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Chapter 1. Introduction 
 

1.1. Overview of FEBio 
FEBio is an implicit, nonlinear finite element solver that is specifically designed for 
applications in biomechanics. It offers modeling scenarios, constitutive models and 
boundary conditions that are relevant for this particular field. This section describes the 
available features of FEBio. All these features can be used together seamlessly, giving 
the user a powerful tool for solving 3D computational problems in biomechanics. 
 
FEBio supports two analysis types, namely quasi-static and quasi-static poroelastic. In a 
quasi-static analysis the (quasi-) static response of the system is sought; inertial terms are 
ignored. In a quasi-static poroelastic analysis a coupled solid-fluid problem is solved. 
The latter analysis type is useful for modeling tissues that have high water content and 
the explicit modeling of fluid movement relative to the solid phase is important.  
 
Several nonlinear constitutive models are available which allows the user to model the 
often complicated biological tissue behavior. Several isotropic constitutive models are 
supported such as Neo-Hookean, Mooney-Rivlin and Veronda-Westmann. These models 
have a nonlinear stress-strain response. A linear elastic model is also available for small 
strain scenarios and validation. In addition to the isotropic models there are several 
transversely isotropic models available. These materials show anisotropic behavior in a 
single preferred direction and are useful for modeling biological tissues such as tendons, 
muscles and other tissues that contain fibers. FEBio also contains a rigid body material 
model, which can be used to model rigid structures whose deformation is negligible 
compared to the deformable geometry. 
 
Biological tissues can interact in very complicated ways. Therefore FEBio supports a 
wide range of boundary conditions to model these interactions. These include prescribed 
displacements, nodal forces, and pressure forces. Deformable models can also be 
connected to rigid bodies so that the user can also model prescribed rotations and torques. 
Rigid bodies can also be connected with joints. Even more complicated interactions can 
be modeled using sliding interfaces. A sliding surface is defined between two surfaces 
that are allowed to separate and slide across each other but are not allowed to penetrate. 
In addition the user may specify a body force which can be used to model the effects of, 
for instance, gravity or base acceleration. 
 

1.2. About this document 
This document is a part of a set of three manuals that accompany FEBio: the User’s 
Manual, describing how to use FEBio, the Developer’s Manual for users who which to 
modify or add features to the code, and the Theory Manual (this manual), which 
describes the theory behind most of the FEBio algorithms.  
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The purpose of this manual is to provide theoretical background on many of the 
algorithms that are implemented in FEBio. In this way the user can develop a better 
understanding of how the program works and how it can be used to create well defined 
biomechanical simulations. The authors have tried to be as detailed as possible to make 
the text coherent and comprehensible, but due to the complexity of some of the topics, 
some descriptions only skim the surface. Many of the theoretical ideas discussed in this 
manual can and have filled entire bookshelves. The explanations contained herein should 
be sufficient to give the reader a basic understanding of the theoretical developments. 
References to textbooks and the primary literature are provided for further reading.  
 
Chapter 2 starts with a brief overview of some of the important concepts in continuum 
mechanics. Readers who are already familiar with this field can skip this chapter, 
although the material may be useful to get familiar with the notation and terminology 
used in this manual.  
 
Chapter 3 describes the nonlinear finite element method.  It also explains the Newton-
Raphson method, which is the basis for most implementations of the nonlinear finite 
element method. A more specialized version of this algorithm, the BFGS method, is 
described as well since it is used in FEBio. 
 
In Chapter 4 the different element models that are available in FEBio are described in 
detail. FEBio currently supports 3D solid elements, such as the linear hexahedral, 
pentahedral and tetrahedral elements, as well as shell elements, such as a quadrilateral 
and triangular element. Note that currently the shell elements can only be used with rigid 
materials.  
 
Chapter 5 contains a detailed description of the material models in FEBio. Most of these 
models are based on hyperelasticity which is introduced in chapter 2. Several transversely 
isotropic materials are described as well. In this chapter we also discuss the biphasic 
material and its implementation in FEBio. 
 
Chapter 6 describes the basics of the theory of contact and coupling. In FEBio the user 
can connect the different parts of the geometry in a variety of ways. There are rigid 
interfaces where a deformable model is attached to a rigid model, rigid joints where two 
or more rigid bodies connect, and sliding interfaces where two surfaces are allowed to 
separate and slide across each other but are not allowed to penetrate. The various contact 
and coupling algorithms are discussed as well together with their implementation in 
FEBio. 
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Chapter 2. Continuum Mechanics 
This chapter contains an overview of some of the important concepts from continuum 
mechanics and establishes some of the notation and terminology that will be used in the 
rest of this document. The section begins by introducing the important concepts of 
deformation, stress and strain. Next the concept of hyperelasticity is discussed. Finally 
the concept of virtual work is discussed.  This concept will be used later to derive the 
nonlinear finite element equations. 
 

2.1. Vectors and Tensors 
It is assumed that the reader is familiar with the concepts of vectors and tensors. This 
section summarizes the notation and some useful relations that will be used throughout 
the manual. 
 
Vectors are denoted by small, bold letters, e.g. v. Their components will be denoted by 

, where, unless otherwise stated, Latin under scripts such as i or I will range from 1 to 
3. In matrix form a vector will be represented as a column vector and its transpose as a 
row vector: 

iv

 . (2.1) (
1

2 1 2

3

, , ,T

v
v v v
v

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎝ ⎠

v v )3v

The following products are defined between vectors. Assume u, v are vectors. Also note 
that we use the Einstein summation convention throughout this manual.  
 
The dot or scalar product: 
 i ju v⋅ =u v . (2.2) 
The vector or cross product: 

 
2 3 3 2

3 1 1 3

1 2 2 1

u v u v
u v u v
u v u v

−⎡ ⎤
⎢ ⎥× = −⎢ ⎥
⎢ ⎥−⎣ ⎦

u v . (2.3) 

The outer product: 
 ( ) i jij

u v⊗ =u v . (2.4) 

Note that vectors are also known as first order tensors. Scalars are known as zero order 
tensors. 
 
Second order tensors are denoted by bold, capital letters, e.g. A. Some exceptions will be 
made to remain consistent with the current literature. For instance, the Cauchy stress 
tensor is denoted by σ . However, the nature of the objects will always be clear from the 
context. The following operations on tensors are defined. Assume A and B are second-
order tensors.  
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The double contraction, or tensor inner product is defined as: 
 : ij ijA B=A B . (2.5) 
The trace is defined as: 
 tr iiA=A . (2.6) 
In general the components of tensors will change under a change of coordinate system. 
Nevertheless, certain intrinsic quantities associated with them will remain invariant under 
such a transformation. The scalar product between two vectors is such an example. The 
double contraction between two second-order tensors is another example. The following 
set of invariants for second-order tensors is commonly used. 

 ( )(
1

2 2
2

3

tr
1 tr tr
2
det

I

I

I

)
=

= −

=

A

A A

A

 (2.7) 

Higher order tensors will be denoted by bold, capital, curly symbols, e.g. A . An 
example of a third-order tensor is the permutation tensor E , whose components are 1 for 
an even permutation of ( , -1 for an odd permutation of )1,2,3 ( )1,2,3 and zero otherwise. 
An example of a fourth order tensor is the elasticity tensor  which, in linear elasticity 
theory, relates the small strain tensor and the Cauchy stress tensor . 

C
ε :=σ εC

 
In the implementation of the FE method it is often convenient to write symmetric second-
order tensors using Voigt notation. In this notation the components of a 2nd order tensor A 
will be represented and stored as a column vector: 

 [ ]

11

22

33

12

23

13

A
A
A
A
A
A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A . (2.8) 

 

2.2. The Directional Derivative 
In later sections the nonlinear finite element method will be formulated. Anticipating an 
iterative solution method, it will be necessary to linearize the quantities involved. This 
linearization process will utilize a construction called the directional derivative [2] which 
we shall introduce briefly here. 
 
The directional derivative of a function ( )f x  is defined as follows. 

 ( )[ ] (
0

dDf f
d ε

)ε
ε =

=x u x u+  (2.9) 
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The quantity x may be a scalar, a vector or even a vector of unknown functions. For 
instance, consider a scalar function ( )f x , where x is the position vector in . In this 
case the directional derivative is given by, 

3\

 

 

( ) ( )
0

i
i

dDf f
d

f u
x
f

ε

ε
ε =

= +

∂
=
∂

= ∇ ⋅

x x

u

u

 (2.10) 

Here, the symbol ∇ (“del”) depicts the familiar gradient operator. 
 
The linearization of a function implies that it is approximated by a linear function. Using 
the directional derivative a function f can be linearized as follows, 

 ( ) ( ) ( )[ ]f f Df+ ≅ +x u x x u .   (2.11) 
 

2.3. Deformation, Strain and Stress 

2.3.1. The deformation gradient tensor 
Consider the deformation of an object when it moves from the initial or reference 
configuration to the current configuration. The location of the material particles in the 
reference configuration are denoted by X and are known as the material coordinates. 
Their location in the current configuration is denoted by x and known as the spatial 
coordinates. The deformation map ϕ , which is a mapping from to , maps the 
coordinates of a material point to the spatial configuration: 

3\ 3\

 ( )ϕ=x X . (2.12) 
 

 
Figure 2-1. The deformation map 

.  X

ϕ  

.
( )ϕ=x X

 

 
The displacement map u is defined as the difference between the spatial and material 
coordinates: 
 ( )= +x X u X . (2.13) 
The deformation gradient tensor is defined as 
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 ϕ∂
=
∂

F
X

. (2.14) 

This tensor relates an infinitesimal vector in the reference configuration dX to the 
corresponding vector in the current configuration: 
 d d= ⋅x F X . (2.15) 
The determinant of the deformation tensor detJ = F  gives the volume change, or 
equivalently the change in density: 
 0 Jρ ρ= . (2.16) 
Here 0ρ is the density in the reference configuration and ρ is the current density. 
 
When dealing with incompressible and nearly incompressible materials it will prove 
useful to separate the volumetric and the deviatoric (distortional) components of the 
deformation gradient. Such a separation must ensure that the deviatoric component, 
namely , does not produce any change in volume. Noting that the determinant of the 
deformation gradient gives the volume ratio, the determinant of  must therefore satisfy, 

F�
F�

 det 1=F� . (2.17) 
This condition can be achieved by choosing as, F�
 . (2.18) 1/ 3J −=F� F

2.3.2. Strain 
The right Cauchy-Green deformation tensor is defined as follows: 
 . (2.19) T=C F F
This tensor is an example of a material tensor and is a function of the material 
coordinates X.  The left Cauchy-Green deformation tensor is defined as follows: 
 T=B FF . (2.20) 
This tensor is an example of a spatial tensor and is a function of the spatial coordinates x. 
The implementation of the updated Lagrangian finite element method used by FEBio is 
described in the spatial configuration. 
 
The left and right deformation tensors can also be split into volumetric and deviatoric 
components. With the use of (2.18), the deviatoric deformation tensors are: 

 . (2.21) 
2/3

2/3

T

T

J
J

−

−

= =

= =

� � �
� � �
C F F C
B FF B

The deformation tensors defined above are not good candidates for strain measures since 
in the absence of strain they become the unity tensor I ( )( )ijij

δ=I . However, they can be 

used to define strain measures. The Green-Lagrange strain tensor is defined as: 

 (1
2

)= −E C I . (2.22) 

This tensor is a material tensor. Its spatial equivalent is known as the Almansi strain 
tensor and is defined as: 

 ( 11
2

−= −e I B ) . (2.23) 
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In the limit of small displacement gradients, the components of both strain tensors are 
identical, resulting in the small strain tensor or infinitesimal strain tensor: 

 1
2

T⎛ ⎞∂ ∂⎛ ⎞= +⎜ ⎜ ⎟⎜ ∂ ∂⎝ ⎠⎝ ⎠

u uε
x x

⎟⎟ . (2.24) 

Note that the small strain tensor is also the linearization of the Green Lagrange strain, 
 [ ] TD =E u F εF  (2.25) 
 

2.3.3. Stress 
The traction t on a plane bisecting the body is given by, 
 = ⋅t σ n , (2.26) 
where is the Cauchy stress tensor and n is the outer unit normal vector to the plane. It 
can be shown that by the conservation of angular momentum that this tensor is symmetric 
(

σ

jiijσ σ= ) [1]. The Cauchy stress tensor, a spatial tensor, is the actual physical stress, that 
is, the force per unit deformed area. To simplify the equations of continuum mechanics, 
especially when working in the material configuration, several other stress measures are 
available. The Kirchhoff stress tensor is defined as 
 J=τ σ . (2.27) 
The first Piola-Kirchhoff stress tensor is given as 
 TJ −=P σF . (2.28) 
Note that P, like F, is unsymmetric. Also, like F, P is known as a two-point tensor, 
meaning it is neither a material nor a spatial tensor. Since we have two strain tensors, one 
spatial and one material tensor, it would be nice to have similar stress measures. The 
Cauchy stress is a spatial tensor and the second Piola-Kirchhoff (2nd PK) stress tensor, 
given as 
 1 TJ − −=S F σF , (2.29) 
is a material tensor.  The inverse relations are: 

 1 1 1, ,T

J J J
= = =σ τ σ PF σ FSFT . (2.30) 

In many practical applications it is physically relevant to separate the hydrostatic stress 
and the deviatoric stress  of the Cauchy stress tensor. �σ
 p= +�σ σ I  (2.31) 

Here, the pressure is defined as 1 tr
3

p = σ . Note that the deviatoric Cauchy stress tensor 

satisfies . tr 0=�σ
 
In the linearization of the finite element equations the directional derivative of the 2nd PK 
stress tensor needs to be calculated. Using the chain rule, a linear relationship between 
the directional derivative of S and the linearized strain [ ]DE u can be obtained. 

 [ ] [ ]:D D=S u E uC�  (2.32) 
Here, C is a fourth-order tensor known as the material elasticity tensor. Its components 
are given by, 
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24IJ

IJKL
KL IJ

S
E C C
∂

KL

∂ Ψ
= =
∂ ∂ ∂

C  (2.33) 

The spatial equivalent – the spatial elasticity tensor – can be obtained by, 

 1
ijkl iI jJ kK lL IJKLF F F F

J
= Cc . (2.34) 

2.4. Hyperelasticity 
When the constitutive behavior is only a function of the current state of deformation, the 
material is elastic. In the special case when the work done by the stresses during a 
deformation is only dependent on the initial state and the final state, the material is 
termed hyperelastic and its behavior is path-independent. As a consequence of the path-
independence a strain energy function per unit undeformed volume can be defined as the 
work done by the stresses from the initial to the final configuration: 

 . (2.35) ( )( ) ( )( )
0

, ,
t

t

dtΨ = ∫ �F X X P F X X F:

The rate of change of the potential is then given by, 
 ( )( ),Ψ =F X X P F� : �  (2.36) 
Or alternatively, 

 
3

, 1
iJ iJ

i J iJ

P
F=

∂Ψ
=

∂∑ �F  (2.37) 

Comparing (2.36) with (2.37) reveals that 

 ( )( ) ( )( ),
,

∂Ψ
=

∂

F X X
P F X X

F
. (2.38) 

This general constitutive equation can be further developed by observing that, as a 
consequence of the objectivity requirement, Ψ may only depend on F through the stretch 
tensor U and must be independent on the rotation component R. For convenience, 

however, is often expressed as a function of . Noting that Ψ 2 T= =C U F F 1
2

=C E� �  is 

work conjugate to the second Piola-Kirchhoff stress S, establishes the following general 
relationships for hyperelastic materials: 

 ( )( )1: : , , 2
2

∂Ψ ∂Ψ ∂Ψ
Ψ = = = =

∂ ∂
C S C S C X X

C C
� ��

∂E
. (2.39) 

 

2.4.1. Isotropic Hyperelasticity 
The hyperelastic constitutive equations discussed so far are unrestricted in their 
application. Isotropic material symmetry is defined by requiring the constitutive behavior 
to be independent of the material axis chosen and, consequently, Ψ  must only be a 
function of the invariants of C, 
 ( )( ) ( )1 2 3, , ,I I IΨ = ΨC X X X,  (2.40) 
where the invariants of C are defined here as, 
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 ( )
1

2 2
2

2
3

tr :
1 tr tr
2
det

I

I

I J

= =

⎡ ⎤= −⎣ ⎦

= =

C C I

C C

C

 (2.41) 

As a result of the isotropic restriction, the second Piola-Kirchhoff stress tensor can be 
written as, 

 31 2

1 2 3

2 2 2 2 II I
I I I

∂∂ ∂∂Ψ ∂Ψ ∂Ψ ∂Ψ
= = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
S

C C C C
 (2.42) 

The second order tensors formed by the derivatives of the invariants with respect to C 
can be evaluated as follows, 

 

1

2
1

13
3

I

I I

I I −

∂
=

∂
∂

= −
∂
∂

=
∂

I
C

I C
C

C
C

 (2.43) 

Introducing expressions (2.43) into equation (2.42) enables the second Piola-Kirchhoff 
stress to be evaluated as, 
 ( ) ( ){ } 2

1 1 2 2 3 2 1 3 32 )I I I= Ψ + Ψ + Ψ − Ψ + Ψ +ΨS I C C  (2.44) 

where 1/I IΨ = ∂Ψ ∂ , 2 2/ IΨ = ∂Ψ ∂ , and 3 3/ IΨ = ∂Ψ ∂ . 
 
The Cauchy stresses can now be obtained indirectly from the second Piola-Kirchhoff 
stresses by using (2.30). 
 ( ) ( ){ }2

1 1 2 2 3 2 1 3 32 )I I I= Ψ + Ψ + Ψ − Ψ + Ψ +Ψσ B B 3B  (2.45) 

Note that in this equation , , and 1Ψ 2Ψ 3Ψ  still involve derivatives with respect to the 
invariants of C. However, since the invariants of B are identical to those of C, the 
quantities ,  and Ψ ay also be considered to be the derivatives with respect to the 
invariants of B.  

1Ψ 2Ψ 3 m

 

2.4.2. Nearly-Incompressible Hyperelasticity 
A material is considered incompressible if it shows no change in volume, or otherwise 
stated if  holds throughout the entire body. It can be shown [2] that if the material is 
incompressible the hyperelastic constitutive equation becomes, 

1J =

 12 pJ −∂Ψ
= +

∂
S

C

�
C  (2.46) 

where  and p is the hydrostatic pressure. The presence of J may seem 

unnecessary, but retaining J has the advantage that equation 
( )Ψ = Ψ C��

1J =

(2.46) remains valid in the 
nearly incompressible case. Further, in practical terms, a finite element analysis rarely 
enforces  in a pointwise manner, and hence its retention may be important for the 
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evaluation of stresses. The process of defining constitutive equations in the case of nearly 
incompressible hyperelasticity is simplified by adding a volumetric energy component 

 to the distortional component ( )U J ( )Ψ C� , 

 ( ) ( ) ( )U JΨ +C CΨ = �  (2.47) 
The second Piola-Kirchhoff tensor for a material defined by  (2.47) is obtained in the 
standard manner with the help of equation (2.42). 

1

2

2 2

2

dU J
dJ C

pJ −

∂Ψ
=

∂
∂Ψ

= +
∂

∂ ∂
∂Ψ

= +
∂

S
C

C

C
C

�

�

 (2.48)  

where the pressure is defined as 

 dUp
dJ

= . (2.49) 

An example for U that will be used later in the definition of the constitutive models is 

 ( ) ( )21 ln
2

U J Jκ= . (2.50) 

The parameter  will be used later as a penalty factor that will enforce the (nearly-) 
incompressible constraint. However, 

κ
κ  can represent a true material coefficient, namely 

the bulk modulus, for a compressible material that happens to have a hyperelastic strain 
energy function in the form of (2.47). In the case where the dilatational energy is given 
by (2.50) the pressure is 

 ln Jp
J

κ= . (2.51) 

 

2.4.3. Transversely Isotropic Hyperelasticity 
Transverse isotropy can be introduced by adding a vector field representing the material 
preferred direction explicitly into the strain energy [3]. We require that the strain energy 
depends on a unit vector field , which described the local fiber direction in the 
undeformed configuration. When the material undergoes deformation, the vector 

0a
( )0a X  

may be described by a unit vector field ( )( )ϕa X . In general, the fibers will also undergo 
length change. The fiber stretch, λ , can be determined in terms of the deformation 
gradient and the fiber direction in the undeformed configuration, 
 0λ = ⋅a F a . (2.52) 
Also, since a is a unit vector, 
 2 0λ 0= ⋅ ⋅a C a . (2.53) 
The strain energy function for a transversely isotropic material,  is an 

isotropic function of C and 
( 0, ,Ψ C a X)

00 ⊗a a . It can be shown [1] that the following set of 
invariants are sufficient to describe the material fully: 
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 ( )2 2
1 2 3

1tr , tr tr , det
2

2I I I⎡ ⎤= = − = =⎣ ⎦C C C C J
0

, (2.54) 

 . (2.55) 0 0 0 2
4 5,I I= ⋅ ⋅ = ⋅ ⋅a C a a C a

The strain energy function can be written in terms of these invariants such that, 
 ( ) ( ) ( ) ( ) ( ) ( )( )0

1 2 3 4 5, , , , , , , ,I I I I IΨ = ΨC a X C C C C a C a0 0 . (2.56) 

The second Piola-Kirchhoff can now be obtained in the standard manner: 

 
5

1
2 2 i

i i

I
I=

∂Ψ ∂Ψ
= =

∂
∂ ∂ ∂∑S
C C

. (2.57) 

In the transversely isotropic constitutive models described in Chapter 5 it is further 
assumed that the strain energy function can be split into the following terms, 
 ( ) ( ) ( ) ( )0

1 1 2 3 2 4 3 1 2 3 4, , , , ,I I I I I I I IΨ = Ψ + Ψ +ΨC a . (2.58) 

The strain energy function represents the material response of the isotropic ground 
substance matrix, represents the contribution from the fiber family (e.g. collagen), 
and is the contribution from interactions between the fibers and matrix. The form 

1Ψ

2Ψ

3Ψ
(2.58) generalizes many constitutive equations that have been successfully used in the 
past to describe biological soft tissues e.g. [4-6]. While this relation represents a large 
simplification when compared to the general case, it also embodies almost all of the 
material behavior that one would expect from transversely isotropic, large deformation 
matrix-fiber composites.  
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Chapter 3. The Nonlinear FE Method 
This chapter discusses the basic principles of the nonlinear finite element method. The 
chapter begins with a short introduction to the weak formulation and the principle of 
virtual work. Next the important concept of linearization is discussed and applied to the 
principle of virtual work. Finally the Newton-Raphson procedure and its application to 
the non-linear finite element method is described. 

3.1. Weak formulation 
Generally, the finite element formulation is established in terms of a weak form of the 
differential equations under consideration. In the context of solid mechanics this implies 
the use of the virtual work equation: 
 . (3.1) :

v v v

W dv dv daδ δ δ δ
∂

= − ⋅ − ⋅∫ ∫ ∫σ d f v t v 0=

Here, δ v is a virtual velocity and δd is the virtual rate of deformation tensor. This 
equation is known as the spatial virtual work equation since it is formulated using spatial 
quantities only. We can also define the material virtual work equation by expressing the 
principle of virtual work using only material quantities. 
  (3.2) 0 0:

V V V

W dV dV dAδ δ δ δ
∂

= − ⋅ − ⋅∫ ∫ ∫S E f v t v� 0=

fHere, is the body force per unit undeformed volume and 0 J=f ( )0 /da dA=t t is the 
traction vector per unit initial area.   
 

3.1.1. Linearization 
Equation (3.1) is the starting point for the nonlinear finite element method. It is highly 
nonlinear and any method attempting to solve this equation, such as the Newton-Raphson 
method, necessarily has to be iterative. 
 
To linearize the finite element equations, we need to calculate the directional derivative, 
introduced in section 2.2, to the principle of virtual work in equation (3.1). In an iterative 
procedure the quantity φ  will be approximated by a trial solution kφ . The virtual work 
equation linearized around this trial solution gives 
 ( ) ( )[ ], ,k kW D Wδ φ δ δ φ δ 0+ =v v u . (3.3) 
The directional derivative of the virtual work will eventually lead to the definition of the 
stiffness matrix. In order to proceed it is convenient to split the virtual work into an 
internal and external virtual work component.  
 ( )[ ] ( )[ ] ( )[ ]int ext, ,D W D W D Wδ φ δ δ φ δ δ φ δ= −v u v u v u, , (3.4) 
where, 
 ( )int , :

v

Wδ φ δ δ= ∫v σ ddv , (3.5) 

and 
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 . (3.6) ( )ext ,
v v

W dvδ ϕ δ δ δ
∂

= ⋅ + ⋅∫ ∫v f v t vda

The result is listed here without details of the derivation – see [2] for details.  The 
linearization of the internal virtual work is given by 
 ( )[ ] ( )int , : : : T

v v

D W dv dvδ φ δ δ ε δ⎡ ⎤= + ∇ ∇⎣ ⎦∫ ∫v u d σ u vc . (3.7) 

Notice that this equation is symmetric in δ v and . This symmetry will, upon 
discretization, yield a symmetric tangent matrix.  

u

 
The external virtual work has contributions from both body forces and surface tractions. 
The precise form of the linearized external virtual work depends on the form of these 
forces. FEBio currently supports gravity as a body force, ρ=f g . Since this force is 
independent of the geometry the contribution to the linearized external work is zero. For 
surface tractions, normal pressure forces may be represented in FEBio. The linearized 
external work for this type of traction is given by 

 

( )[ ]ext
1,
2

1
2

p

A

A

D W p d d

p d d

ξ

ξ

δδ φ δ δ ξ η
ξ η η

δδ ξ η
η ξ ξ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= ⋅ × +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− ⋅ × +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∫

x u vv u v

x u vv
. (3.8) 

Discretization of this equation will also lead to a symmetric component of the tangent 
matrix. 

3.1.2. Discretization 
The basis of the finite element method is that the domain of the problem (that is the 
volume of the object under consideration) is divided into smaller subunits, called finite 
elements. In the case of isoparametric elements it is further assumed that each element 
has a local coordinate system, named the natural coordinates, and the coordinates and 
shape of the element are discretized using the same functions. The discretization process 
is established by interpolating the geometry in terms of the coordinates  of the nodes 
that define the geometry of a finite element, and the shape functions. 

aX

 , (3.9) ( )1 2 3
1

, ,
n

a
a

N ξ ξ ξ
=

= ∑X aX

where n is the number of nodes and iξ are the natural coordinates. Similarly the motion is 
described in terms of the current position ( )a tx  of the same particles: 

 . (3.10) ( ) ( )
1

n

a a
a

t N
=

= ∑x x t

Quantities such as displacement, velocity and virtual velocity can be discretized in a 
similar way. 
 
In deriving the discretized equilibrium equations, the integrations performed over the 
entire volume can be written as a sum of integrations constrained to the volume of an 
element. For this reason the discretized equations are defined in terms of integrations 
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over a particular element e. The discretized equilibrium equations for this particular 
element per node is given by 
 ( ) ( ) ( ) ( )( ),e

a a aW Nδ φ δ δ= ⋅ −v v T Fe e
a , (3.11) 

where 

 

( )

( )

( )

( ) ( )

e

e e

e
a a

v

e
a a a

v v

T N dv

F N dv N

σ

∂

= ∇

= +

∫

∫ ∫f tda
. (3.12) 

The linearization of the internal virtual work can be split into a “material” and an “initial 
stress” component [2]: 

 

( ) ( )[ ]
( )

( )
( )

( ) ( )[ ] ( ) ( )[ ]

int , : : :

, ,

e e

Te

v v

e e
c

D W dv dv

D W D Wσ

δ φ δ δ ε δ

δ φ δ δ φ δ

⎡ ⎤= + ∇ ∇⎣ ⎦

= +

∫ ∫v u d σ u v

v u v u

c
. (3.13) 

The constitutive component can be discretized as follows: 

 . (3.14) ( ) ( )[ ]
( )

,
e

e T
c a a

v

D W dvδ φ δ δ
⎛ ⎞

= ⋅ ⎜
⎜
⎝ ⎠
∫v u v B DB ub b⎟

⎟

The term in parentheses defines the constitutive component of the tangent matrix relating 
node a to node b en element e:  
 ( )

( )
,

e

e T
c ab a b

v

dv= ∫K B DB . (3.15) 

Here, the linear strain-displacement matrix B relates the displacements to the small-strain 
tensor in Voigt Notation 

 
1

n

a a
a=

= ∑ε B u . (3.16) 

Or written out completely, 
 

 

/ 0 0
0 / 0
0 0 /

/ / 0
0 /

/ 0 /

a

a

a
a

a a

a a

a a

N x
N y

N z
N y N x

N z N y
N z N z

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥

/

∂ ∂
= ⎢∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥

⎥

∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

B

∂

. (3.17) 

 
The spatial constitutive matrix D is constructed from the components of the fourth-order 
tensor c using the following table; IJ ijkl=D c where 
 

I/J i/k j/l 
1 1 1 
2 2 2 
3 3 3 
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4 1 2 
5 2 3 
6 1 3 

 
The initial stress component can be written as follows: 
 ( ) ( )[ ] ( )

( )

,
e

e
a b b a b

v

D W N N N N dvσδ φ δ = ∇ ⋅ ∇∫v u σ I . (3.18) 

For the pressure component of the external virtual work we find 
 ( ) ( )[ ] ( )

,,e
p a a b b a p abD W N Nδ φ δ δ= ⋅v u v K e

bu , (3.19) 
where, 

 ( ) ( ) ( )
, , ,

1,
2

1
2

e e e a b
p ab p ab p ab b aA

a b
b aA

N Np N N d

N N

d

p N N d

ξ

ξ

d

ξ η
ξ η η

ξ η
η ξ ξ

⎛∂ ∂ ∂
= = −⎜∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ −⎜ ⎟∂ ∂ ∂⎝ ⎠

∫

∫

xK k k

x

E
⎞
⎟

T

. (3.20) 

 

3.2. Newton-Raphson method 
The Newton-Raphson method (also known as “Newton’s method”, “Full Newton 
method” or “the Newton method”) is the basis for solving the nonlinear finite element 
equations. It comes in several variants of which we will describe the Full Newton method 
and the BFGS method. The latter variation is important since it provides several 
advantages over the full Newton method and it is this method that is implemented in 
FEBio [7]. 
 

3.2.1. Full Newton Method 
In the previous section the discretized equilibrium equations and the discretized 
linearized virtual work were determined. Consequently the Newton-Raphson equation 
(3.3) can be formulated in its discretized version as follows, 
 Tδ δ⋅ ⋅ = − ⋅v K u v R  (3.21) 
Since the virtual velocities δ v are arbitrary, a discretized Newton-Raphson scheme can 
be formulated as follows, 
 ( ) ( ) 1;k k k+ k⋅ = − = +K x u R x x x u  (3.22) 
This is the basis of the Newton-Raphson method. For each iteration, both the stiffness 
matrix and the residual vector are re-evaluated and an increment u is calculated by pre-
multiplying both side of the above equation by 1−K . This procedure is repeated until 
some convergence criteria are satisfied.  
 
The formation of the stiffness matrix and, especially, calculation of its inverse, are 
computationally expensive. Variations of the Newton-Raphson method that do not 
require the reevaluation of the stiffness matrix for every iteration have been developed. In 
quasi-Newton methods, instead of reevaluating the stiffness matrix for each iteration, a 
quick update is calculated. One particular method that has been quite successful in the 
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field of computational solid mechanics is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
method [7], which is described in the next section. 
 

3.2.2. BFGS Method 
As stated above the BFGS method belongs to a class of methods called quasi-Newton 
methods. These methods involve updating the stiffness matrix (or rather its inverse) to 
provide an approximation to the exact matrix. A displacement increment is defined as 
 1k k k −= −d x x , (3.23) 
and an increment in the residual is defined as 
 1k k − k= −G R R . (3.24) 
The updated matrix should satisfy the quasi-Newton equation: kK
 k k k=K d G . (3.25) 
In order to calculate this update we first calculate a displacement increment: 
 1

1k k
−

1− −=u K R . (3.26) 
This displacement vector defines a “direction” for the actual displacement increment. A 
line search (see next section) can now be applied to determine the optimal displacement 
increment: 
 1k k s−= +x x u

k

k

, (3.27) 
where s is determined from the line search. With the updated position calculated we can 
now evaluate and also, using equations kR (3.23) and (3.24) and . We can now 
move on to the evaluation of the stiffness update. In the BFGS method this update can be 
expressed as follows: 

kd kG

 , (3.28) 1 1
1

T
k k k
− −

−=K A K A
where the matrix A is an  matrix of the simple form: n n×
 . (3.29) T

k k= +A I v w
The vectors v and w are given by 

 
1/ 2

1
1

T
k k

k kT
k k k

−
−

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

d Gv K
d K d k kd G , (3.30) 

 k
k T

k k

=
dw

d G
. (3.31) 

The vector is equal to 1k k−K d 1ks −R and has already been calculated.  
 
To avoid numerically dangerous updates, the condition number c of the updating matrix 
A is calculated: 

 
1/ 2

1
1

T
k k

T
k k k

c −
−

⎛
= ⎜
⎝ ⎠

d G
d K d

⎞
⎟ . (3.32) 

When this number exceeds a preset tolerance the update is not performed. 
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Considering the actual computation involved, it should be noted that using the matrix 
updates defined above, the calculation of the search direction in (3.26) can be rewritten 
as, 
 ( ) ( ) ( ) ( )1

1 1 1 1 1 1 1 1
T T T T

k k k k k
−

− − − − −= + + + +u I w v I w v K I v w I v w R… " 1  (3.33) 
Hence, the search direction can be computed without explicitly calculating the updated 
matrices or performing any additional costly matrix factorizations as required in the full 
Newton-Raphson method. 
 

3.2.3. Line Search Method 
A powerful technique often used to improve the convergence rate of Newton based 
methods is the line search method. In this method the displacement vector u is considered 
as an optimal search direction, but allowing the magnitude to be controlled by a 
parameter s.  
 1k k s+ = +x x u  (3.34) 
The value of s is usually chosen so that the total potential energy ( ) ( kW s W s= +x u) at 
the end of the iteration is minimized in the direction of u. This is equivalent to the 
requirement that the residual force ( )k s+R x u at the end of the iteration is orthogonal to 
u.  
 ( ) ( ) 0T

kR s s= + =u R x u  (3.35) 
However, in practice it is sufficient to obtain a value of s such that, 
 ( ) ( )0R s Rρ<  (3.36) 
where typically a value of 0.5ρ = is used. Under normal conditions the value 1s =  
automatically satisfies equation (3.36) and therefore few extra operations are involved. 
However, when this is not the case a more suitable value for s needs to be obtained. For 
this reason it is convenient to approximate ( )R s as a quadratic in s.  

 ( ) ( ) ( ) ( ) 21 0 1R s s R R s 0≈ − + =  (3.37) 
which yields a value for s as, 

 ( )
( )

2 0
,

2 2 1
Rr rs r r
R

⎛ ⎞= ± − =⎜ ⎟
⎝ ⎠

 (3.38) 

If , the square root is positive and a first improved value for s is obtained. 0r <

 
2

1 2 2
r rs ⎛ ⎞ r= + ⎜ ⎟

⎝ ⎠
−  (3.39) 

If  the s can be obtained by using the value that minimizes the quadratic function, 
that is, . This procedure is now repeated with 

0r >
1 / 2s r= ( )1R  replaced by ( )1R s  until 

equation (3.36) is satisfied. 
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Chapter 4. Element Library 
FEBio provides several element types for finite element discretization. This chapter 
describes these elements in more detail. 
 

4.1. Solid Elements 
The 3D solid elements available in FEBio are isoparametric elements. All of the solid 
elements are formulated in a global Cartesian coordinate system. For all these elements, a 
local coordinate system is defined as well, the so-called isoparametric coordinates. The 
global position vector x can be written as a function of the isoparametric coordinates in 
the following sense: 

 . (4.1) ( ) ( )
1

, , , ,
n

i
i

r s t N r s t
=

= ∑x ix

Here, n is the number of nodes, r, s and t are the isoparametric coordinates,  are the 
element shape functions and  are the spatial coordinates of the element nodes. The 
same parametric interpolation is used for interpolation of other scalar and vector 
quantities. 

iN

ix

 
All elements in FEBio are integrated numerically. This implies that integrals over the 
volume of the element are approximated by a sum: 

 

( ) ( )

( )
1

( )
e ev

m

i i i
i

f dv f J d

f J w
=

=

≅

∫ ∫

∑

x r r

r

,

,

. (4.2) 

Here, m is the number of integration points , are the location of the integration points in 
isoparametric coordinates, J is the Jacobian of the transformation , and is 
a weight associated with the integration point.  

ir

( , ,r s t=x x ) iw

 
Most fully integrated solid elements are unsuitable for the analysis of (nearly-) 
incompressible material behavior. To deal with this type of materials a three-field 
element implementation is available in FEBio  [8]. 
 

4.1.1. Hexahedral elements 
FEBio implements an 8-node trilinear hexahedral element. This element is also known as 
a brick element. The shape functions for these elements are defined in function of the 
isoparametric coordinates r, s and t and are given below. 
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( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )(

1

2

3

4

5

6

7

8

1 1 1 1

1 1 1 1
2
1 1 1 1
2
1 1 1 1
2
1 1 1 1
2
1 1 1 1
2
1 1 1 1
2
1 1 1 1
2

N r s

N r s

N r s

N r s

N r s

N r s

N r s

N r s

= − − −

)

t

t

t

t

t

t

t

t

= + − −

= + + −

= − + −

= − − +

= + − +

= + + +

= − + +

 (4.3) 

 

4.1.2. Pentahedral Elements 
Pentahedral elements (also knows as “wedge” elements) consist of six nodes and six 
faces. Their shape functions are defined in function of the isoparametric coordinates r, s 
and t and are given as follows. 

 

( )( )

( )

( )

( )( )

( )

( )

1

2

3

4

5

6

1 1 1
2
1 1
2
1 1
2
1 1 1
2
1 1
2
1 1
2

N r s

N r t

N s t

N r s

N r t

N s t

t

t

= − − −

= −

= −

= − − +

= +

= +

 (4.4) 

 

4.1.3. Tetrahedral Elements 
Linear 4-node tetrahedral elements are also available in FEBio. Their shape functions are 
defined in function of the isoparametric coordinates r, s and t.  
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1
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4

1N r s
N r
N s
N t

t= − − −
=
=
=

 (4.5) 

 

 
Figure 4-1. Different solid element types that are available in FEBio. 
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4.2. Shell Elements 
Currently FEBio does not support deformable shell elements. It only supports a rigid 
shell model, where the shell element has to belong to a rigid body. In other words, rigid 
bodies can be fully described using a surface model alone. The surface model can be 
composed of quadrilateral or triangular elements. 
 
For surface elements only two isoparametric coordinates are required, s and t.  
 

  (4.6) ( ) ( )
1

,
n

i
i

r s N r s
=

=∑x , ix

4.2.1. Quadrilateral shells 
For quadrilateral shells, the shape functions are given by, 
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( )( )

( )( )

( )( )

( )( )

1

2

3

4

1 1 1
4
1 1 1
4
1 1 1
4
1 1 1
4

N r

N r

N r

N r

s

s

s

s

= − −

= + −

= + +

= − +

 (4.7) 

4.2.2. Triangular shells 
For triangular shell elements, the shape functions are given by, 

 
1

2

3

1N r
N r
N s

s= − −
=
=

 (4.8) 

 
 

 
Figure 4-2. Different rigid shell elements available in FEBio 
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Chapter 5. Constitutive Models 
This chapter describes the theoretical background behind the constitutive models that are 
available in FEBio. Most materials are derived from a hyperelastic strain-energy 
function. Please consult section 2.4 for more background information on this type of 
materials.  

5.1. Linear Elasticity 
In the theory of linear elasticity the Cauchy stress tensor is a linear function of the small 
strain tensor : ε
 :=σ C ε . (5.1) 
HereC is the fourth-order elasticity tensor that contains the material properties. In the 
most general case this tensor has 21 independent parameters. However, in the presence of 
material symmetry the number of independent parameters is greatly reduced. For 
example, in the case of isotropic linear elasticity only two independent parameters 
remain. 
 
For linear elasticity, the elasticity tensor is given by 
 2ijkl ij kl ik jlλδ δ μδ δ= +C . (5.2) 
Using this relationship we can write the stress-strain relationship as follows: 
 ( )2tr 2ij ij ijσ λ δ μ= +ε ε . (5.3) 
If we represent the stress and strain by Voigt vectors, we can rewrite this in matrix form: 
 

 

11 11

22 22

33 33

12 12

23 23

13 13

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

σ ελ μ
σ ελ μ
σ ελ μ
σ λμ
σ λμ
σ λμ

+⎛ ⎞ ⎛⎛ ⎞
⎜ ⎟ ⎜⎜ ⎟+⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟+

=⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

. (5.4) 

 
The strain measures ijλ are the engineering strains and are given by 2ij ijλ ε= . The 
material coefficients λ and μ are known as the Lamé parameters. They relate to the more 
familiar Young’s modulus E and Poisson’s ratio ν as follows: 

 
( )( )

( )

,
1 1 2

.
2 1

E

E

νλ
ν ν

μ
ν

=
+ −

=
+

 (5.5) 

It is often convenient to express the material properties with the bulk modulus K and 
shear modulus G. 
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( )

( )

2
3 3 1 2

2 1

EK
v

EG
v

λ μ

μ

= + =
−

= =
+

 (5.6) 

The theoretical range of the Poisson’s ratio for an isotropic material is 1 0.5ν− ≤ ≤ . 
Materials with Poisson’s ratio (close to) 0.5 are known as (nearly-) incompressible 
materials. For these materials the bulk modulus approaches infinity. Most materials have 
a positive Poisson’s ratio although there do exist some materials with a negative ratio. 
These materials are known as auxetic materials and they have the unique property that 
they expand under tension. 
 
The linear stress-strain relationship can also be derived from a strain-energy function 
such as in the case of hyperelastic materials. In this case the linear strain-energy is given 
by, 

 1 :
2

W = ε Cε  (5.7) 

The stress is then similarly derived from W∂
=

∂
σ

ε
. In the case of isotropic elasticity we 

can simplify (5.7), 

 ( )21 tr :
2

W λ μ= +ε ε ε . (5.8) 

The Cauchy stress is now given by 
 ( )tr 2λ μ= +σ ε I ε . (5.9) 
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5.2. St. Venant-Kirchhoff elasticity 
The linear elastic material model as described in section 5.1 is only valid for small strains 
and small rotations. A first modification to this model to the range of nonlinear 
deformations is given by the St. Venant-Kirchhoff model. Although this model is still 
only useful for small strains it does allow for large rotations. For the isotropic case it can 
be derived from the following hyperelastic strain-energy function: 

 ( )21 tr :
2

W λ μ= +E E E . (5.10) 

The second Piola-Kirchhoff stress can be derived from this: 

 ( )tr 2W λ μ∂
= = +
∂

S E I
E

E . (5.11) 

Note that these equations are similar to the corresponding equations in the linear elastic 
case, only the small strain tensor is replaced by the Lagrangian elasticity tensor E. 
 

5.3. Neo-Hookean Hyperelasticity 
This is a compressible Neo-Hookean material. It is derived from the following 
hyperelastic strain energy function [2]: 

 ( ) ( )2
1 3 ln ln

2 2
W I J Jμ λμ= − − + . 

The parameters μ  and λ  are the Lamé parameters from linear elasticity. For small 
strains and rotations this model reduces to the isotropic linear elastic model. 
 
The Neo-Hookean material is an extension of Hooke’s law for the case of large 
deformations. It is useable for plastics and rubber-like substances. A generalization of 
this model is the Mooney-Rivlin material which is often used to describe the elastic 
response of biological tissue.  
 
In FEBio this constitutive model uses a standard displacement-based element 
formulation, so care must be taken when modeling materials with nearly-incompressible 
material behavior to avoid element locking.   
 

5.4. Mooney-Rivlin Hyperelasticity 
This material model is a hyperelastic Mooney-Rivlin type with uncoupled deviatoric and 
volumetric behavior. The uncoupled strain energy W is given by: 

 ( ) ( ) ( )2
1 1 2 2

13 3 l
2

W C I C I K J= − + − +� � n . 

and are the Mooney-Rivlin material coefficients, 1C 2C 1I� and 2I� are the invariants of the 
deviatoric part of the right Cauchy-Green deformation tensor, , where T=C F F� � �

( 1 3)J −=F F� , F is the deformation gradient and ( )detJ = F is the Jacobian of the 
deformation. When , this model reduces to an uncoupled version of the 2 0C =
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incompressible neo-Hookean constitutive model. This material model uses a three-field 
element formulation, interpolating displacements as linear field variables and pressure 
nd volume ratio as piecewise constant on each element [8]. 

 

train energy. However, in this case the strain energy is given by 
n exponential form: 

 

a

5.5. Veronda-Westmann Hyperelasticity 
This model is similar to the Mooney-Rivlin model in that it also uses an uncoupled 
deviatoric dilatational s
a

( )( ) ( ) ( )2 1 3 1 2
1 22

W C ⎢ ⎥⎣ ⎦
1 3C I C Ce I U J−⎡ ⎤= − − − +

� � . 

he dilatational term U is identical to the Mooney-Rivlin model. 

l model was the result from the research of the elastic response of skin 
ssues [9].  

 

 isotropic 
atrix. It is assumed that the strain energy function can be written as follows:  

 

T
 
This materia
ti

5.6. Transversely Isotropic Hyperelastic 
This constitutive model can be used to represent a material that has a single preferred 
fiber direction and was developed for application to biological soft tissues [3, 10, 11]. It 
can be used to model tissues such as tendons, ligaments and muscle. The elastic response 
of the tissue is assumed to arise from the resistance of the fiber family and an
m

( ) ( ) ( ) 2
1 1 2 2 2

, lnKW F I I F Jλ= + + ⎡ ⎤⎣ ⎦

Here 1

�� � . 

I� and 2I� are the first and second invariants of the deviatoric version of the right 
Cauchy Green de sor C�  and formation ten λ�  is the deviatoric part of the stretch along the 
fiber direction ( 2

0 0λ = ⋅ ⋅a C a� � , where 0a is the initial fiber dire tion), and c ( )detJ = F is 
the Jacobian of the deformation (volume ratio). The function 1F  represents the material 
response of the isotropic ground substance matrix and is the same as the Mooney-Rivlin 
form specified above, while 2F represents the contribution f  the fiber fa
strain energy of the fiber family is as follows: 

rom mily. The 

( )( )4

2

12
3

2
5 6 ,     mC C

0,    1

1 ,     1C
m

F

F C e

F

λ

λ λ
λ

λ λ λ
λ

λ λ λ λ
λ

−

∂
= ≤

∂
∂

= − < <
∂
∂

= + ≥

�

� �
�

� �
�

� � �

 

∂ �
Here, mλ i

straightened fibers. 

s 

is determined from the requirement is continuous at 

the stretch at which the fibers are straightened, 3 scales the exponential 
stresses, 4C is the rate of uncrimping of the fibers, and 5C is the modulus of the 

C

that the stress 6C

mλ . 
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This material model uses a three-field element formulation, interpolating displacements 
as linear field variables and pressure and volume ratio as piecewise constant on each 
lement [8]. 

-Westmann model as the material model for the isotropic ground substance 
matrix. 

e
 
In FEBio there is another transversely isotropic material model available that uses the 
Veronda
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5.7. Biphasic Material 
The biphasic material model differs significantly from the previous material models in 
that it also requires the explicit modeling of fluid that permeates the solid. The biphasic 
material model is useful to simulate materials that show viscoelastic behavior due to the 
presence of a fluid. Several biological materials such as cartilage can be described more 
accurately this way. 
 
The finite element formulation for the biphasic material differs significantly from the 
standard solid displacement-only formulation in Chapter 3. This is a consequence of the 
need to introduce a new field variable, namely the fluid pressure p, which requires a 
coupled displacement-fluid pressure system to be solved. This section describes this 
formulation. 

5.7.1. Governing Equations 
The biphasic material is modeled as a mixture composed of a solid phase and a fluid 
phase. The equation of continuity for this mixture is given by 
 ( ) 0s∇ ⋅ + =v w , (5.12) 

where sv is the solid fluid velocity and w is the relative fluid flux. The governing 
equations for the biphasic material are given by the balance of linear of momentum for 
both the solid and the fluid phase separately, 
 0s∇ ⋅ + =σ π , (5.13) 
 0f∇ ⋅ − =σ π . (5.14) 
Here, is the drag force and is the action-and-reaction interaction force between the 
solid and fluid phase. The specific form of the drag force is determined by a constitutive 
equation. In FEBio it is assumed to be given by 

π

 , (5.15) 1φ −=π k w
where k is the spatial permeability tensor.  
 
We further assume that the fluid is an inviscid Newtonian fluid. The final governing 
equations for a biphasic material are given by 
 ∇⋅ =σ 0 , (5.16) 
 pφ∇ + =π 0 . (5.17) 
Here sp= − +σ I σ is the apparent stress of the mixture. If we now substitute equation 
(5.15) for the drag force into equation (5.17) we get a relation between the relative fluid 
flux and the fluid pressure. 
 p= − ⋅∇w k  (5.18) 
This relationship is also known as Darcy’s Law. 
 
In the presence of body forces, these equations modify to, 
 0∇ ⋅ + =σ f  (5.19) 
 ( ) 0pφ ∇ − + =f π  (5.20) 

 ( )p= − ⋅ ∇ −w k f  (5.21) 
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Note that the spatial permeability tensor k in general is a function of the deformation. The 
exact dependence needs to be determined by a constitutive equation. It is easier however 
to state this constitutive equation in the material reference frame, and we therefore need 
to relate k to the material permeability tensor K. It can be shown that this relation is 
given by 

 11 T

J
− −=K F kF . (5.22) 

  

5.7.2. Weak Formulation 
Equations (5.19) and (5.20) specify the strong form of the equations of motion and 
continuity for a biphasic continuum. The finite element method is typically formulated 
using a weak, or variational formulation. The weak formulation is given by the virtual 
work equation,  
 ( ), , : 0m

v v v

W p dv dv daδ φ δ δ δ δ
∂

= − ⋅ − ⋅ =∫ ∫ ∫v σ d f v t v , (5.23) 

and 
 ( ) ( ), , : 0f

v v

W p p p p dv p daδ φ δ δ δ δ
∂

⎡ ⎤= ⋅∇ − − ⋅ =⎣ ⎦∫ ∫w I d w n� . (5.24) 

The dependence of equation (5.24) on the pressure is implicit through the fluid flux term. 
For instance, for Darcy’s Law we have p= − ⋅∇w k . 
 

5.7.3. Finite Element Equations 
In an iterative finite element procedure the equations (5.23) and (5.24) are linearized 
around the current configuration and discretized. The end result is a system of equations, 
given by 

 u
T

p

p

p

Δ − Δ = −

− Δ − Δ = −

K u G R

G u Q R�
, (5.25) 

where  is the displacement increment, Δu Δu� the velocity increment and  is the 
pressure increment. To remove the dependence of the velocity increment, we apply the 
following approximation, 

Δp

 
t

Δ
Δ ≅

Δ
uu� , (5.26) 

and obtain the final system of equations, 
 

 u
T

ptt p
⎡ ⎤− Δ⎡ ⎤ ⎡ ⎤

= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ Δ− −Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

RK G u
RG Q

. (5.27) 

K is the usual solid stiffness matrix, and Q and G are given by, 
 , (5.28) 

( )

( ) ( )

e

e T
p p

v

dv= ∫Q B kB e
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 , (5.29) 
( )

( )

e

e
p

v

dv= ∫G B NT

where 

 
1 1

2

p

n

N N

N N

∇⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢∇ ⎥⎣ ⎦ ⎣

B N#

⎦

# . (5.30) 

Note that the total stiffness matrix in (5.27) is symmetric. 
 
A major strength of this implementation of poroelasticity is the seamless integration of 
solid elements (with degrees of freedom only for the solid displacement) and biphasic 
elements (which also include degrees of freedom for fluid pressure), thanks to a judicious 
choice of primary variables and natural boundary conditions in the formulation of the 
governing equations.  Thus, at the interface of a solid element and a biphasic element, 
continuity of the solid displacement is automatically satisfied, while the fluid flux across 
this interface automatically reduces to zero, since the solid element is impermeable by 
definition. In addition, any of the solid materials described in previous sections may be 
used to describe the solid phase. 
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5.8. Active Contraction Model 
A time varying “elastance” active contraction model [12] was added to the transversely 
isotropic materials.  When active contraction is activated, the total Cauchy stress σ is 
defined as the sum of the active stress tensor a aT= ⊗σ a a  and the passive stress tensor 

:  pσ
 p a= +σ σ σ , (5.31) 
where a is the deformed fiber vector (unit length), defined as 0λ = ⋅a F a .  The time 
varying elastance model is a modification of the standard Hill equation that scales the 
standard equation by an activation curve ( )C t . The active fiber stress  is defined as: aT

 ( )
2
0

max 2 2
0 50

a CaT T C t
Ca ECa

=
+

, (5.32) 

where Tmax = 135.7 KPa is the isometric tension under maximal activation at the peak 
intracellular calcium concentration of Ca0 = 4.35 μM. The length dependent calcium 
sensitivity is governed by the following equation: 

 
[ ]

max
50

0

( )
exp ( ) 1

oCaECa
B l l

=
− −

, (5.33) 

where (Ca0)max = 4.35 μM is the maximum peak intracellular calcium concentration, B = 
4.75 μm-1 governs the shape of the peak isometric tension-sarcomere length relation, l0  = 
1.58  μm is the sarcomere length at which no active tension develops, and l is the 
sarcomere length which is the product of the fiber stretch λ and the sarcomere unloaded 
length lr = 2.04 μm.   
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Chapter 6. Contact and Coupling 
FEBio allows the user to connect the different parts of the model in various ways. 
Deformable parts can be connected to rigid bodies. Deformable objects can be brought in 
contact with each other. And finally rigid bodies can be connected with rigid joints. In 
this chapter we will describe these different ways to couple parts together. 

6.1. Rigid-Deformable Coupling 
In FEBio deformable meshes can be coupled with rigid bodies. The coupling requires a 
modification of the global stiffness matrix. Additionally, degrees of freedom need to be 
introduced for the rigid bodies [13]. This section describes the coupling between rigid 
and deformable bodies.  

6.1.1. Kinematics 
The position vector x of a finite element node may be denoted as, 
 = +x X u , (6.1) 
where X is the initial position of the node and u the displacement vector. If this node is 
connected to a rigid body the position can alternatively be written as, 
 = +x r a , (6.2) 
where r is the current position of the center of mass of the rigid body and a is the relative 
position of the node to the center of mass. The vector a may be written in terms of its 
initial value  in the undeformed state and a rotation matrix, 0a
 0=a Qa . (6.3) 
In an incremental displacement formulation equation (6.2) must be linearized: 
 0Δ = Δ + Δu r Qa , (6.4) 
where the linearization of the rotation matrix can be expressed in a more convenient 
form, 
 ˆΔ = ΔQ a θ . (6.5) 
Here is [ ]1 2 3, ,T θ θ θΔ = Δ Δ Δθ  and the matrix  is â

 
3 2

3

2 1

0
ˆ 0

0

a a
a

a a

−

1a
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

a . (6.6) 

For a model containing both deformable and rigid nodes the nodal degrees of freedom 
may be grouped, and the above expressions used to obtain a condensed set of unknowns: 

 
ˆ

D
D

R

⎧ ⎫Δ
⎧ ⎫Δ ⎡ ⎤ ⎪ ⎪= Δ = Δ⎨ ⎬ ⎨ ⎬⎢ ⎥Δ ⎣ ⎦⎩ ⎭ ⎪ ⎪Δ⎩ ⎭

u
I 0 0u

r A
0 I au

θ
�u

T

. (6.7) 

Substituting this into the discrete form of the principle of virtual work yields expressions 
for the condensed finite element stiffness matrix and residual vector for the coupled rigid-
deformable system: 
 , , . (6.8) TΔ = − = =K u R K A KA R A R� � � ��
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6.1.2. A single rigid body 
The global system of equations can now be written as follows (for a single rigid body 
coupled to a deformable body), 

 
( )

D D
D DR

R
TDR R

R

⎧ ⎫ ⎧Δ⎡ ⎤ ⎫
⎪ ⎪ ⎪⎢ ⎥ Δ = − ⎪
⎨ ⎬ ⎨

⎢ ⎥
⎬

⎪ ⎪ ⎪⎣ ⎦ Δ⎩ ⎭ ⎩

u RK K
r F

K K θ M ⎪
⎭

D

. (6.9) 

Here is formed by adding all the residual vectors of all interface nodes that connect 
the deformable body to the rigid body, 

RF

 R
i

i
=∑F R , (6.10) 

where i sums over all interface nodes, and 
 ˆR

i i
i

= D∑M a R . (6.11) 

It is recognized that  is simply the total residual force that is applied to the rigid body 
and is the total residual torque. 

RF
RM

 
Constructing the stiffness matrix is accomplished in a similar manner. Assume n nodes 
per element, than the normal element stiffness matrix (in absence of rigid nodes) is given 
by, 

 
11 1

( )

1

n
e

n nn

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

k k
k

k k

…
# % #

"
, (6.12) 

where is the nodal stiffness matrix connecting node i to node j. These nodal stiffness 
matrices are now assembled into the global stiffness matrix. If node i and j are neither 
interface nodes their nodal stiffness matrix is assembled into 

ijk

DK in the usual manner, 
 ( )

ij

D e

e
=∑K k , (6.13) 

where the sum now has to interpreted as the finite element assembly operator.  
 
If node j is an interface node, than the nodal stiffness matrix gets assembled in the 

DRK matrix: 
 ( ) ( ) ˆDR e e

ij ij j
e

⎡ ⎤= ⎣ ⎦∑K k k a

ˆ

. (6.14) 

If both nodes belong to the rigid body than the nodal element matrix gets assembled in 
as follows, RK

 
( ) ( )

( ) ( )

ˆ
ˆ ˆ

ij

e e
ij ij jR

T e T T e
e i ij i j

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑

k k a
K

a k a k a
. (6.15) 
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6.1.3. Multiple Rigid Bodies 
The previous results can easily be extended if there are multiple rigid bodies. The 
following section presents the approach for two rigid bodies, but the results can easily be 
generalized to N rigid bodies.  
 
For two rigid bodies, the global system of equations takes the following form, 

 ( )
( )

1 2
1 1

1 11 12 1

2 2
2 21 22

2 2

D R

D DR DR

TDR R R

TDR R R

1

⎧ ⎫ ⎧Δ
⎡ ⎤

⎫
⎪ ⎪ ⎪Δ⎢ ⎥

⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎢ ⎥ = −Δ

⎪
⎨ ⎬ ⎨⎢ ⎥ ⎬
⎪ ⎪ ⎪⎢ ⎥ Δ ⎪
⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎪
⎪ ⎪ ⎪Δ⎩ ⎭ ⎩

u R
K K K r F

K K K θ M
r FK K K
θ M ⎪⎭

. (6.16) 

Care must be taken to assemble the nodal stiffness matrix in the correct global sub-
matrix. If node i is not an interface node and node j is connected to rigid body 1, then 
their nodal stiffness matrix goes into 1

DRK . If, however, node j is attached to rigid body 2 
then their nodal stiffness matrix goes into 2

DRK . If node i is connected to rigid body 1 and 
node j is connected to rigid body 2, then their nodal stiffness matrix goes into , and so 
on. Note that it is assumed here that a node may only connect to a single rigid body. 
Coupling rigid bodies through joints is described in the next section. 

12
RK

 
 

6.2. Sliding Interfaces 
This section summarizes the theoretical developments of the two body contact problem. 
After introducing some notation and terminology, the contact integral is presented, which 
contains the contribution to the virtual work equation from the contact tractions. Since the 
nonlinear contact problem is solved using a Newton based iterative method, the contact 
integral is linearized. Next, anticipating a finite element implementation, the contact 
integral and its linearization are discretized using a standard finite element approach. 
Finally the augmented Lagrangian method for enforcing the contact constraints is 
described. 
 

6.2.1. Contact Kinematics 
For the most part the notation of this section follows [14], with a few simplifications here 
and there since the implementation in FEBio is currently for quasi-static, frictionless, two 
body contact problem.  
 
The volume occupied by body i in the reference configuration is denoted by 

( ) 3iΩ ⊂ \ where . The boundary of body i is denoted by 1,2i = ( )iΓ and is divided into 
three regions ( ) ( ) ( ) ( )i i

σΓ = Γ i
uΓ Γ∪ ∪ i

c , where ( )i
σΓ is the boundary where tractions are 

applied, ( )i
uΓ the boundary where the solution is prescribed and ( )i

cΓ the part of the 
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boundary that will be in contact with the other body. It is assumed that 
( ) ( ) ( )i i i

u cσΓ Γ Γ =∩ ∩ ∅ .  
 
The deformation of body i is defined by ( )iϕ . The boundary of the deformed body i, that 

is the boundary of is denoted by ( ) ( )(i iΩ ) ( ) ( ) ( ) ( )i i i
u cσϕ iγ γ γ γ= ∪ ∪ where is 

the boundary in the current configuration where the tractions are applied and similar 
definitions for 

( ) ( ) ( )( )i i i
σ σγ ϕ= Γ

( )i
uγ and ( )i

cγ . See the figure below for a graphical illustration of the defined 
regions. 
 

 
Figure 6-1. The two-body contact problem. 

( )1Ω

 
Points in body 1 are denoted by X in the reference configuration and x in the current 
configuration. For body 2 these points are denoted by Y and y. To define contact, the 
location where the two bodies are in contact with each other must be established. If body 
1 is the slave body and body 2 is the master body, then for a given point X on the slave 
reference contact surface there is a point ( )Y X on the master contact surface that is in 
some sense closest to point X. This closest point is defined in a closest point projection 
sense: 
 ( )

( )

( ) ( ) ( ) ( )
2

1 2arg min
c

ϕ ϕ
∈Γ

= −
Y

Y X X Y . (6.17) 

With the definition of ( )Y X established the gap function can be defined, which is a 

measure for the distance between X and ( )Y X , 

 ( ) ( ) ( ) ( ) ( )( )( )1 2g ϕ ϕ= − ⋅ −X ν X Y X , (6.18) 

 

( )2Ω  

( )1ϕ  ( )1
σγ  ( )1

σΓ  ( )1
uγ  

( )1
uΓ  

( )1
cΓ  ( )2ϕ  ( )1

cγ  ( )2
cΓ  

( )2
cγ  

( )2
uΓ  

( )2
σΓ  ( )2

uγ  ( )2  σγ
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where is the local surface normal of surface ν ( )2
cγ evaluated at ( ) ( )(2ϕ= )y Y X . Note that 

 when X has penetrated body 2, so that the constraint condition to be satisfied at all 
time is . 

0g >
0≤g

 

6.2.2. Weak Form of Two Body Contact 
The balance of linear momentum can be written for each of the two bodies in the 
reference configuration, 

( ) ( ) ( )( ) ( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

, :
i i i i

s c

i i i i i i i i i i iG w GRAD w d w d w d w dϕ
Ω Ω Γ Γ

⎡ ⎤= Ω − ⋅ Ω − ⋅ Γ − ⋅⎣ ⎦∫ ∫ ∫ ∫P F T T 0Γ =

 (6.19) 
where ( )iw is a weighting function and P is the 1st Piola-Kirchhoff stress tensor. The last 
term corresponds to the virtual work of the contact tractions on body i. For notational 
convenience, the notations ϕ and w are introduced to denote the collection of the 
respective mappings ( )iϕ and ( )iw (for i=1,2). In other words, 

 
( ) ( )

( ) ( )

1 2 3

1 2 3

:

:w

ϕ Ω Ω →

Ω Ω →

∪

∪ \

\

⋅ Γ

. (6.20) 

The variational principle for the two body system is the sum of (6.19) for body 1 and 2 
and can be expressed as, 

  (6.21) 

( ) ( ) ( ) ( )( )
( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( )

( ) ( )

( )

( )

int,

2

1

2

1

,

2

1

,

, : ,

:
i i i

s

ext

i
c

c

i i i

i

i i i i i i

i

G w

i i

i

G w

G w G w

GRAD w d w d w d

w d

ϕ

ϕ

ϕ ϕ
=

= Ω Ω Γ

= Γ

=

⎧ ⎫⎪ ⎪⎡ ⎤= Ω − ⋅ Ω −⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

− ⋅ Γ

∑

∑ ∫ ∫ ∫

∑ ∫

P F T

T

�������������	������������


����	���


Or in short, 
 ( ) ( ) ( )int,, ,ext cG w G w G wϕ ϕ= + ,ϕ . (6.22) 

Note that the minus sign is included in the definition of the contact integral . The 
contact integral can be written as an integration over the contact surface of body 1 by 
balancing linear momentum across the contact surface: 

cG

 ( ) ( )( ) ( ) ( ) ( ) ( )2 2 1d 1dΓ = − Γt y x t x . (6.23) 
The contact integral can now be rewritten over the contact surface of body 1: 
 ( ) ( ) ( ) ( ) ( ) ( )( )

( )1

1 1 2

c

cG w w
Γ

d⎡ ⎤= − ⋅ − Γ⎣ ⎦∫ t x x y x . (6.24) 

In the case of frictionless contact, the contact traction is taken as perpendicular to surface 
2 and therefore can be written as, ( )1

Nt=t ν where is the (outward) surface normal ν
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and is to be determined from the solution strategy. For example in a Lagrange 
multiplier method the ’s would be the Lagrange multipliers.  

Nt

Nt
 
By noting that the variation of the gap function is given by 
 ( ) ( ) ( ) ( )( )( )1 2g w wδ = − ⋅ −ν x y x , (6.25) 

equation (6.24) can be simplified as, 
 

( )1
c

c
NG t gdδ

Γ

= Γ∫ . (6.26) 

 

6.2.3. Linearization of the Contact Integral 
In a Newton-Raphson implementation the contact integral must be linearized with respect 
to the current configuration: 
 ( ) ( )

( )1

,
c

c
NG w t g dϕ δ

Γ

Δ = Δ∫ Γ . (6.27) 

Examining the normal contact term first, the directional derivative of is given (for the 
case of the penalty regularization) by: 

Nt

 
{ }
( )

N N

N

t g

H g g

ε

ε

Δ = Δ

= Δ
, (6.28) 

where Nε is the penalty factor and ( )H g is the Heaviside function. The quantity ( )gδΔ is 
given by, 

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
( )( )

2
,

2
,

2 2
, ,

g g mγβ
γ αγ α

α
β αβ

β β
β β

β α
αβ

δ δϕ κ δξ

ϕ κ ξ

δξ ϕ ξ δϕ

κ δξ ξ

⎡ ⎤Δ = ⋅ +⎣ ⎦
⎡ ⎤⋅ Δ + Δ⎣ ⎦ 

⎡ ⎤ ⎡ ⎤+ ⋅ Δ + Δ ⋅⎣ ⎦ ⎣ ⎦
+ Δ

ν Y X Y X

ν Y X Y X

ν Y X ν Y X

Y X

. (6.29) 

 

6.2.4. Discretization of the Contact Integral 
The contact integral, which is repeated here, 
 ( )

( )1

,c
NG w t gdϕ δ

Γ

= Γ∫ , (6.30) 

will now be discretized using a standard finite element procedure. First it is noted that the 
integration can be written as a sum over the surface element areas: 

 ( )
( )11

,
sel

e

N
c

N
e

G w t gdϕ
= Γ

δ= Γ∑ ∫ , (6.31) 

where selN is the number of surface elements. The integration can be approximated using 
a quadrature rule, 



FEBio Theory manual 39

 ( ) ( ) ( ) ( )
int

1 1

,
e

selN N
c i

i N i i
e i

G w w j t gϕ
= =

δ
⎧ ⎫⎪ ⎪≅ ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ξ ξ ξ , (6.32) 

where  are the number of integration points for element e. It is now assumed that the 
integration points coincide with the element’s nodes (e.g. for a quadrilateral surface 
element we have , 

int
eN

( )1 1, 1= − −ξ ( )2 1, 1= −ξ , ( )3 1,1=ξ  and ( )4 1,1= −ξ ). With this 
quadrature rule, we have 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2

1

i i

n

i j i
j

w

w N
=

=

= ∑
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so that, 

 ( ) ( ) ( ) ( ) ( )1 2

1

n

i i j i
j
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⎛ ⎞
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∑ 2

j ⎟ξ ν c ξ c . (6.34) 

If the following vectors are defined, 
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2 2
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i n
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nN N
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Φ c c c

N ν ν ν

"

"

T T

, (6.35) 

equation (6.32) can then be rewritten as follows, 

( ) ( ) ( )
int

1 1

,
e

selN N
c i

i N i
e i

G w j tϕ δ δ
= =

⎧ ⎫⎪ ⎪≅ ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑v ξ ξ Φ N . (6.36) 

The specific form for will depend on the method employed for enforcing the contact 
constraint. 

Nt

 

6.2.5. Discretization of the Contact Stiffness 
A similar procedure can now be used to calculate the discretized contact stiffness matrix. 
The linearization of the contact integral is repeated here: 
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ϕ δ

δ
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∑ ∫

∑∑ ξ ξ

. (6.37) 

Using matrix notation we can rewrite equation (6.37) as, 

 ( ) ( )
int

1
,

e
selN N

c
i i

e i

W w jϕ δ δ
=

Δ = ⋅∑∑v cΔξ Φ k Φ , (6.38) 

where δΦ is as above and similar to ΔΦ δΦ  with δ replaced with Δ  and , ck
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where, 
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The following vectors are also defined which depend on the vectors of (6.40): 
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where the matrix A is defined as, 
 ij ij ijA m gκ= + . (6.42) 

Here, is the surface metric tensor and ij i jm = ⋅τ τ ( ) ( )2
,ij t ijκ ϕ= ⋅ν Y denotes the 

components of the surface curvature at ξ . 
 

6.2.6. Augmented Lagrangian Method 
The augmented Lagrangian method is used in FEBio to enforce the contact constraints to 
a user-specified tolerance. This implies that the normal contact tractions are given by, 

N N Nt λ ε= + g .     (6.43) 
Note that this assumption is  consistent with the approach that was used in establishing 
the discretization of the linearization of the contact integral (6.39). In (6.43) Nε  is a 
penalty factor that is chosen arbitrarily. 
 
The Newton-Raphson iterative method is now used to solve the nonlinear contact 
problem where Uzawa’s method (REF) is employed to calculate the Lagrange multipliers 

Nλ . This implies that the Lagrange multipliers are kept fixed during the Newton-Raphson 
iterations. After convergence the multipliers are updated and a new NR procedure is 
started. This procedure can be summarized by the following four steps. 
 

1. Initialize the augmented Lagrangian iteration counter k, and the initial guesses for 
the multipliers: 
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. (6.44) 

2. Solve for ( )
1

k
n+d , the solution vector corresponding to the fixed kth iterate for the 

multipliers, 
   ( )( ) ( )( )int

1 1
k kc

n n 1
ext
n+ ++ =F d F d F + ,    (6.45) 

where the contact tractions used to compute cF , the contact force, are governed 
by 

 ( ) ( )
1 1 1n n

k k k
N N N nt λ ε

+ + += + g . (6.46) 

3. Update the Lagrange multipliers and iteration counters: 
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1 1
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1
n n

k k
N N N ng

k k

λ λ ε
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+
+= + k
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4. Return to the solution phase. 
 
Steps 2-4 of the above algorithm are generally repeated until all contact constraints are 
satisfied to a user-specified tolerance or little change in the solution vector from 
augmentation to augmentation is noted. 
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