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Abstract 

This paper discusses intuitive and eficient ways to 
model and control the dynamics of highly redundant 
branching mechanisms using the operational space for- 
mulation. As the complexity of mechanisms increases, 
their modeling and control become increasingly d i f i -  
cult. The operational space formulation provides a 
natural framework for these problems since its basic 
structure provides dynamic decoupling among multiple 
tasks and posture behavior. Eficient recursive algo- 
rithms are presented for the computation of the oper- 
ational space dynamics of branching mechanisms with 
multiple operational points. The application of these 
algorithms results in a significant increase in the in- 
teractivity and usability of dynamic control of complex- 
branching mechanisms. The experimental results are 
presented using real-time dynamic simulation. 

1 Introduction 

With advances in computational and mechanical hard- 
ware technology, a growing body of interest has 
emerged in the area of real-time dynamic simulation 
and control of branching mechanisms - systems of tree- 
like topology (Figure 1) such as a humanoid robot 
(Figure 2). Application of such interest requires fast 
algorithms to provide intuitive, systematic, and effi- 
cient ways to model and control the dynamics of these 
complex systems. 

Figure 1: Branching robot with tree-like topology 

The operational space formulation [6, 141 is an ap- 
proach for dynamic modeling and control of a com- 
plex branching redundant mechanism at its task or 
end-effector level. This formulation is particularly 
useful for dealing with simultaneous tasks involving 
multiple end-effectors since its basic structure pro- 
vides dynamic decoupling among the end-effectors' 
tasks (task behavior) and the complex internal dynam- 
ics in their associated null space (posture behavior). 
As an example, a humanoid robot can be controlled 
by directly specifying tasks evolving its feet, hands, 
and head while using the associated null space to 
achieve some desired posture behavior, e.g. balancing. 
This paper presents efficient re- 
cursive algorithms, using the 
operational space formulation, 
to model and solve, at the 
task/posture level, the dy- 
namics problems of highly re- 
dundant articulated branching 
mechanisms (n links) with mul- 
tiple (m) operational points. 
Task/posture behavior model- 
ing under the operational space Figure 2: Robot 
formulation and a new computationally optimized o p  
erational space control structure are developed to pro- 
vide dynamically accounted operational and null space 
control vectors in section 2. Section 3 introduces 
a modified spatial notation to model complex robot 
kinematics and dynamics in an intuitive and system- 
atic way. Using these control structure and notation, 
efficient recursive algorithms are presented in section 
4. These algorithms provide dynamic control of intu- 
itive task-level commands and posture behavior and 
achieve the overall complexity of O ( n m  + m3).  Since 
m is a small constant in practice, these algorithms 
significantly increase the interactivity and usability of 
dynamic control of complex branching mechanisms. 
Finally, real-time simulation results with a humanoid 
robot (n = 24, m = 2) in Figure 2 are presented. 
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2 Operational Space Formulation 

The operational space formulation [6, 141 provides dy- 
namic modeling and control directly in the operational 
space by projecting the joint space dynamics into the 
operational space and its associated null space. The 
general joint space dynamic equations of motion for an 
n-link N-degree-of-freedom open-chain robotic mech- 
anism with m operational points may be written in 
the following form [15]: 

A q +  b + g  = r (1) 

where r is the N x 1 total control torque, q is the 
N x 1 joint acceleration vector, A is the N x N joint 
space inertia matrix, b is the N x 1 joint space Coriolis 
and centrifugal force vector, and g is the N x 1 joint 
space gravitational force vector. 
The generalized torque/force relationship [6, 141 pro- 
vides the decomposition of the total control torque, r 
in Equation (1) into two dynamically decoupled con- 
trol torque vectors: the torque corresponding to the 
task behavior command vector and the torque that 
only affects posture behavior in the null space: 

7 = r t a s k  + r p o s t u r e  

Notice that this decomposition provides a natural 
framework for modeling and control of task/posture 
behavior of complex branching mechanisms. 

(2) 

2.1 Task Behavior 

T t a s k  in Equation (2) is the torque corresponding to 
the computed task behavior command vector, f,, act- 
ing in the operational space: 

r t a s k  = JT fe (3) 

where f, is a 6 m  x 1 vertically concatenated vector of 
the 6 x 1 force of each of m end-effectors and J, is the 
6 m  x N vertically concatenated matrix of the 6 x N 
Jacobian matrix of each of m end-effectors: 

f, = 

Since dynamic control of the task behavior in the oper- 
ational space is desired, f, can be computed using the 
operational space (task behavior) command vector for 
a linearized unit-mass system, a,, and the dynamics 
obtained by projecting the joint space dynamics into 
its operational space: 

where the operational space inertia matrix, A,, is an 
6 m  x 6 m  symmetric positive definite matrix [6, 141: 

A;' = J, A-' JT 

and pe and p, are the operational space gravitational 
force and Coriolis and centrifugal force vectors, respec- 
tively and defined as: 

(7) 

where the bias acceleration vector, he, is the product 
of the absolute derivative of the Jacobian matrix and 
the N x 1 joint velocity vector, q. 3, is the dynamically 
consistent generalized inverse of the Jacobian matrix 
Je (4) and has been proven to be unique [6, 141: 

(8) 
-T J, = A, J, A-' 

2.2 Posture Behavior 

T t o s k  in Equation (2) is the torque that only affects 
posture behavior in the null space given any arbitrary 
null space (posture behavior) command vector, mull: 

(9) T 
r p o s t u r e  = N e  rnu11 

where Ne is the dynamically consistent null space pro- 
jection matrix that maps mull to the appropriate con- 
trol torque: 

where IN is an N x N identity matrix. 
Dynamic consistency is the essential property for task 
behavior to maintain its responsiveness and to be dy- 
namically decoupled from posture behavior since it 
guarantees not to produce any coupling acceleration 
in the operational space given any r n U 1 1 .  In Figure 3, 
the robot was commanded to keep the position of both 
hands constant (task behavior) while rocking its torso 
back and forth in the null space (posture behavior). 
Notice that dynamic consistency enables task behav- 
ior and posture behavior to be specified independently 
of each other, providing an intuitive control of complex 

N, = lN  -5, J, (10) 

systems. 

Figure 3: Posture behavior 
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2.3 Optimized Control Structure 

The most (computationally) expensive terms in the 
operational space control structure (2) are the ones 
involving the explicit 0(n3) inversion operations of the 
joint space inertia matrix, A. Therefore, eliminating 
the explicit usage of A-' is an essential requirement 
for the real-time efficiency. 
In this subsection, a new computationally optimized 
operational space control structure is developed by 
completely eliminating the explicit computation of the 
joint space inertia matrix and its inverse. This elimi- 
nation can be achieved by the combination of the dy- 
namically accounted task/posture behavior command 
vectors, resulting in a dynamic control structure opti- 
mized for the computational requirement. 
As in the case of the dynamic control in the opera- 
tional space, since dynamic control in the null space is 
desired, the posture behavior command vector, TnU11, 

should account for the dynamic effects by inertial, 
Coriolis, centrifugal, and gravitational forces, result- 
ing the computed posture behavior command vector: 

where q n u l r  is the null space (posture behavior) com- 
mand vector for a linearized unit-mass system. 
Combining Equations (2), ( 5 ) ,  (7), (lo),  and ( l l ) ,  the 
total control torque can be decomposed into two con- 
trol torques: one with the terms related to A, and the 
other with the terms related to A: 

r = JT f[ + mull (12) 
f[ = ne ( a e  - he - Je Gnu11 ) (13) 

This control structure reveals physical insight about 
the dynamic consistency of the null space projection 
matrix: the extra accelerations in the operational 
space generated by the dynamic coupling effect of the 
computed posture behavior command vector, Tnull, 

are being offset by Je qnUu in Equation (13). 
It should be emphasized that the posture behavior 
command vector for a linearized unit-mass system, 
qn,,ll in Equations (11) and (13), is not guaranteed 
to be achieved since not all null space motion is pos- 
sible without affecting the motion of the operational 
space points. Instead, this control structure provides 
the closest solution to achieve q n u l l  without generating 
any coupling acceleration effect in the task behavior 
in its operational space while minimizing the instan- 
taneous kinetic energy in the system. This behavior 
is an example of the dynamic consistency. 
Given the task and posture behavior command vec- 
tors, a, and q n u l l ,  the unknown quantities in Equa- 
tions (12) and (13) are Je, he, A,, and r n U 1 1 .  Section 

4 presents efficient recursive algorithms to compute 
these quantities. The next section introduces the nc- 
tation used to derive these algorithms to produce the 
total control torque, r in Equation (12). 

3 Spatial Notation and Quantities 

3.1 Spatial Notation 

Spataal notation has been widely used in the model- 
ing of kinematics and dynamics of complex robotic 
mechanisms [4, 13, 8, 9, 10, 121. The modified spa- 
tial notation and quantities developed in this section 
combines various versions of existing spatial notations 
and conventional vector notations [5,  3, 71 in order to 
utilize the results from various researchers in a unified 
way. In this modified spatial notation, each quantity 
incorporates the appropriate linear (placed in upper 
or upper-left corners) and angular (placed in lower or 
lower-right corners) components and results in a con- 
cise form (6 x 1 vector or 6 x 6 matrix). 
For example, a spatial velocity, vi, and a spatial force, 
fi, of link i are defined as: 

v i = [  :] and fi = [ 2 ] 
where vi, wi, fi, and Ni, are 3 x 1 linear velocity, an- 
gular velocity, force, and moment vectors expressed in 
frame i, respectively. Also, the spatial inertia matrix 
of link i in frame ci, I,;, is a 6 x 6 symmetric positive 
definite matrix and defined as: 

where l3 is a 3 x 3 identity matrix, mi is the mass of 
link i, and Ici is the 3 x 3 inertia tensor matrix of link 
i in frame ci. The origin of frame ci is located at the 
center of mass of link i shown in Figure 4. 

1 sh sit . frame i 

joint h 

Figure 4: Basic notation 

Note that, in Figure 4, the origin of each link frame is 
located at the joint and any variable without the refer- 
ence frame number (front superscript) is expressed in 
its own frame. Also, if link i is a leaf (outermost) link, 
end-effector frame ei is located at the tip (operational 
point) of link i (see Figure 1). 
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The general joint model, Si, is a 6 x ni matrix with 
full column rank, ni, when joint i has ni degrees of 
freedom (ni 5 6) [4, 91. Its columns (unit vectors) 
make up a basis for the motion space of joint i. Notice 
that this matrix is constant since it is expressed in 
its own frame. For example, if joint i is a prismatic 
joint along y-axis and joint j is a spherical joint, their 
corresponding general joint models are: 

S i = [ O  1 0 0 0 0 l T  and S j = [ O  1 3 1  

The 6 x 6 spatial transformation matrix, :X, trans- 
forms a spatial quantity from frame i to frame h: 

T 

h 

where FR is the 3 x 3 rotation matrix and hrj is the 
cross-product operator (3 x 3 skew-symmetric matrix) 
associated with %i, the 3 x 1 position vector from the 
origin of frame h to the origin of frame i expressed in 
frame h shown in Figure 4. 
For example, by spatially transforming Ici (14) from 
frame ci to frame i, the 6 x 6 spatial inertia matrix of 
link i in frame i can be computed as: 

I, = L , X I ~ ,  rixT (16) 

where Ii is a symmetric positive definite matrix since 
Equation (16) encapsulates the spatial counterpart of 
the similarity transformation and the parallel axis the- 
orem [5, 31 for &,. 

3.2 Spatial Quantities 

The spatial velocity of link i is can be recursively com- 
puted in terms of the spatial velocity of its parent link 
and its joint velocity: 

vi = lXT v h  + si q i  , (Vroot = 0 )  (17) 

Similarly, the spatial acceleration can be recursively 
computed in terms of the spatial acceleration of its 
parent link, its joint acceleration, and the cross- 
product of velocity vectors: 

a, = fXTah + sicji + ci , (aroot = 0 )  (18) 
wi xvi - ?XT (Wh XVh) + vi x si Qi (19) ca = 

where wi is the spatial angular velocity of link i, 
wi = [ 0 UT ] and X is the spatial analogue of the 
cross-product operator. The spatial cross-product op- 
erator associated with a spatial vector d = [ uT bTIT 
is defined as: 

T 

d X =  [ ; ] x =  [ g ;] 

The articulated-body inertia matrix of link h, If, re- 
lates the spatial force and acceleration of a link, taking 
into account the dynamics of the rest of the articulated 
body [4, 13, 91 and defined as: 

1; = Ih + [ fLI4 fLT]  , (I& = I h f  ) (20) 
i 

where Ih is the spatial inertia matrix (16) of link h 
and i represents the index of each child link of link h. 
The force propagator, FL, propagates a spatial force 
from link i to its parent link h across the actuated 
joint i in a dynamically consistent manner [9] similar 
to the null space projection matrix, Ne in Equation 
(10) and defined as: 

(21) 
T ; L = f x  [16-sjsi] 

- si = D;' S? 14 , D~ = ST 14 si 
where 1 6  is a 6 x 6 identity matrix, si is the dynam- 
ically consistent generalized inverse of Si weighted by 
the corresponding inertia matrix similar to 3, in Equa- 
tion (8), and Di is the ni x ni full rank matrix project- 
ing If onto the motion space of joint i with n, degrees 
of freedom. 

4 Efficient Recursive Algorithms 

This section describes efficient recursive algorithms for 
the computation of the operational space dynamics 
of n-link branching mechanisms with m operational 
points. These algorithms are for the computations 
of J,, he, A,, and r,,[1 from the computationally 
optimized control structure (12) presented in section 
2.3. The proposed algorithms are shown to be of 
O(nm + m3) overall complexity. 

4.1 Jacobian Matrix 

The 6 x N Jacobian matrix, J,, relates the N x 1 joint 
velocity vector, q, to the spatial velocity of link i: 

vi = Jiq  (22) 

Using the spatial transformation matrix, the recursive 
equation (17) of the spatial velocity can be converted 
to a summation form: 

vi = [ S x ' s k q k ]  (23) 
k 

where k is the indices of the links in the path from 
link i to the root link. Then, from Equations (22) and 
(23), Ji can be written as: 

Ji = [ . . . J ~  . - . I  (24) 

(25) 
fXT s k  

Jk = { o  otherwise 
if k is an ancestor of i 
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Now, since the spatial velocity of the operational point 
associated with the leaf link i is vei = LiXTvi, its 
associated Jacobian matrix can be written as: 

Jei 6,XT Ji 

4.2 Bias Acceleration Vector 

Using Equations (7) and (22), the 6 x 1 bias accelera- 
tion vector, hi of link i can be given as: 

d 
" d t  ' (26) h .  - - ( J ) .  q = ai - J i q  

An efficient method is to compute hi recursively with- 
out using the absolute derivative of the Jacobian ma- 
trix explicitly. The recursive equation of the spatial 
acceleration (18) can be converted to a summation 
form: 

where k is the indices of the links in the path from link 
i to the root link. Then, from Equations (24), (25), 
(26) and (27), hi can be written as: 

where k is the indices of the links in the path from 
link i to the root link. The corresponding recursive 
equation is: 

hi=?X*hh+Ci ,  (hroot=O) (28) 

Now, since the spatial acceleration of the operational 
point associated with the leaf link i is a,; = 6,XT ai, 
its associated he, can be written as: 

hei = i i X T  hi 

4.3 Operational Space Inertia Matrix 

The inverse of the operational space inertia matrix, 
Ai', relates the forces at the end-effectors to the ac- 
celerations at the end-effectors: 

a, = A;' f, (29) 

Note that since A, is a function of configuration only 
(6), q = 0 can be assumed for the analysis of A, with- 
out loss of generality. Also, since A;' is symmetric, it 
can be expressed in terms of its 6 x 6 block matrix 
components as: 

Ai:,,,, A;',,,,,, 

A;' = 

In this subsection, we will briefly discuss the O(nm + 
m3) recursive algorithm to compute A, presented in 
[2]. This algorithm was developed by separately an- 
alyzing the inertial effects of the block diagonal ma- 
trices, Ai:,,,, and of the block off-diagonal matrices, 
A::,,, (i # j ) ,  in Equation (30). 
Since A,:,,, is the inertial quantity that would oc- 
cur if link i is the only leaf link with an end-effector, 
A,:,,, can be computed using an extension of the Force 
Propagation Method, an O(n)  recursive algorithm to 
compute the 6 x 6 inverse operational space inertia 
matrix of a single serial-chain mechanism [13, 8, 91. 
A,:,,, (i # j) may be regarded as cross-coupling iner- 
tial quantities that are a measure of the inertia cou- 
pling to the ith end-effector from the force of the j t h  
end-effector via the nearest common ancestor' of leaf 
links i and j .  From this physical property, we can com- 
pute A,:,,, as an inertial quantity which propagates 
the spatial forces from the j t h  end-effector to link h 
(the nearest common ancestor of leaf links i and j )  and 
then propagates the resulting spatial accelerations of 
link h to the ith end-effector. 
Table 1 summarize this efficient O(nm+m3) algorithm 
to recursively compute the operational space inertia 
matrix A, for branching robotic mechanisms without 
any explicit computation of A-' [2]. Note that al- 
though most processing occurs along the paths from 
the root link to the leaf links with end-effectors, the 
effects of the other links enter through the articulated- 
body inertias (see Equation (20)) of the links in the 
paths. 
Figure 5 illustrates the recursion processes in Table 1 
for the branching robot shown in Figure 1. Arrows 
indicate the direction of the recursion. Also, there is 
no computation required among the nodes connected 
by dotted lines. 

m 
0 

(a) step I (b) step 2 (c) step 3 (d) step 4 

Figure 5:  Recursion processes of steps in Table 1: (a) 
outward recursion for :;X, (b) inward recursion for 
?;L, (c) outward recursion for S2i,i ,  and (d) outward 
recursion for ni,j (i # j )  

'The nearest common ancestor of links i and j is the first 
common link in two paths; one from link i to the root link and 
the other from link j to the root link. For example, in Figure 
1, link h is the nearest common ancestor of leaf links i and j .  
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Table 1: O(mn + m 3 )  recursive algorithm for A,. 

1. 

2. 

3. 

4. 

5.  

6 .  

Outward Recursion: Compute hi  X 
Inward Recursion: Compute hiL (21) 

Outward Recursion: Compute the block diagonal 
matrices starting with i22root,root = 0: 

(15) 

$-ti,; = Si D;' ST + ?'LT i2hi,hi hiL 

Outward Recursion: Compute the block off- 
diagonal matrices with nearest common ancestor h 
of links i and j :  

return if i = j = h 
 hi^^ :!hi else if j = h b o i , h j  j f L  otherwise 

ai, = 

Spatial Transformation: Compute A&,, from 
0i.j  of leaf links with end-effectors: 

Alf,,, = :iXTS&,j{jX 

Matrix Inversion: Compute the extended opera- 
tional space inertia matrix, A,, by inverting A;' (30). 

4.4 Recursive Newton-Euler Method 

Computing rn,,ll in Equation ( l l ) ,  is the classical joint 
space inverse dynamics problem that can be solved by 
the O(n) recursive Newton-Euler method [ll, 41, the 
most efficient currently known general method for cal- 
culating joint space inverse dynamics. Table 2 summa- 
rizes the O(n) recursive Newton-Euler method using 
the modified spatial notation presented in section 3. 

4.5 Computational Complexity 

The Jacobian matrix in section 4.1, can be computed 
in O(nm) since each of m Jei requires one inward re- 
cursion involving at most n links and the complexity 
of a recursion step between a child and its parent links 
is O(1). In section 4.2, since all hi can be computed in 
O(n) using the recursive equation (28) which requires 
only one outward recursion, he can be computed in 
O(n).  For the computation of the operational inertia 
matrix, A,, an efficient O(nm + m3) algorithm from 
[2] is used in section 4.3. Also, since the recursive 
Newton-Euler method in section 4.4 takes O(n) ,  Tnull 

in equation (11) can be computed in O(n).  
Therefore, using the algorithms presented in this sec- 
tion, J,, A,, he, and Tn~61 can be computed in 
O(nm + m3).  Then, the total control torque vector, r 
in Equation (12) requires O(nm + m3) computational 
complexity using the optimized dynamic control struc- 

Table 2: O(n)  recursive Newton-Euler method 

1. Given: The joint space command vector (&) and the 

2. Outward Recursion: Compute the spatial net force 
external force (fEeZt) 

and gravitational force: 

f:et = t r X f y t  = rZa, +pr 

pz = :,x ( u c ,  X L *  vc,) - I ,  ( u , X v * )  

3. Inward Recursion: Compute the spatial total force 
and joint force: 

ture (12) presented in section 2.3. Note that since m 
can be considered as a small constant, m = O( l),  for 
any realistic robotic mechanism in practice, we obtain 
the linear running time of O(n)  for this algorithm. 
Thus, as the number of links in a mechanism increases, 
the proposed algorithm performs significantly better 
than the existing symbolic method [14] which still re- 
quires O(n3) inversion operations of A-' in Equations 
(6) and (8). 

5 Experimental Results 

Using the proposed algorithms, we were able to per- 
form the computation of the operational space dynam- 
ics for the branching robotic mechanism in Figure 2 in 
less than 1.2 msec using a PC with a 266 MHz Pentium 
I1 running under the QNX real-time operating system. 
This branching robot has an operational point at each 
of its 2 end-effectors and 24 links connected by one- 
degree-of-freedom joints. 
This result implies that the proposed algorithms 
enable highly redundant articulated robotic mecha- 
nisms such as a humanoid mechanism with multi- 
ple operational points to be controlled directly at the 
task/posture level with a high servo rate in a low-cost 
hardware environment while providing dynamic de- 
coupling among the end-effectors' task behavior and 
the complex internal posture behavior dynamics in the 
associated null space, resulting intuitive task/posture 
behavior specifications for users. 
In order to show the effectiveness of the proposed al- 
gorithms, we also have controlled this robot under the 
operational space formulation using the proposed algo- 
rithms. In the real-time dynamic simulation environ- 
ment developed in our laboratory [l], we have achieved 
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a servo rate of 300 Hz for dynamic control and simu- 
lation of this robot with the setup above. 
Figure 6 shows the motion sequence when this robot 
was commanded to touch the floor with its left end- 
effector and maintain the position and orientation of 
its right end-effector constant. In addition, the robot 
was being advised to keep its posture the same as the 
initial configuration. Notice that the robot had to  
adjust its advised posture behavior in the null space 
without producing any coupling acceleration at both 
end-effectors in order not to  violate the task behavior. 
This was done automatically without any additional 
commands. 

Figure 6: Motion Sequence 

6 Conclusion 

We have presented efficient recursive algorithms, using 
the operational space formulation, to  model and solve, 
at the task/posture behavior level, the dynamics prob- 
lems of highly redundant articulated branching mech- 
anisms (n links) with multiple (m) operational points. 
A computationally optimized operational space con- 
trol structure is developed to provide dynamically ac- 
counted operational space and null space command 
vectors, while eliminating any explicit computation 
of joint space inertia matrix and its inverse. Using 
this control structure, efficient recursive algorithms 
are presented in order to provide dynamic control of 
intuitive task-level commands and posture behavior. 
The proposed algorithms achieve the overall complex- 
ity of O(nm + m3). Since m is a small constant in 
practice, the application of these algorithms results in 
a significant increase in the interactivity and usabil- 
ity of dynamic control of complex branching mecha- 
nisms. The real-time simulation results with a hu- 
manoid robot (n = 24, m = 2) illustrate the efficiency 
of these algorithms for intuitive task/posture behavior 
control. 
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