Xen '' = A;: fen (11) 

can be related to n, using Equations (2), (3), (4), 
( lo) ,  and (11): 

Ai: =2nXTC2 n e,, X (12) 

where end-effector frame e, is at the tip of leaf link n. 

3 Efficient Recursive Algorithm 

This section describes an efficient recursive algo- 
rithm to compute the extended operational space in- 
ertia matrix. We will develop this algorithm from the 
basic analysis of the physical properties of and the 
relationships among forces, accelerations, and inertia 
matrices. Also, the proposed algorithm is shown to be 
of complexity O(n) in practice. 

3.1 Analysis of Extended Operational 
Space Inertia Matrix 

The extended operational space inertia matrix, A,, 
of an n-link N-degree-of-freedom branching redundant 
mechanism with m operational points is defined as [9]: 

'A;' = J, A-' JT (13) 
where A, is an 6m x 6m symmetric positive definite 
matrix, J, is the 6m x N Jacobian matrix, and A 
is the N x N joint space inertia matrix. Note that 
m cannot be greater than n and since each joint can 
have only up to 6 degrees of freedom, N = O(n) and 
the size of A is O(n2) .  

As in the case of a single operational point (ll), 
A,' relates the forces at the end-effectors to the accel- 
erations at the end-effectors: 

X, = A;' Fe (14) 
where X, and Fe are 6m x 1 vertically concatenated 
vectors of the accelerations and forces of each end- 
effector: 

x, -. = [ "1 ] and Fe = [ f: ] (15) 
g e m  fern 

Also, since A;' is symmetric, it can be expressed in 
terms of its 6 x 6 block matrix components as: 
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From Equations (14), (15), and (16), the additive 
property of the coupling effect on the i th end-effector 
(of leaf link i) can be written as: 

= fej (18) .. * 
Xe; , e j  

where x:i ,e j  is the coupling acceleration on the i th 
end-effector by the force of the j t h  end-effector. This 
additive property of the coupling effect shows that the 
resulting acceleration of an end-effector is not only 
dependent on its own force, but also on the forces of 
all other end-effectors in the system. 

Notice that when the j t h  end-effector produces the 
only non-zero force in the system, we can isolate the 
coupling effect on the i th end-effector by the force of 
the j t h  end-effector. This can be written, from Equa- 
tions (17) and (18), as: 

%e; = = Ai:,ej fej (19) 

when fej # 0 and fek = 0 for all k # j .  
Then, similarly to Equation (lo),  a 6 x 6 inertia 

matrix, ni,j relates the spatial acceleration of link i 
and the spatial force of the link j at the corresponding 
joints. This relationship can be written as: 

(20) 2. = 0. . f .  w 3 

Also, similarly to Equation (12), the 6 x 6 block inverse 
operational space inertia matrix, A;:,ej, can be related 
to Q i , j  using Equations (2), (3), (4), (19), and (20): 

(21) - i  X T n .  . j  x A-:, e .  e .  J - e; e j  

where end-effector frames ei and ej are at the tips 
of leaf links i and j .  Note that this relationship is 
necessary since the inertial properties are desired at 
the tips instead of at the joints. 

3.2 Derivation of Recursive Algorithm 

In this subsection, we will develop a recursive algo- 
rithm by separately analyzing the inertial effects of the 
block diagonal matrices, and of the block off- 
diagonal matrices, (i # j ) ,  of A;' in Equation 

Each block diagonal matrix, A;:,.', is the inertia 
matrix that would occur if link i is the only leaf link 
with an end-effector. 

can be computed 
using a trivial extension of the Force Propagation 
Method, an O(n) recursive algorithm to compute the 

(16). 

With this physical insight, 

6 x 6 inverse operational space inertia matrix of a sin- 
gle open-chain mechanism defined as [8, 4, 51: 

ni = Si  Ka' ST + fiLT a h i  ?'L (22) 

where link i is the only child link of its parent link hi 
and nToot = 0. 

Using the relationships from (10) and (20), the 
Force Propagation Method (22) can be extended im- 
mediately for a branching robot by replacing Sti  with 
ni,i. This extension enables the outward recursion to 
pass through all children instead of a single child: 

ni,i = Si Ki' ST ?'LT n h i , h i  ?'L (23) 

where hi is the parent link of link i. Note that this 
recursion starts from the root link with n T o O t , r O O t  = 0 
and ends at the leaf links with end-effectors. 

Then, the block diagonal matrices, A & ,  can be 
computed by transforming n,,i of leaf links i using 
Equation (21). 

The block off-diagonal matrices, A;!,eJ (i # j ) ,  may 
be regarded as cross-coupling inertias that are a mea- 
sure of the inertia coupling to the i th end-effector from 
the force of the j t h  end-effector via the nearest com- 
mon ancestor of leaf links i and j. A nearest common 
ancestor of links i and j is the first common link in two 
paths: one from link i to the root link and the other 
from link j to the root link. For example, in Figure 
1, link h is the nearest common ancestor of leaf links 
i and j. 

From this physical property of block off-diagonal 
matrices, we can conceptually view A;:,eJ as an iner- 
tial quantity which propagates the spatial forces from 
the j t h  end-effector to link h (the nearest common an- 
cestor of leaf links i and j )  and then propagates the 
resulting spatial accelerations of link h to the i th  end- 
effector. 

With this conceptual view, we will develop a recur- 
sive algorithm to compute Ai:,e, by finding the prop- 
agation of the spatial force from the j t h  end-effector 
to link h and the propagation of the resulting spatial 
acceleration from link h to the i th end-effector. Then, 
A;!,eJ can be computed by relating the resulting spa- 
tial acceleration of link h to the propagated spatial 
force from the j t h  end-effector. 

First, using Equations (4), (5), and (7), we can 
propagate the force fe, at the j t h  end-effector to any 
of its ancestor h: 

hL* = [;*L] 3 
k 

(25) 
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where link k is the descendent links of link h in the 
path from link h to link j and link h k  is the parent 
link of link IC. :L* results a compound propagation of 
the spatial force from link j to link h [5]. 

Similarly, using (3), (6), (8), and (25), the spatial 
acceleration xh of link h can be propagated to the 
end-effector of any of its descendant leaf link i: 

Now, combining Equations (20), (24), and (26), we 
can relate ?e, and fe, as: 

%e, = L, XT FL*T a h , h  tL* :, X fe, (27) 

Then, from Equations (19), (20), (21), and (27), we 
can derive for the block off-diagonal matrices: 

where h is the nearest common ancestor of leaf links 
i and j. Note that the recursive version of Equation 
(28) is presented in Table 1 (step 4). 

As for the block diagonal matrices, the block off- 
diagonal matrices, A&, (i # j), can be computed by 
transforming ai,] of leaf links i and j to the corre- 
sponding tips using Equation (21). 

Finally, we can compute the extended operational 
space inertia matrix, A,, by inverting A;' in Equa- 
tion (16). Table l summarizes the recursive algorithm 
developed in this section. 

Note that although most processing occurs along 
the path from the root link to the leaf links with end- 
effectors, the effects of the other links enter through 
the articulated-body inertias (9) of the links in the 
path. 

Figure 4 illustrates the recursion processes of the 
proposed algorithm for the branching robot shown in 
Figure 1. Arrows indicate the direction of the recur- 
sion. Also, there is no computation required among 
the nodes connected by dotted lines. 

(a) step 1 (b) step 2 (c) step 3 (d) step 4 

Figure 4: Recursion processes of steps in Table 1: (a) 
outward recursion for Fax, (b) inward recursion for 
FIL, (c) outward recursion for a%,%, and (d) outward 
recursion for a%,j (i # j). 

1. 

2. 

3. 

4. 

5. 

6. 

~~ ~~ ___ 

Table 1: Recursive algorithm for A,. 

Outward Recursion: Compute the spatial trans- 
formation matrices: 

Inward Recursion: Compute the force propagators: 

,h,L=,h,X [ l s - s S , 3 1 ] T  (7) 

Outward Recursion: Compute the block diagonal 
matrices starting with nroot,root = 0: 

nt,, = SI K,' ST + ;'LT n h , , h ,  ,h'L (23) 

Outward Recursion: Compute the block off- 
diagonal matrices with nearest common ancestor h 
of links i and J :  

return if i = j = h 
nl,3 = ,hlLT y z h ,  else if j = h (28) { nl,hj  j ) L  otherwise 

Spatial Transformation: Compute A&, from 
n,,J of leaf links with end-effectors: 

Ait,eJ = :t xT nt,j ;J x (21) 

Matrix Inversion: Compute the extended opera- 
tional space inertia matrix, &, by inverting A,' (16). 

3.3 Computational Complexity 

This section presents the computational complex- 
ity of the proposed algorithm for an n-link branching 
mechanism with m operational points. Note that m 
can be considered as a small constant for any realistic 
robotic mechanism; m = O(1). 

From Table 1, steps 1 and 2 can be computed in 
O(n) since there are n links in the system. Also, 
since step 3 requires one outward recursion involving 
at most n links, all a%,% can be computed in O(n).  In 
step 4, since there are at most n links to propagate for 
each of 9 ai,j (i # j), all ai,j can be computed 
in O(m2n). Spatial transformations of block 
matrices cost O(m2)  in step 5. In step 6, an inversion 
of Ai1 (6m x 6m) requires O(m3).  Therefore, with 
m = O(1), the overall running time of the proposed 
algorithm is O(n). 

Thus, as the number of links in a mechanism in- 
creases, the proposed algorithm performs significantly 
better than the existing symbolic method [9] which 
still requires O(n3)  inversion operations for A-' (13) . 
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4 Experimental Results 

Using the proposed algorithm, we were able to per- 
form the computation of the extended operational 
space inertia matrix for a complex branching robotic 
mechanism (Figure 2) in less than 1 msec using a P C  
with a 266 MHz Pentium I1 running under the QNX 
real-time operating system. This branching robot has 
an operational point at each of its 2 end-effectors and 
24 links connected by 1 degree-of-freedom joints. 

This result implies that the proposed algorithm en- 
ables highly redundant robotic mechanisms such as 
a human-like robotic mechanism with multiple opera- 
tional points to be efficiently controlled at  a high servo 
rate in a low-cost hardware environment. 

In order to show the effectiveness of the proposed 
algorithm, we also have controlled this robot under the 
extended operational space formulation [9] using the 
proposed algorithm. In the real-time dynamic simula- 
tion environment developed in our laboratory, we have 
achieved a servo rate of 300 Hz with the setup above. 

Figure 5 shows the motion sequence when this robot 
was commanded to put the box on the floor while be- 
ing advised to keep its self-posture the same as the ini- 
tial configuration. Notice that the robot had to adjust 
its advised self-posture in the null space without pro- 
ducing any coupling acceleration at both end-effectors 
in order not to violate the primary task. This was done 
automatically without any additional commands. 

5 Conclusion 

We have proposed an efficient recursive algorithm 
for the extended operational space inertia matrix of an 
n-link branching (tree-like) redundant robotic mech- 
anism with m operational points. Since m can be 
considered as a small constant in practice, we obtain 
the linear running time of O(n) for this algorithm. 

Therefore, as the complexity of a robotic mecha- 
nism increases, the proposed algorithm performs sig- 
nificantly better than the traditional 0(n3)  symbolic 
method. The real-time simulation results with a com- 
plex redundant robotic mechanism (n = 24, m = 2) 
illustrate the efficiency of this algorithm. 
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Figure 5: Sequence of putting a box on the floor. 

References 

[l] R. Featherstone. Robot Dynamics Algorithms. 
Kluwer Academic Publishers, 1987. 

[2] 0. Khatib. A uniiied approach to motion and force 
control of robot manipulators: The operational 
space formulation. IEEE Journal of Robotics and 
Automation, RA-3( 1):43-53, February 1987. 

[3] 0. Khatib. The impact of redundancy on the dy- 
namic performance of robots. Laboratory Robotics 
and Automation, 8~37-48, 1996. 

[4] K. Kreutz-Delgado, A. Jain, and G. Rodriguez. 
Recursive formulation of operational space con- 
trol. In Proceedings of IEEE International Con- 
ference on Robotics and Automation, pages 1750- 
1753, April 1991. 

[5] K. W. Lilly. Eficient Dynamic Simulation of 
Robotic Mechanisms. Kluwer Academic Publish- 
ers, 1992. 

[6] K. W. Lilly and D. E. Orin. Efficient O(n) recur- 
sive computation of the operational space inertia 
matrix. IEEE 13-ansactions on Systems, Man, and 
Cybernetics, 23( 5) : 1384-1391, September/October 
1993. 

Impulse-based Dynamic Simula- 
tion of Rigid Body Systems. PhD thesis, Univer- 
sity of California at Berkeley, Berkeley, California, 
U S A . ,  Fall 1996. 

[8] G. Rodriguez, K. Kreutz, and A. Jain. A spa- 
tial operator algebra for manipulator modeling and 
control. In Proceedings of IEEE International Con- 
ference on Robotics and Automation, pages 1374- 
1379, May 1989. 

[9] J. Russakow, 0. Khatib, and S. M. Rock. Ex- 
tended operational space formulation for serial- 
to-parallel chain (branching) manipulators. In 
Proceedings of IEEE International Conference 
on Robotics and Automation, pages 1056-1061, 
Nagoya, Japan, May 1995. 

[7] B. V. Mirtich. 

355 


