
Proceedings of the 2000 IEEE
lntemational Conference on Robotics 8 Automation

San Francisco, CA April 2000

Operational Space Dynamics: Efficient Algorithms for
Modeling and Control of Branching Mechanisms

Kyong-Sok Chang Oussama Khatib

Robotics Laboratory, Computer Science Department

{kcchang, khatib}Qcs.stanford.edu
Stanford University, Stanford, CA 94305, U.S.A.

Abstract

This paper discusses intuitive and eficient ways to
model and control the dynamics of highly redundant
branching mechanisms using the operational space for-
mulation. As the complexity of mechanisms increases,
their modeling and control become increasingly d i f i -
cult. The operational space formulation provides a
natural framework for these problems since its basic
structure provides dynamic decoupling among multiple
tasks and posture behavior. Eficient recursive algo-
rithms are presented for the computation of the oper-
ational space dynamics of branching mechanisms with
multiple operational points. The application of these
algorithms results in a significant increase in the in-
teractivity and usability of dynamic control of complex-
branching mechanisms. The experimental results are
presented using real-time dynamic simulation.

1 Introduction

With advances in computational and mechanical hard-
ware technology, a growing body of interest has
emerged in the area of real-time dynamic simulation
and control of branching mechanisms - systems of tree-
like topology (Figure 1) such as a humanoid robot
(Figure 2). Application of such interest requires fast
algorithms to provide intuitive, systematic, and effi-
cient ways to model and control the dynamics of these
complex systems.

Figure 1: Branching robot with tree-like topology

The operational space formulation [6, 141 is an ap-
proach for dynamic modeling and control of a com-
plex branching redundant mechanism at its task or
end-effector level. This formulation is particularly
useful for dealing with simultaneous tasks involving
multiple end-effectors since its basic structure pro-
vides dynamic decoupling among the end-effectors'
tasks (task behavior) and the complex internal dynam-
ics in their associated null space (posture behavior).
As an example, a humanoid robot can be controlled
by directly specifying tasks evolving its feet, hands,
and head while using the associated null space to
achieve some desired posture behavior, e.g. balancing.
This paper presents efficient re-
cursive algorithms, using the
operational space formulation,
to model and solve, at the
task/posture level, the dy-
namics problems of highly re-
dundant articulated branching
mechanisms (n links) with mul-
tiple (m) operational points.
Task/posture behavior model-
ing under the operational space Figure 2: Robot
formulation and a new computationally optimized o p
erational space control structure are developed to pro-
vide dynamically accounted operational and null space
control vectors in section 2. Section 3 introduces
a modified spatial notation to model complex robot
kinematics and dynamics in an intuitive and system-
atic way. Using these control structure and notation,
efficient recursive algorithms are presented in section
4. These algorithms provide dynamic control of intu-
itive task-level commands and posture behavior and
achieve the overall complexity of O (n m + m3). Since
m is a small constant in practice, these algorithms
significantly increase the interactivity and usability of
dynamic control of complex branching mechanisms.
Finally, real-time simulation results with a humanoid
robot (n = 24, m = 2) in Figure 2 are presented.

850 0-7803-5886-4/00/$10.00@ 2000 IEEE

http://khatib}Qcs.stanford.edu

2 Operational Space Formulation

The operational space formulation [6, 141 provides dy-
namic modeling and control directly in the operational
space by projecting the joint space dynamics into the
operational space and its associated null space. The
general joint space dynamic equations of motion for an
n-link N-degree-of-freedom open-chain robotic mech-
anism with m operational points may be written in
the following form [15]:

A q + b + g = r (1)

where r is the N x 1 total control torque, q is the
N x 1 joint acceleration vector, A is the N x N joint
space inertia matrix, b is the N x 1 joint space Coriolis
and centrifugal force vector, and g is the N x 1 joint
space gravitational force vector.
The generalized torque/force relationship [6, 141 pro-
vides the decomposition of the total control torque, r
in Equation (1) into two dynamically decoupled con-
trol torque vectors: the torque corresponding to the
task behavior command vector and the torque that
only affects posture behavior in the null space:

7 = r t a s k + r p o s t u r e

Notice that this decomposition provides a natural
framework for modeling and control of task/posture
behavior of complex branching mechanisms.

(2)

2.1 Task Behavior

T t a s k in Equation (2) is the torque corresponding to
the computed task behavior command vector, f,, act-
ing in the operational space:

r t a s k = JT fe (3)

where f, is a 6 m x 1 vertically concatenated vector of
the 6 x 1 force of each of m end-effectors and J, is the
6 m x N vertically concatenated matrix of the 6 x N
Jacobian matrix of each of m end-effectors:

f, =

Since dynamic control of the task behavior in the oper-
ational space is desired, f, can be computed using the
operational space (task behavior) command vector for
a linearized unit-mass system, a,, and the dynamics
obtained by projecting the joint space dynamics into
its operational space:

where the operational space inertia matrix, A,, is an
6 m x 6 m symmetric positive definite matrix [6, 141:

A;' = J, A-' JT

and pe and p, are the operational space gravitational
force and Coriolis and centrifugal force vectors, respec-
tively and defined as:

(7)

where the bias acceleration vector, he, is the product
of the absolute derivative of the Jacobian matrix and
the N x 1 joint velocity vector, q. 3, is the dynamically
consistent generalized inverse of the Jacobian matrix
Je (4) and has been proven to be unique [6, 141:

(8)
-T J, = A, J, A-'

2.2 Posture Behavior

T t o s k in Equation (2) is the torque that only affects
posture behavior in the null space given any arbitrary
null space (posture behavior) command vector, mull:

(9) T
r p o s t u r e = N e rnu11

where Ne is the dynamically consistent null space pro-
jection matrix that maps mull to the appropriate con-
trol torque:

where IN is an N x N identity matrix.
Dynamic consistency is the essential property for task
behavior to maintain its responsiveness and to be dy-
namically decoupled from posture behavior since it
guarantees not to produce any coupling acceleration
in the operational space given any r n U 1 1 . In Figure 3,
the robot was commanded to keep the position of both
hands constant (task behavior) while rocking its torso
back and forth in the null space (posture behavior).
Notice that dynamic consistency enables task behav-
ior and posture behavior to be specified independently
of each other, providing an intuitive control of complex

N, = lN -5, J, (10)

systems.

Figure 3: Posture behavior

851

2.3 Optimized Control Structure

The most (computationally) expensive terms in the
operational space control structure (2) are the ones
involving the explicit 0(n3) inversion operations of the
joint space inertia matrix, A. Therefore, eliminating
the explicit usage of A-' is an essential requirement
for the real-time efficiency.
In this subsection, a new computationally optimized
operational space control structure is developed by
completely eliminating the explicit computation of the
joint space inertia matrix and its inverse. This elimi-
nation can be achieved by the combination of the dy-
namically accounted task/posture behavior command
vectors, resulting in a dynamic control structure opti-
mized for the computational requirement.
As in the case of the dynamic control in the opera-
tional space, since dynamic control in the null space is
desired, the posture behavior command vector, TnU11,

should account for the dynamic effects by inertial,
Coriolis, centrifugal, and gravitational forces, result-
ing the computed posture behavior command vector:

where q n u l r is the null space (posture behavior) com-
mand vector for a linearized unit-mass system.
Combining Equations (2), (5) , (7), (lo), and (l l) , the
total control torque can be decomposed into two con-
trol torques: one with the terms related to A, and the
other with the terms related to A:

r = JT f[+ mull (12)
f[= ne (a e - he - Je Gnu11) (13)

This control structure reveals physical insight about
the dynamic consistency of the null space projection
matrix: the extra accelerations in the operational
space generated by the dynamic coupling effect of the
computed posture behavior command vector, Tnull,

are being offset by Je qnUu in Equation (13).
It should be emphasized that the posture behavior
command vector for a linearized unit-mass system,
qn,,ll in Equations (11) and (13), is not guaranteed
to be achieved since not all null space motion is pos-
sible without affecting the motion of the operational
space points. Instead, this control structure provides
the closest solution to achieve q n u l l without generating
any coupling acceleration effect in the task behavior
in its operational space while minimizing the instan-
taneous kinetic energy in the system. This behavior
is an example of the dynamic consistency.
Given the task and posture behavior command vec-
tors, a, and q n u l l , the unknown quantities in Equa-
tions (12) and (13) are Je, he, A,, and r n U 1 1 . Section

4 presents efficient recursive algorithms to compute
these quantities. The next section introduces the nc-
tation used to derive these algorithms to produce the
total control torque, r in Equation (12).

3 Spatial Notation and Quantities

3.1 Spatial Notation

Spataal notation has been widely used in the model-
ing of kinematics and dynamics of complex robotic
mechanisms [4, 13, 8, 9, 10, 121. The modified spa-
tial notation and quantities developed in this section
combines various versions of existing spatial notations
and conventional vector notations [5, 3, 71 in order to
utilize the results from various researchers in a unified
way. In this modified spatial notation, each quantity
incorporates the appropriate linear (placed in upper
or upper-left corners) and angular (placed in lower or
lower-right corners) components and results in a con-
cise form (6 x 1 vector or 6 x 6 matrix).
For example, a spatial velocity, vi, and a spatial force,
fi, of link i are defined as:

v i = [:] and fi = [2]
where vi, wi, fi, and Ni, are 3 x 1 linear velocity, an-
gular velocity, force, and moment vectors expressed in
frame i, respectively. Also, the spatial inertia matrix
of link i in frame ci, I,;, is a 6 x 6 symmetric positive
definite matrix and defined as:

where l3 is a 3 x 3 identity matrix, mi is the mass of
link i, and Ici is the 3 x 3 inertia tensor matrix of link
i in frame ci. The origin of frame ci is located at the
center of mass of link i shown in Figure 4.

1 sh sit . frame i

joint h

Figure 4: Basic notation

Note that, in Figure 4, the origin of each link frame is
located at the joint and any variable without the refer-
ence frame number (front superscript) is expressed in
its own frame. Also, if link i is a leaf (outermost) link,
end-effector frame ei is located at the tip (operational
point) of link i (see Figure 1).

852

The general joint model, Si, is a 6 x ni matrix with
full column rank, ni, when joint i has ni degrees of
freedom (ni 5 6) [4, 91. Its columns (unit vectors)
make up a basis for the motion space of joint i. Notice
that this matrix is constant since it is expressed in
its own frame. For example, if joint i is a prismatic
joint along y-axis and joint j is a spherical joint, their
corresponding general joint models are:

S i = [O 1 0 0 0 0 l T and S j = [O 1 3 1

The 6 x 6 spatial transformation matrix, :X, trans-
forms a spatial quantity from frame i to frame h:

T

h

where FR is the 3 x 3 rotation matrix and hrj is the
cross-product operator (3 x 3 skew-symmetric matrix)
associated with %i, the 3 x 1 position vector from the
origin of frame h to the origin of frame i expressed in
frame h shown in Figure 4.
For example, by spatially transforming Ici (14) from
frame ci to frame i, the 6 x 6 spatial inertia matrix of
link i in frame i can be computed as:

I, = L , X I ~ , rixT (16)

where Ii is a symmetric positive definite matrix since
Equation (16) encapsulates the spatial counterpart of
the similarity transformation and the parallel axis the-
orem [5, 31 for &,.

3.2 Spatial Quantities

The spatial velocity of link i is can be recursively com-
puted in terms of the spatial velocity of its parent link
and its joint velocity:

vi = lXT v h + si q i , (Vroot = 0) (17)

Similarly, the spatial acceleration can be recursively
computed in terms of the spatial acceleration of its
parent link, its joint acceleration, and the cross-
product of velocity vectors:

a, = fXTah + sicji + ci , (aroot = 0) (18)
wi xvi - ?XT (Wh XVh) + vi x si Qi (19) ca =

where wi is the spatial angular velocity of link i,
wi = [0 UT] and X is the spatial analogue of the
cross-product operator. The spatial cross-product op-
erator associated with a spatial vector d = [uT bTIT
is defined as:

T

d X = [;] x = [g ;]

The articulated-body inertia matrix of link h, If, re-
lates the spatial force and acceleration of a link, taking
into account the dynamics of the rest of the articulated
body [4, 13, 91 and defined as:

1; = Ih + [fLI4 fLT] , (I& = I h f) (20)
i

where Ih is the spatial inertia matrix (16) of link h
and i represents the index of each child link of link h.
The force propagator, FL, propagates a spatial force
from link i to its parent link h across the actuated
joint i in a dynamically consistent manner [9] similar
to the null space projection matrix, Ne in Equation
(10) and defined as:

(21)
T ; L = f x [16-sjsi]

- si = D;' S? 14 , D~ = ST 14 si
where 1 6 is a 6 x 6 identity matrix, si is the dynam-
ically consistent generalized inverse of Si weighted by
the corresponding inertia matrix similar to 3, in Equa-
tion (8), and Di is the ni x ni full rank matrix project-
ing If onto the motion space of joint i with n, degrees
of freedom.

4 Efficient Recursive Algorithms

This section describes efficient recursive algorithms for
the computation of the operational space dynamics
of n-link branching mechanisms with m operational
points. These algorithms are for the computations
of J,, he, A,, and r,,[1 from the computationally
optimized control structure (12) presented in section
2.3. The proposed algorithms are shown to be of
O(nm + m3) overall complexity.

4.1 Jacobian Matrix

The 6 x N Jacobian matrix, J,, relates the N x 1 joint
velocity vector, q, to the spatial velocity of link i:

vi = Jiq (22)

Using the spatial transformation matrix, the recursive
equation (17) of the spatial velocity can be converted
to a summation form:

vi = [S x ' s k q k] (23)
k

where k is the indices of the links in the path from
link i to the root link. Then, from Equations (22) and
(23), Ji can be written as:

Ji = [. . . J ~ . - . I (24)

(25)
fXT s k

Jk = { o otherwise
if k is an ancestor of i

853

Now, since the spatial velocity of the operational point
associated with the leaf link i is vei = LiXTvi, its
associated Jacobian matrix can be written as:

Jei 6,XT Ji

4.2 Bias Acceleration Vector

Using Equations (7) and (22), the 6 x 1 bias accelera-
tion vector, hi of link i can be given as:

d
" d t ' (26) h . - - (J) . q = ai - J i q

An efficient method is to compute hi recursively with-
out using the absolute derivative of the Jacobian ma-
trix explicitly. The recursive equation of the spatial
acceleration (18) can be converted to a summation
form:

where k is the indices of the links in the path from link
i to the root link. Then, from Equations (24), (25),
(26) and (27), hi can be written as:

where k is the indices of the links in the path from
link i to the root link. The corresponding recursive
equation is:

hi=?X*hh+Ci , (hroot=O) (28)

Now, since the spatial acceleration of the operational
point associated with the leaf link i is a,; = 6,XT ai,
its associated he, can be written as:

hei = i i X T hi

4.3 Operational Space Inertia Matrix

The inverse of the operational space inertia matrix,
Ai', relates the forces at the end-effectors to the ac-
celerations at the end-effectors:

a, = A;' f, (29)

Note that since A, is a function of configuration only
(6), q = 0 can be assumed for the analysis of A, with-
out loss of generality. Also, since A;' is symmetric, it
can be expressed in terms of its 6 x 6 block matrix
components as:

Ai:,,,, A;',,,,,,

A;' =

In this subsection, we will briefly discuss the O(nm +
m3) recursive algorithm to compute A, presented in
[2]. This algorithm was developed by separately an-
alyzing the inertial effects of the block diagonal ma-
trices, Ai:,,,, and of the block off-diagonal matrices,
A::,,, (i # j) , in Equation (30).
Since A,:,,, is the inertial quantity that would oc-
cur if link i is the only leaf link with an end-effector,
A,:,,, can be computed using an extension of the Force
Propagation Method, an O(n) recursive algorithm to
compute the 6 x 6 inverse operational space inertia
matrix of a single serial-chain mechanism [13, 8, 91.
A,:,,, (i # j) may be regarded as cross-coupling iner-
tial quantities that are a measure of the inertia cou-
pling to the ith end-effector from the force of the j t h
end-effector via the nearest common ancestor' of leaf
links i and j . From this physical property, we can com-
pute A,:,,, as an inertial quantity which propagates
the spatial forces from the j t h end-effector to link h
(the nearest common ancestor of leaf links i and j) and
then propagates the resulting spatial accelerations of
link h to the ith end-effector.
Table 1 summarize this efficient O(nm+m3) algorithm
to recursively compute the operational space inertia
matrix A, for branching robotic mechanisms without
any explicit computation of A-' [2]. Note that al-
though most processing occurs along the paths from
the root link to the leaf links with end-effectors, the
effects of the other links enter through the articulated-
body inertias (see Equation (20)) of the links in the
paths.
Figure 5 illustrates the recursion processes in Table 1
for the branching robot shown in Figure 1. Arrows
indicate the direction of the recursion. Also, there is
no computation required among the nodes connected
by dotted lines.

m
0

(a) step I (b) step 2 (c) step 3 (d) step 4

Figure 5: Recursion processes of steps in Table 1: (a)
outward recursion for :;X, (b) inward recursion for
?;L, (c) outward recursion for S2i,i , and (d) outward
recursion for ni,j (i # j)

'The nearest common ancestor of links i and j is the first
common link in two paths; one from link i to the root link and
the other from link j to the root link. For example, in Figure
1, link h is the nearest common ancestor of leaf links i and j .

854

Table 1: O(mn + m 3) recursive algorithm for A,.

1.

2.

3.

4.

5.

6 .

Outward Recursion: Compute hi X
Inward Recursion: Compute hiL (21)

Outward Recursion: Compute the block diagonal
matrices starting with i22root,root = 0:

(15)

$-ti,; = Si D;' ST + ?'LT i2hi,hi hiL

Outward Recursion: Compute the block off-
diagonal matrices with nearest common ancestor h
of links i and j :

return if i = j = h
 hi^^ :!hi else if j = h b o i , h j j f L otherwise

ai, =

Spatial Transformation: Compute A&,, from
0i.j of leaf links with end-effectors:

Alf,,, = :iXTS&,j{jX

Matrix Inversion: Compute the extended opera-
tional space inertia matrix, A,, by inverting A;' (30).

4.4 Recursive Newton-Euler Method

Computing rn,,ll in Equation (l l) , is the classical joint
space inverse dynamics problem that can be solved by
the O(n) recursive Newton-Euler method [ll, 41, the
most efficient currently known general method for cal-
culating joint space inverse dynamics. Table 2 summa-
rizes the O(n) recursive Newton-Euler method using
the modified spatial notation presented in section 3.

4.5 Computational Complexity

The Jacobian matrix in section 4.1, can be computed
in O(nm) since each of m Jei requires one inward re-
cursion involving at most n links and the complexity
of a recursion step between a child and its parent links
is O(1). In section 4.2, since all hi can be computed in
O(n) using the recursive equation (28) which requires
only one outward recursion, he can be computed in
O(n). For the computation of the operational inertia
matrix, A,, an efficient O(nm + m3) algorithm from
[2] is used in section 4.3. Also, since the recursive
Newton-Euler method in section 4.4 takes O(n) , Tnull

in equation (11) can be computed in O(n).
Therefore, using the algorithms presented in this sec-
tion, J,, A,, he, and Tn~61 can be computed in
O(nm + m3). Then, the total control torque vector, r
in Equation (12) requires O(nm + m3) computational
complexity using the optimized dynamic control struc-

Table 2: O(n) recursive Newton-Euler method

1. Given: The joint space command vector (&) and the

2. Outward Recursion: Compute the spatial net force
external force (fEeZt)

and gravitational force:

f:et = t r X f y t = rZa, +pr

pz = :,x (u c , X L * vc,) - I , (u , X v *)

3. Inward Recursion: Compute the spatial total force
and joint force:

ture (12) presented in section 2.3. Note that since m
can be considered as a small constant, m = O(l), for
any realistic robotic mechanism in practice, we obtain
the linear running time of O(n) for this algorithm.
Thus, as the number of links in a mechanism increases,
the proposed algorithm performs significantly better
than the existing symbolic method [14] which still re-
quires O(n3) inversion operations of A-' in Equations
(6) and (8).

5 Experimental Results

Using the proposed algorithms, we were able to per-
form the computation of the operational space dynam-
ics for the branching robotic mechanism in Figure 2 in
less than 1.2 msec using a PC with a 266 MHz Pentium
I1 running under the QNX real-time operating system.
This branching robot has an operational point at each
of its 2 end-effectors and 24 links connected by one-
degree-of-freedom joints.
This result implies that the proposed algorithms
enable highly redundant articulated robotic mecha-
nisms such as a humanoid mechanism with multi-
ple operational points to be controlled directly at the
task/posture level with a high servo rate in a low-cost
hardware environment while providing dynamic de-
coupling among the end-effectors' task behavior and
the complex internal posture behavior dynamics in the
associated null space, resulting intuitive task/posture
behavior specifications for users.
In order to show the effectiveness of the proposed al-
gorithms, we also have controlled this robot under the
operational space formulation using the proposed algo-
rithms. In the real-time dynamic simulation environ-
ment developed in our laboratory [l], we have achieved

855

a servo rate of 300 Hz for dynamic control and simu-
lation of this robot with the setup above.
Figure 6 shows the motion sequence when this robot
was commanded to touch the floor with its left end-
effector and maintain the position and orientation of
its right end-effector constant. In addition, the robot
was being advised to keep its posture the same as the
initial configuration. Notice that the robot had to
adjust its advised posture behavior in the null space
without producing any coupling acceleration at both
end-effectors in order not to violate the task behavior.
This was done automatically without any additional
commands.

Figure 6: Motion Sequence

6 Conclusion

We have presented efficient recursive algorithms, using
the operational space formulation, to model and solve,
at the task/posture behavior level, the dynamics prob-
lems of highly redundant articulated branching mech-
anisms (n links) with multiple (m) operational points.
A computationally optimized operational space con-
trol structure is developed to provide dynamically ac-
counted operational space and null space command
vectors, while eliminating any explicit computation
of joint space inertia matrix and its inverse. Using
this control structure, efficient recursive algorithms
are presented in order to provide dynamic control of
intuitive task-level commands and posture behavior.
The proposed algorithms achieve the overall complex-
ity of O(nm + m3). Since m is a small constant in
practice, the application of these algorithms results in
a significant increase in the interactivity and usabil-
ity of dynamic control of complex branching mecha-
nisms. The real-time simulation results with a hu-
manoid robot (n = 24, m = 2) illustrate the efficiency
of these algorithms for intuitive task/posture behavior
control.

Acknowledgments

Many thanks to Oliver Brock, Herman Bruyninckx,
Robert Holmberg, Oscar Madrigal, Diego Ruspini,
and H.F. Machiel Van der Loos for their comments and
support during the preparation of this manuscript.

References

[l] K.-S. Chang. Robotics Library. Computer Science
Robotics Laboratory, Stanford University, Stanford,
California, U.S.A., 2nd edition, 1998. A dynamic con-
trol and simulation library.

[2] K.-S. Chang and 0. Khatib. Efficient algorithm for
extended operational space inertia matrix. In Proceed-
ings of IEEE/RSJ Internatzonal Conference on Intel-
ligent Robots and Systems, volume 1, pages 350-355,
Kyongju, Korea, October 1999.

[3] J. J. Craig. Introduction to Robotics. Addison-Wesley
Publishing Company, second edition, 1989.

[4] R. Featherstone. Robot Dynamics Algorithms. Kluwer
Academic Publishers, 1987.

[5] D. T. Greenwood. Principles of Dynamics. Prentice-
Hall Inc., second edition, 1988.

[6] 0. Khatib. A unified approach to motion and force
control of robot manipulators: The operational space
formulation. ZEEE Journal of Robotics and Automa-
tion, RA-3(1):43-53, February 1987.

[7] 0. Khatib. The impact of redundancy on the dynamic
performance of robots. Laboratory Robotics and Au-
tomation, 8:37-48, 1996.

[8] K. Kreutz-Delgado, A. Jain, and G. Rodriguez. Re-
cursive formulation of operational space control. In
Proceedings of ZEEE International Conference on
Robotics and Automation, pages 1750-1753, April
1991.

[9] K. W. Lilly. Eficient Dynamic Simulation of Robotic
Mechanisms. Kluwer Academic Publishers, 1992.

[lo] K. W. Lilly and D. E. Orin. Efficient O(n) recursive
computation of the operational space inertia matrix.
ZEEE Transactions on Systems, Man, and Cybernet-
ics, 23(5):1384-1391, September/October 1993.

[ll] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. On-
line computational scheme for mechanical manipula-
tors. Transactions of A S M E Journal of Dynamic Sys-
tems, Measurement, and Control, 102(2):69-76, June
1980.

[12] B. V. Mirtich. Impulse-based Dynamic Simulation of
Rigid Body Systems. PhD thesis, University of Cal-
ifornia at Berkeley, Berkeley, California, U.S.A., De-
cember 1996.

A spatial
operator algebra for manipulator modeling and con-
trol. In Proceedings of I E E E International Conference
o n Robotics and Automation, pages 1374-1379, May
1989.

[14] J. Russakow, 0. Khatib, and S. M. Rock. Ex-
tended operational space formulation for serial-to-
parallel chain (branching) manipulators. In Proceed-
ings of I E E E International Conference o n Robotics
and Automation, pages 1056-1061, Nagoya, Japan,
May 1995.

[15] M. W. Walker and D. E. Orin. Efficient dynamic com-
puter simulation of robotic mechanisms. Transactions
of A S M E Journal of Dynamic Systems, Measurement,
and Control, 104(3):205-211, September 1982.

[13] G . Rodriguez, K. Kreutz, and A. Jain.

856

