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Abstract-Multijoint movement requires the coordination of many muscles. Because multijoint movement is 
complex, kinesiological data must be analyzed and interpreted in the context of forward dynamical models 
rich enough to study coordination; otherwise, principles will remain elusive. The complexity arises because a 
muscle acts to accelerate all joints and segments, even joints it does not span and segments to which it does 
not attach. A biarticular muscle can even act to accelerate one of the joints it spans opposite to its 
anatomical classification. For example, gastrocnemius may act to accelerate the knee into extension during 
upright standing. One powerful forward dynamical modeling method to study muscle coordination is optimal 
control theory because simulations of movement can be produced. These simulations can either attempt to 
replicate experimental data, without hypothesizing the purpose of the motor task, or otherwise generate 
muscle and movement trajectories that best accomplish the hypothesized task. Application of the theory to 
the study of maximum-height jumping has provided insight into the biomechanical principles of jumping, 
such as: (i) jump height is more sensitive to muscle strength than to muscle speed, and insensitive to 
muscuiotendon compliance; (ii) uniarticular muscles generate the propulsive energy and biarticula muscles 
fine-tune the coordination; and (iii) countermovement is often desirable, even in squat jumps, because it 
seems both to prolong the duration of upwards propulsion, and to give muscles time to develop force so the 
body can move upwards initially with high acceleration. The effort necessary to develop forward dynamical 
models has been so high, however, that model-generated data of jumping or any other task are meager. An 
interactive computer workstation environment is proposed whereby users can develop neuromusculoskeletal 
control models, generate simulations of motor tasks, and display both kinesiological and modeling data more 
easily (e.g., animations). By studying a variety of motor tasks well, each within a theoretical framework, 
hopefully muscle coordination principles will soon emerge. 

INTRODUCTION 

Human movement, performed with its usual grace- 
fulness, demands the coordination of many muscles. 

Understanding how and why the body coordinates 
muscles intrigues professionals spanning diverse disci- 
plines, such as sports, the performing arts, engineer- 
ing, and medicine. For example, as biomechanicians 
we may attempt to elucidate how the body segments 
and muscles interact mechanically to execute motor 
tasks. As motor control neuroscientists we may focus 
on elucidating the properties of the central nervous 
system controller. As rehabilitation scientists, we may 
study human pathological movement to develop 
musculoskeletal or neurological therapies. 

One would think, then, that by synthesizing the 
collective knowledge from all the disciplines we could 
postulate (and perhaps agree on) some principles 
subserving muscle control of movement. I submit, 
however, that we are far from achieving this goal. 
Why do muscle coordination properties remain elu- 
sive? 

I believe the crux of the problem is that we rarely 
understand (and agree on) how muscles coordinate any 
one movement, much less a repertoire of movements. 
And many movements need to be understood before 
we can hope to postulate broadly applicable muscle 
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coordination principles. To attain an understanding of 

muscle coordination of many movements, do we need 
to just collect more biomechanical and kinesiological 
data? Though observing how subjects execute a vari- 
ety of movements is certainly essential to the formula- 
tion of hypotheses, it is not sufficient. 

A biomechanical model of each movement being 
studied is also essential. In addition, the models must 
be sufficiently complex to elucidate muscle coordina- 
tion principles. Progress will be sustained in move- 
ment science by our ability to both develop biomech- 
anical models and record relevant experimental data. 
For example, often inverse dynamical models are 

hypothesized in order that the net muscle moments 
about the joints can be estimated from the experiment- 
al data. However, forward dynamical models offer 
more potential to studies of multimuscle control of 
movement (see below, “Integrating Experiments and 
Models to Study Muscle Coordination”). In movement 
science, I submit that our ability to construct and use 
forward dynamical models complex enough to study 
muscle coordination has lagged behind our ability to 
collect biomechanical and kinesiological data. 

In this paper, I will first review why forward 
dynamical models are so necessary to understand how 
muscles coordinate a multijoint motor task. Second, 
forward and inverse dynamics approaches to integrat- 
ing experiments and models to study muscle coordina- 
tion will be reviewed. Third, vertical jumping will be 
used as a case study to show how forward dynamics 
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models and optimal control theory can elucidate 
biomechanical and muscle coordination principles. 
Finally, I will propose a computer workstation envi- 
ronment whereby forward (and inverse) dynamical 
models of muscle coordination can be formulated, 
modeling data generated, and kinesiological and 
biomechanical data viewed. 

WHY FORWARD DYNAMICAL MODELS ARE NECESSARY 
TO STUDY COORDINATION 

Because muscle coordination of a multijoint motor 
task is complex, complex models become necessary in 
order to interpret experimental data. When very few 
variables are needed to describe the behavior of a 
system, often a simple model suffices. For example, 
when we fit a line to describe the relation between 
two variables, a linear function is assumed to be the 
model describing the interaction between these two 
variables. In multijoint movement, however, not only 
are many variables needed to describe the musculo- 
skeletal system, but the relations are nonlinear as well. 
Furthermore, the interactions among the variables are 
dynamical (i.e., the position, orientation, and motion 
of the body segments at some future time depend on 
their current state as well as on the trajectories of the 
forces acting on the segments). Let me illustrate the 
complexity by discussing how muscles affect the 

angular acceleration of joints in a multijoint motor 
task (see review, Zajac and Gordon, 1989). 

Definition of the ljoint torque’ produced by a muscle 

Muscles are not torque generators (Paul, 1978). 
Muscles are neither moment of muscle force genera- 
tors. Muscles are, unsurprisingly, force generators. 
They develop forces that act on the segments to which 
they attach. They are linear actuators, not rotary actua- 
tors. Yet we often refer to the “joint torque”, or the 
“moment of force about the joint” developed by the 
muscle as if this is what the muscle inherently does 
when, in fact, it doesn’t. We strive to consider a 
muscle to be a rotary actuator because we often 
visualize intersegmental motion not as translation but 
rather as rotation (i.e., we visualize motion of the 
segments by what the joints primarily do, which is 
rotate). Thus we want to know how muscles act to 
rotate (cause angular acceleration of) the joints. We 
know joints, for example, flex/extend, and that 
muscles act to accelerate joints into, say, flexion/ 
extension. 

Consider a uniarticular muscle, which attaches to 
two segments, and crosses a pin joint (Fig. 1A). Neg- 
lecting any friction between the muscle and the seg- 
ments, or between this muscle and other muscles 
(these assumptions are almost always invoked), only 

D 

Fig. 1. Equivalent representations of the force in a uniarticular muscle crossing a frictionless pin joint. (A) The 
path of the muscle is the heavy solid line. The shortest distance from the part of the path of the muscle crossing 
the joint to the joint center is the dashed line. (B) This shortest distance is called the moment arm (ma) of the 
muscle. Neglecting muscle path friction, only the forces at the effective origin of the muscle (F”“) and at its 
effective insertion (-F”““) affect segmental dynamics. (C) Each of the two forces in (B) can be equivalently 
represented by a force acting at the joint center and a force couple acting on one of the segments. The torques of 
these two force couples are equal to (Timmw = ma . F”“” ). which acts on segment i, and (-T, lltyI = ma . -F”” ), 
which acts on segment i-l. Notice that these two torques are. equal to the moments of the two forces in (B) about 
the joint center. (D) If the pin joint is frictionless, only the two segmental torques in (C), and not the two forces 
in (C), contribute to the angular and linear accelerations of the segments, These two torques arc collectively 
referred to as the joint torque T(“‘“‘ produced by the force in the muscle. (See text). (Modified from Zajac and 

Gordon, 1989). 
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the force of the muscle at its effective origin and the 
force at its effective insertion will affect segmental 

dynamics (Fig. 1B). Thus it is assumed that the force 
in the muscle throughout the rest of its path does not 
have to be considered to compute how the muscle 
force affects the acceleration of the segments. Indeed, 
when we consider a uniarticular muscle as a force 
generator, as we really should, we often invoke this 
image; i.e., a muscle developing collinear forces on 
two segments. 

Notice that these two forces (Fnrur and -VU) are 
equal in magnitude but opposite in direction; also that 
its force of origin (F”“‘), acting on segment i, pro- 
duces a clockwise moment about the joint center 
(equal to ma * F”‘““); and its force of insertion 

(-F”‘“‘), acting on segment i-l, produces a counter- 
clockwise moment (equal to ma . -Emus). 

When is it sufficient to use just the two moments 
of muscle force about the joint center to compute how 
the force in a muscle contributes to the linear and 
angular accelerations of the segments? To answer this 
question, recognize that each force of origin and inser- 
tion (Fig. IB) can be equivalently represented by the 
sum of a force acting at the joint contact point and a 
force couple acting on the segment (Fig. 1C; Kane 
and Levinson, 1985, Zajac and Gordon, 1989). The 
equal and opposite muscle force couples acting on the 
adjacent segments have associated with them equal 
and opposite torques (Fig. 1 C, T, “lw and -‘I; ““3. Since 
the torque of a force couple is the moment of the 

force couple about any point (Kane and Levinson, 
1985). each torque is equal to the moment of the 
muscle force about the joint center (e.g., torque on 
segment i is ma . F”‘“; on segment i-l, ma * -F”‘“‘), 

So the question can now be rephrased: when can 
just the two segmental torques be used to compute 

how the force in a muscle contributes to the angular 
and linear accelerations of the segments ? This is 
equivalent to: when will the two compressive forces in 
the joint caused by the muscle (Fig. lC, F”‘“” and 
-F”“‘) not contribute to the angular or linear accel- 
eration of the segments? The answer is when the pin 

joint is frictionless because then all compressive 
forces in the joint, including those by muscles, do not 
affect the motion of the segments (Kane and Levin- 
son, 1985). Thus, only the two torques acting on the 
two segments have to be used to compute how the 
muscle force will act to accelerate the segments. It is 
obvious that the two torques affect the angular accel- 
eration of the segments. The two torques can also be 
used to calculate the contributions of the muscle force 
to the linear accelerations of the segments because, in 
a pin joint, the linear acceleration of one segment 
relative to another is given by the joint angular accel- 
eration (i.e., the angular acceleration of one segment 
relative to another), the joint angular velocity, and the 
joint angle. During a movement, of course, the joint 
angular velocities and angles are determined from the 
past angular acceleration trajectories and are, there- 

fore, not independent variables (e.g.. Fig. 4A. For- 
ward Multijoint Dynamics). 

For a frictionless pin joint, therefore, the contribu- 
tion of muscle force to the linear and angular accel- 
eration of one segment relative to another is deter- 
mined by the torques of the two muscle force couples 
(or, equivalently, the two muscle moments about the 
joint) (Fig. 1C). These two torques are, collectively, 
referred to as the joint torque produced by the muscle 
(Fig. lD, T,“‘““). Thus, it is unimportant to the princi- 
ples being explicated in the following sections wheth- 
er the term “muscle joint torque” or “muscle moment 
about the joint” is used. To me, each term connotes 
the same meaning and assumptions. 

Frictionless pin (and ball-and-socket) models of 
joints are, of course, only an approximation. Neverthe- 
less, such models often suffice to study multimuscle 
control of multijoint movement, and how a muscle 
force acts to accelerate the joints into rotation (e.g., 
see below). However, studies of multimuscle control 
of joints exhibiting high friction (e.g., pathology) will 
require that the compressive forces in the joints be 
computed. Other studies will require more complex 
joint kinematics. In some cases it may still be accurate 
to consider muscles as just joint torque (or moment- 
generating) actuators. Regardless, it is always best to 

be rigorous in the use of dynamics (Kane and Levin- 
son, 1985). Thus a muscle should be treated as an 

actuator generating force at its effective origin and 
insertion (Fig. lB), and it should then be subsequently 
shown that the joint torque (or muscle moment) repre- 
sentation is acceptable. 

Anatomical classification and function of muscles 

Muscles are classified according to the directionali- 
ty of the joint torques they produce. Since the princi- 
ples to be elucidated below do not depend fundamen- 
tally on the details of the kinematics of the joints, 
frictionless pin joints are assumed. Clearly, a muscle 
produces a joint torque only at a joint it spans (e.g., 
only at joint i in Fig. 1). Soleus is called an ankle 

extensor muscle because it produces an ankle extensor 
joint torque (Fig. 2A); gastrocnemius, an ankle exten- 
sor/knee flexor muscle because it produces both an 
ankle extensor and a knee flexor joint torque (Fig. 
2B). Thus, from the definitions of joint rotations (e.g., 
extension and flexion), and from the anatomical posi- 
tion of a muscle with respect to a joint, we can infer 
the direction(s) of its joint torque(s) (e.g., Fig. I; 
Zajac and Gordon, 1989). 

Will the direction that a muscle acts to accelerate 
into rotation a joint it spans be the same as the 
direction of the joint torque it develops? At times, yes; 
at other times, no. The rotational direction that a 
uniarticular muscle acts to accelerate the joint it spans 
will always be the same as the direction of the joint 
torque it develops (e.g., soleus acts to accelerate the 
ankle into extension; i.e., I$,,,~,, > 0 in Fig. 2A). Thus, 
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Fig. 2. Classification of muscles according to the direction- 
ality of their joint torques. (A) Soleus muscle (SOL) is classi- 
fied as an ankle extensor muscle because it develops an ankle 
extensor joint torque; i.e., a counterclockwise torque on the 
shank and a clockwise torque on the foot. (B) Gastrocnemius 
muscle (GAS) is classified as an ankle extensor/knee flexor 
muscle because it develops simultaneously ankle extensor 
and knee flexor joint torques, with each joint torque pro- 
ducing torques on the segments adjacent to that joint. (See 

text). 

function is consistent with anatomy. If one of the two 
joints spanned by a biarticular muscle is constrained 

from moving (e.g.. by a brace), then its function, now 
like that of a uniarticular muscle, will also be consis- 

tent with anatomy. However, if both of the spanned 
joints are unrestrained, the biarticular muscle may act 

to accelerate one of the two joints it spans opposite to 
the joint torque it develops at that joint (e.g., gastro- 
cnemius may act to accelerate the knee into extension, 

or the ankle into flexion; see below). 

A muscle can act to accelerate joints it does not span 

A muscle may act to accelerate the joints it does 
not span as much or more than the joints it does span. 
For example, soleus acts to accelerate the ankle, the 
joint it spans, into extension. But in flat-footed stand- 
ing near the vertical posture, soleus acts to accelerate 
the knee into extension twice as much as the ankle be- 
cause the thigh is accelerated into extension as much 
as the shank (e.g., referring to Fig. 2A, soleus acts to 
accelerate the thigh clockwise as much as it acts to 

accelerate the shank counterclockwise; Zajac and 
Gordon, 1989). The fact that a muscle can act to 
accelerate segments to which it does not attach, and 
joints which it does not span, arises from inertia 
forces being transmitted from one segment to another 
via the reaction forces at the joints (i.e., inertial cou- 
pling). 

To find how much a muscle force contributes to 
the net angular acceleration of each joint, including 
the joints the muscle does not span, the dynamical 

equations of motion must be found (Kane and 
Levinson, 1985). The equations of motion specify how 
the body segments will accelerate subject to the force 
and torque trajectories acting on the segments. For 
example, the matrix equations for a frictionless 
rigid-body model of flat-footed standing (Fig. 2) can 
be written as (Gordon et al. 1988; Kuo and Zajac, 

1992): 
M(@$ = T”‘“” + V(@,$) + G(q) (1) 

where $, 4, 4 are the vectors of joint angles, joint 

angular velocities, and joint angular accelerations of 
the joints assumed to move (i.e., the ankle, knee, and 
hip); T”‘“’ is the vector of net joint torques produced 
by all the muscles crossing the three joints; M($) is 
the mass matrix, which depends (among other things) 
on how body mass is distributed among the segments 
and the joint angles; V(@$) is the vector of joint 
torques due to motion of the segments (i.e., centripetal 
and coriolis forces); and G($) is the vector of joint 
torques due to gravity. (Joint torques from passive 
soft-tissue, non-muscular joint structures could be 
added, if desired; e.g., Zajac and Winters, 1990). 
Segmental translations do not enter into these equa- 
tions because they can be found from the joint rota- 
tions; i.e., translation is not independent from rotation 
for this rigid-body system. Notice that these equations 
are the moment balance equations for the three joints. 
Often these equations are used to find the net muscle 
joint torques from kinematic data (i.e., inverse dynam- 
ics, Fig. 4B; see “Integrating Experiments and Models 

to Study Muscle Coordination”). The net angular 
accelerations of the joints are therefore: 

+ = M-‘($)T”‘“’ + M.‘($)V($v$) + M-‘($)G($) (2) 

where M-‘(Q) is the inverse of the mass matrix 
(Fig. 4A). 

The contribution of a muscle force to the net angu- 
lar acceleration of each joint can be found from the 
dynamical equations of motion, if the amount of joint 
torque(s) produced by the muscle is (are) known. For 
example, the contribution of soleus joint torque to the 
angular accelerations of the ankle, knee, and hip dur- 
ing flat-footed standing can be found from equation 
(2) by setting all joint torques to zero, except the 
ankle joint torque produced by soleus. Thus: 

where TAg is the extensor joint torque produced by 
soleus at the ankle, and ai, (i=1,2,3) are the first 
column elements of M .‘($). The ankle joint torque 
developed by soleus therefore contributes CX,,T,~~~, 

%T,.%: &,T,::,L radlsec’ to ankle, knee, and hip 
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angular accelerations, respectively. Notice that the 
only time soleus will just contribute to ankle angular 

acceleration is when a,, and CC,, are both zero. In fact, 
from equations (2) and (3), it should be clear that the 
only way any uniarticular muscle crossing the ankle, 
knee, or hip will contribute to the angular acceleration 
of only the joint it spans will be for M’($) to be di- 
agonal (and thus also M(q)). This situation rarely, if 
ever. occurs. Thus a uniarticular muscle will, in 
general, contribute to the angular acceleration of at 
least one joint it does not span in a multijoint motor 

task. 
If the amount of joint torque produced by a muscle 

is unknown, the amount of angular acceleration of one 
joint relative to another caused by the force in a 
muscle can still be computed. For example, the rela- 
tive joint angular accelerations produced by a force in 
the soleus muscle during flat-footed upright standing 

are (~rr,,k,r:iP;Ir,,er:~6,p)SOL = (%:%:%) = (1:2: 1) [see 
equation (3)]. Thus soleus acts to accelerate the knee 

about 2x more than the ankle and hip in this posture. 
Because a!,, > 0 (i=1.2,3), soleus acts to accelerate all 
three joints into extension. 

The contribution of the force in a biarticular 

muscle to the net angular acceleration of each joint 
can similarly be found from the summed joint angular 

accelerations caused by each of the joint torques pro- 
duced by the biarticular muscle. For example, the 
contribution of the force in gastrocnemius during 
Ilat-footed standing is given by: 

where a,, (i=1,2,3) are the second column elements of 

W’(q). Notice that the contribution of the force in 
gastrocnemius to the angular acceleration of each joint 
is just the sum of the angular accelerations caused by 

its two joint torques [e.g., (C,,,,),, = cI,,T,gf + 
CX,,~‘,,?~‘]. Since each of the two joint torques produced 
by a biarticular muscle acts to accelerate all joints, a 

biarticular muscle, like a uniarticular muscle, acts to 
accelerate all joints and segments. However, the angu- 
lar acceleration of one joint relative to another caused 
by a biarticular muscle depends on the elements of not 
just one column of M’(Q), but on two columns, as 
well as on the ratio of the joint torques produced by 
the muscles (or, equivalently, the ratio of the moment 
arms of the muscle at the two joints) (Zajac and 
Gordon, 1989). 

Finally, it is worth mentioning that the inverse 
mass matrix [W(+)] is an important geometric trans- 
formation because it describes how a joint torque, 
whether produced by muscles, joint motion, or gravity, 
affects the angular accelerations of the joints (e.g., see 
equation (2)). Thus the properties of M-‘(Q) (or. equi- 
valently. M(Q)) are critical to understanding how 

forces contribute to joint angular accelerations. How- 
ever, W’($) depends not only on body inertial param- 

eters and relative segmental orientations ($). but also 
on the kinematic constraints (e.g., one or both feet on 
the ground; hands touching a wall). That is, the 
equations of motion [and thus W’($)] are, in general, 
task-dependent. Thus how joint torques are trans- 
formed into joint angular accelerations changes from 
task to task, and how a muscle acts to accelerate the 
joints also changes from task to task (Zajac and 
Gordon. 1989). 

A biarticular muscle can act to accelerate the joints it 
spans opposite to the joint torques it produces 

A consequence of inertial coupling is that a 
biarticular muscle may act to accelerate one of the 

joints it spans opposite to the joint torque it produces 
at the joint (Andrews, 1985; Andrews, 1987; Gordon 
et al., 1988; Zajac and Gordon, 1989). For example, 
gastrocnemius may act to accelerate either the knee 
into extension or the ankle into flexion, even though it 
develops knee flexor and ankle extensor joint torques 

(Gordon et al., 1988; Zajac and Gordon, 1989). In 
fact, during upright standing, gastrocnemius may 
indeed act to accelerate the knee into extension be- 
cause its ankle extensor joint torque acts to extend the 

knee much more than its knee flexor joint torque acts 
to flex the knee [e.g. from equation (4) ($;,J,r > 0 
(extension) even though r&zT~,~~CA;AS c 0 (flexion) be- 

cause az,rl$f + rX,,T~~~’ > 0 (extension) 1. Of course, 

in other postures, or in other motor tasks, gastroc- 
nemius may act to accelerate the knee and ankle in 
one of the other two ways (Fig. 3). All three situations 
are theoretically possible (Fig. 3). However. gastroc- 
nemius cannot act to accelerate simultaneously the 
knee into extension and the ankle into flexion (i.e., a 
biarticular muscle can never act to accelerate both of 
the joints it spans simultaneously opposite to its two 
joint torques). 

Stimmary 

Understanding how a muscle contributes to the 
movement of the segments and joints during multijoint 
motor tasks is challenging, in part, because a muscle 
acts to accelerate all segments and joints, sometimes 
in directions that are antithetical to its anatomical 
classification. Thus. all muscles contribute to the 
control of each joint and segment. Furthermore, their 
contributions may be task dependent. Modeling (e.g., 
generating the forward dynamical equations of 

motion) is essential to comprehend multimuscle 
dynamical control of movement, 

INTEGRATING EXPERIMENTS AND MODELS TO STUDY 
MUSCLE COORDINATION 

Two modeling approaches are used to interpret 
experimental data. One is based on a forward dynam- 
ics representation of the body (Fig. 4A), which 

emulates how neuromuscular control signals actually 
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original position knee flexes 
ankle extends 

c-o-“-s 
knee flexes knee extends 
ankle flexes ankle extends 

Fig. 3. Angular acceleration of the joints spanned by a biart- 
icular muscle can be opposite to the joint torques it produces. 
A muscle can act to accelerate the joints it spans only in 
directions compatible with shortening of the muscle. Three 
conditions are possible for a biarticular muscle (e.g., GAS). 
GAS, originally in some position (A), may act to accelerate 
the knee into flexion and the ankle into extension (B), consis- 
tent with its anatomical classification. Or GAS may act to 
accelerate the knee into flexion and the ankle into flexion 
(C), or the knee into extension and the ankle into extension 
(D). The fourth condition (not shown) is impossible because 
GAS, by shortening, cannot act to accelerate simultaneously 
both the knee into extension and the ankle into flexion. 
Which of the three possible conditions (B, C, D) occurs at 
any instant during a motor task depends on the inertial inter- 

actions among the segments at that instant. (See text). 

produce movement; the other on an inverse dynamics 
representation (Fig. 4B) (see review, Zajac and 
Gordon, 1989; Zajac and Winters, 1990). 

Inverse dynamics approach 

Models based on inverse dynamics have been used 

extensively. The joint angles of the body are measured 
(Fig. 4B; @,,...,$,,) and the net joint torques produced 
by muscles calculated (Fig. 4B; T,“‘“,...,T,,“‘“). When 
possible, forces acting on the body, such as from the 
ground, are measured so as to reduce reliance on 
velocity and acceleration estimates. Unfortunately, the 
actual muscle forces (Fig. 4B; F’,...,F”‘) producing the 
net muscle joint torques are not resolvable (i.e., 
muscle redundancy exists) because the moment arm 
matrix R(q) is not square (Fig. 4B; R -‘($) does not 
exist). Additional assumptions are then invoked to 
relate how to distribute the net joint torques at each 
instant into muscle forces at that instant (e.g., 
minimize some function of muscle forces using a 
static optimization algorithm). Unfortunately, these 
assumptions may have little physiological basis. Even 
if estimation of these forces was correct, inverse dyn- 
amics models cannot be used to ascertain how these 
forces affect the motion of body joints and segments. 

Forward dynamics approach 

A forward dynamics model must be postulated to 
study how muscle forces affect motion. Such models 
are meant to represent how the body actually does 
produce movement; i.e., how the body transforms 
neuromuscular excitations (Fig. 4A; Eh4G ‘,...,Eh4G”), 
muscle force trajectories (Fig. 4A; F ‘,...,F”‘), and 
muscle joint torque trajectories (Fig. 4A; T,“““,...,T,,“‘“), 
into joint angular accelerations (Fig. 4A; $,,...,@,) and 
movement trajectories (Fig. 4A; $I ,,..., Q,,;(j) ,,..., &). It is 
important to recognize that the position, orientation, 
and the motion of the body segments at some instant 
(Fig. 4A; $ ,,..., $,,; 4 ,,..., 4.) depends on the previous 
history of applied forces (i.e., on the force trajectories) 
and not just on the current muscle forces (Le., the 
system has dynamics). Thus the future consequence of 
muscle forces on movement of the body is unaccount- 
ed for when static optimization is used, such as with 
inverse dynamics models to calculate muscle forces. 
On the other hand, the forward dynamics approach has 
been employed much less than the inverse dynamics 
approach because it is difficult to find a set of neuro- 
muscular excitation signals (or muscle forces) that, 
when provided as inputs to a forward dynamics 
model, produce a coordinated movement (i.e., a simu- 
lation of the movement) (see below). 

Compatibility of inverse dynamics and forward 
dynamics models 

Can a forward dynamics model that exactly repli- 
cates the inverse model be used to find how muscle 
forces estimated from the inverse model affect motion 
of the body joints and segments (e.g., Fig. 4A For- 
ward Multijoint Dynamics, as a replica of Fig. 4B 
Inverse Multijoint Dynamics)? In theory, yes. In prac- 
tice, hardly. A test to see if this is reasonable is to 
apply the estimated muscle force (or net muscle joint 
torque) trajectories to the forward dynamics model 
(Fig. 4A) and see if the actual measured movement 
results. Usually the measured movement is not repro- 
duced because (i) the two models are not exact repli- 
cas (e.g., in the inverse model, ground reaction forces 
may be used in lieu of some kinematics to estimate 
forces); and (ii) acceleration and velocity estimates 
from position data are inaccurate, and thus the net 
muscle joint torque (and muscle force) estimates as 
well. Nevertheless, such checks on how well inverse- 
model estimates of muscle forces (or net muscle joint 
torques) can produce a simulation are rarely done, 
though such checks seem logical and necessary to 
study how muscle forces affect body motion. 

Producing simulations of muscle coordinated 
movement to best replicate kinesiological data 

One way to utilize a forward dynamics approach to 
study muscle coordination is to produce the best 
possible simulation compatible with the measured 
kinetic and kinematic data (Belzer et al., 1985; Chao, 
1986). Specifically, the method is to: (i) formulate a 
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Fig. 4. Forward dynamics (A) and inverse dynamics (B) representation of the musculoskeletal system. (A) The 
body controls movement by sending neuromuscular excitation signals @MC’,..., EMG”) to muscles, which 
low-pass filter these signals (Muscle/Tendon Dynamics) to produce forces (F I,..., F”‘). These forces develop joint 
torques (T,“‘“..... T,““), which depend on the relation of the muscles to the joints (i.e., joint geometry, R(o). The 
net joint torques (T,“““,.... T,““) produced by all the muscle forces cause the joints to have angular acceleration 
instantly (i$ ,,.,_, ip,,), and motion and different angles later (9, ,.._, $,;$ ,,_,., 4”). The relation between kinetics and 
kinematics is given by the dynamical equations of motion (Forward Multijoint Dynamics). The transformation 
between joint torques and joint angular accelerations is given by the mass matrix inverse [M”($)], whose prop- 
erties can be task-dependent and can even change during a motor task. Joints are assumed to be frictionless pin- 
and ball-and-socket joints, and at least one point on the body is assumed to be stationary. With these assump- 
tions, all the translational accelerations are functions of joint angular accelerations, velocities, and angles. Thus 
joint angles can be used as the generalized coordinates for the equations of motion (Kane and Levinson, 1985). 
(B) Net muscle joint torques (T,““,..., T,,“‘“) can be found from kinematics and the inverse dynamical equations of 
motion (Inverse Multijoint Dynamics). Individual muscle forces cannot be found without additional assumptions 

because R(e) is not square; so R -I($) does not exist. (See text). (Modified from Zajac and Gordon, 1989). 

forward dynamics model (Fig. 4A); (ii) collect 
kinesiological data (e.g., body segmental, ground 
reaction force, and EMG trajectories); (iii) compute 
the neuromuscular excitation (EMG) trajectories that, 
when applied to the forward dynamics model, give the 
best fit to the measurements (e.g., in the least 
mean-square sense with measurements not necessarily 
weighted equally); and (iv) analyze the EMG, force, 
and kinematic simulated trajectories to understand 
muscle coordination of this task. A dynamic 
optimization algorithm should be used to compute the 
neuromuscular excitation inputs (e.g., Fig. 4A; 
EMG’..... EMG “‘) since it considers the future conse- 
quences of input control signals on body movement 
(cf. static optimization, see above). Unfortunately, 
robust algorithms for solving high-dimensional, 
complex non-linear optimal control problems are far 
from well developed (Sim, 1988; Sim et. al., 1989a; 
Pandy ef al., 1992). Finally, with this forward dynam- 
ics approach, it is important to recognize that one 
cannot easily gain insight into why the central nervous 

system is coordinating muscles the way it does (cf. 

see below). 

Producing simulations of a motor task by modeling its 
purpose 

Another way to produce a forward dynamics simu- 
lation of a motor task in order to study muscle coordi- 
nation is to pose and solve an optimal control problem 
based on a complete model of the motor task. As with 
the other use of optimal control (see above), a forward 
dynamics model must be formulated and a dynamics 
optimization algorithm used. In this case, however, the 
purpose of the motor task must also be stated math- 
ematically. The dynamic optimization algorithm is 
now used to find the control trajectories (e.g., the 
neuromuscular excitation signals) that best performs 
the hypothesized purpose of the motor task rather than 
to find the best tit to the data. In solving this optimal 
control problem, not only are the neuromuscular excit- 
ation signals found, but the consequent muscle forces 
and body movement as well. Naturally, all these 
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predicted trajectories (or any function of them), can be 
compared to kinesiological data. Notice that if the 
simulation is a reasonable facsimile of the actual 
behavior, then not only have the kinetics, kinematics, 
and muscle coordination of the motor task been simu- 
lated, but what the person is trying to achieve as well 
(at least such a postulate would be reasonable). 

Of course any simulation of a motor task is imper- 
fect. However, by comparing the simulation with the 
biomechanical and kinesiological data, insight into 
those assumptions that ought to be reconsidered is 
gained. Because ail components of the motor task 
must be modeled to produce a simulation of the motor 
task, those assumptions believed to be weak and to 
which the simulation is affected significantly should 
be the reconsidered ones (e.g., see “Muscle Coordina- 
tion in Vertical Jumping: A Case Study”). 

Summary 

Inverse dynamics, though extensively used, is not 
an ideal method to study muscle coordination of 
movement. In contrast, forward dynamics, which 
represents the way the body actually processes neuro- 
muscular excitation signals to produce movement, is. 
Optimal control theory, which requires the formulation 
of a forward dynamics model, can be used to produce 
movement simulations. These simulations can either 
attempt to replicate experimental data well, without 
hypothesizing the purpose of the motor task, or other- 
wise generate muscle and movement trajectories that 
best accomplish the hypothesized task. In both cases, 
the simulations can be analyzed to study muscle co- 
ordination. However, simulations generated from 
models where the purpose of the task is hypothesized 
have much more potential of providing insight into 
why the central nervous system is coordinating 
muscles the way it does. All simulations will, of 
course, be imperfect. Analyzing these imperfections 
suggests which assumptions should be reconsidered. 
As a consequence, a better model of the neuro- 
musculoskeletal control system can be posed. 

MUSCLE COORDINATION IN VERTICAL JUMPING: A 
CASE STUDY 

Maximum-height vertical jumping, starting from 
either a squat or a standing posture, is a task requiring 
muscle coordination, first for propulsion, and then for 
airborne control in preparation for landing. HOW the 
body coordinates the body segments and muscles to 
accomplish propulsion has and continues to be exten- 
sively studied (e.g., Asmussen and Bonde-Petersen. 
1974; Komi and Bosco, 1978; Bobbert et al., 1986a,b; 
Bobbert and Ingen Schenau, 1988; Fukashiro et al., 
1991; Van Soest and Bobbert, 1991; Voigt et al., 
1991). What follows is a review of how we have 
integrated models and experiments to gain insight into 
some biomechanical and neuromuscular control issues 
relevant to jumping propulsion. We define propulsion 
during jumping to be the time when the feet touch the 

ground prior to body lift-off. Propulsion includes, 
therefore, the time when the body center of mass 
accelerates upwards (upwards propulsion), as well as 
any other time prior to lift-off when the body deceler- 
ates (downwards propulsion). 

The issues to be discussed in regard to propulsion 
during vertical jumping are: 
1. 

2. 

3. 

4. 

5. 

Should lower limb muscles be fully excited? If so, 
which ones and when? 
Is jumping height more sensitive to muscle 
strength, or to speed? 
Is elastic energy storage important to achieving 
maximum jumping height? 
What is the purpose of the initial downward 
motion (countermovement) of the body? 
What is the role of uniarticular leg muscles? Of 
biarticular leg muscles? 

Should muscles be fully excited? 

To analyze this question, we solved an optimal 
control problem based on a model of the motor task; 
i.e., jump as high as possible. The problem formulated 
was, given a multisegmental, multimuscle model of a 
human (or animal), how should the muscles be coordi- 
nated for the body’s center of mass to reach its high- 
est achievable height (Zomlefer et al., 1975; Zajac and 
Levine, 1979)? Assuming the feet are never flat on the 
ground during propulsion, the solution suggested that 
some muscles (e.g., uniarticular extensors) should be 
excited as much as possible, others not at all (e.g., 
uniarticular flexors), and still others switched from 
one extreme to the other (e.g., biarticular muscles) 
(Zajac and Levine, 1979). 

However, when it is assumed that the feet are 
initially flat on the ground, the solution suggests that 
whether the jump starts from a squat (squat jump, SJ) 
or from a standing posture, where the body initially 
moves downward (countermovement jump, CMJ), this 
‘on-off’ muscle control strategy should only be imple- 
mented just prior to body lift-off when the heels no 
longer contact the ground (Zomlefer et al., 1975; 
Levine et al., 1983b, 1987). The reason on-off control 
does not necessarily apply earlier is that a jumper 
must coordinate his muscles to avoid premature 
lift-off of the body. That is, a jumper, in trying to 
maximize his vertical velocity at lift-off, may want to 
accelerate upwards at first less than maximally in 
order to prolong upwards propulsion rather than accel- 
erate maximally outright for a short time (see below). 
Keeping the feet initially flat on the ground is how a 
jumper achieves maximum lift-off velocity. (Large 
changes in jump height occur because of changes in 
the vertical velocity of the body at lift-off rather than 
from changes in its height at take-off). This two-phase 
propulsion strategy (a ‘non on-off’ strategy before 
heel-off, and an ‘on-off’ strategy afterwards) is quite 
robust to the details of the multimuscle, multijoint 
model (Levine et al., 1983b); e.g., it is generalizable 
to any number of segments arranged in an open kin- 
ematic linkage (Levine et al., 1984, 1987). 



Muscle coordination of movement 117 

The state trajectories during the ‘heel-off propul- 
sion phase’ are unique, not only in the kinematics, but 

in the muscle forces and in the other states used to 
model muscle dynamics (e.g., muscle activation, 
Zajac, 1989). For a time preceding heel-off, however, 
only unique kinematics are required, which can be 
achieved with a variety of muscle force trajectories 
(Levine et al., 1983b, 1984, 1987). Prior to this epoch, 
there is not even uniqueness in the kinematics. Thus 
the optimal control strategy for maximum-height 
jumping can, in theory, be partitioned into three rather 
than two contiguous epochs; however, designing ex- 
periments to see if two distinct epochs exist in the 
‘flat-feet propulsion phase’ is difficult (Levine et al., 
1987). Nevertheless, kinematic, force-plate, and EMG 
data from humans and cats jumping to their maximum 
achievable heights support the overall two-phase 

propulsion-strategy theory (Levine et al., 1983b, 1984, 
1987; Zomlefer et al., 1977; Zajac et al,. 1981; Zajac, 

1985). 
The notion of a perfect separation in strategy be- 

fore and after heel-off should not, however, be held 
too strictly. The separation in strategy is based on the 
assumption that the toes have point contact with the 
ground after heel-off. But if the toes are considered to 
be another rigid body being coordinated, then only the 
epoch subsequent to metatarsal lift-off would demand 
an on-off control strategy. And of course the feet and 

toes are not rigid bodies. The major conclusion is that 
as the physical constraints become inactive during 

propulsion (e.g., first with the heels and then with the 
metatarsals losing contact with the ground), muscle 
coordination should become more stereotyped. 

In addition, the notion that some muscles (e.g., 
uniarticular leg extensor muscles) should be excited 
just prior to and at lift-off is actually counter to intra- 
muscular EMG recordings, probably because the joints 
would otherwise hyperextend (Zajac, 1985). Neverthe- 
less, the consequent deceleration of the body center of 
mass is counter to jumping as high as possible since 

the strategy of exciting uniarticular extensor muscles 
fully to lift-off is robust to the details of the model. 
Of course jumpers might not want to implement ex- 
actly the optimal strategy for jumping as high as 
possible because they may want to jump again (e.g.. 
their joints might otherwise be seriously injured be- 
cause of hyperextension). Though our models have not 
included such factors (e.g., reflexes to protect joints). 
the results from our models support the existence of 

such protective reflexes. 

Is jumping height more sensitive to muscle strength or 
to speed? 

If you could choose between the two, strengthen 
your muscles rather than condition your muscles to be 
.‘aster. This answer follows from solving optimal 
control problems based on a model of the motor task 
(i.e., jump as high as possible; Sim, 1988; Sim et al., 
1989a), where each problem assumed a different 
muscle strength or speed (Pandy and Zajac, 1989; 

Pandy, 1990). The nominal musculoskeletal model 

used in the formulation of the optimal control problem 
consisted of four body segments, and five uniarticular 

and three biarticular leg muscles, where each muscle 
was assumed to have both activation and contraction 
dynamics (Fig. 5; Sim, 1988; Sim et nl., 1989a; Pandy 
et al., 1990). We found that the body-segmental and 
muscle coordination patterns that should produce the 
highest height jump resembled those of jumping hu- 
man subjects (Fig. 6, stick figures; Pandy Ct al., 
1990). Thus, the experimentally observed and theoreti- 
cally produced ground reaction forces, kinematics, and 
muscle coordination patterns were found to be quite 
similar (e.g., Fig. 6). The simulated SJ begins with a 

countermovement (Fig. 6, 0% to 40% of ground con- 
tact time), consistent with how human subjects start 

their jump (Pandy et al., 1990; Pandy and Zajac, 
1991). 

Because the simulated SJ emulated human jumping 
well, we felt comfortable in using the optimal control 
model to study how sensitive SJ height is to changes 
in musculoskeletal parameters (e.g., muscle strength 
and speed). Changes in muscle speed were implement- 
ed by changing the intrinsic shortening speed of the 
muscle fibers in all eight simulated leg muscles (i.e., 
the speed of the muscle fibers was changed by making 

Fig. 5. Musculoskeletal model used in the formulation of an 
optimal control problem to study maximum height jumping. 
Sagittal plane motion is assumed. Four body segments repre- 
sent the multijointed skeleton (feet, shanks, thighs, 
head-arms-trunk). Eight muscle groups control body move- 
ment (GMAX: gluteus maximus and the other uniarticular 
hip extensor muscles; HAMS: hamstrings; RF: rectus 
femoris: VAS: vastus lateralis, medialis, and intermedius; 
GAS: gastrocnemius lateralis and medialis; SOL: soleus; 
OPF: the other plantarflexor muscles; TA: tibialis 

anterior and the other dorsiflexor muscles). 
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Fig. 6. Optimal control solution for a maximum-height squat 
jump. Stick figures (and video display of body segmental 
motion; not shown) show how the body segments should be 
coordinated during propulsion for the body center of mass to 
subsequently achieve while airborne its maximum-achievable 
height. Vertical and horizontal ground reaction forces are 
similar to those produced by human subjects. Notice that the 
vertical force initially falls below body weight, indicating that 
a countermovement may be optimal even in a squat jump 
(see text). The force oscillations are a result of imperfect 
modeling of the interaction between the feet and the ground, 
and computational limitations of the optimization algorithm. 

(Modified from Pandy et al., 1990.) 

fiber speed per unit length faster or slower and not by 

making the fiber longer or shorter). Changes in muscle 
strength were implemented by changing the physiolog- 

ical cross-sectional area (and mass) of all muscles and 
keeping muscle stress the same (cf. changing muscle 

stress and keeping the area, and mass, the same). 
Unsurprisingly, SJ height was found to be higher 

as muscles become stronger or faster (Pandy and 
Zajac, 1989; Pandy, 1990). With stronger or faster 
muscles, the force exerted by the body on the ground 
was higher, though the duration of the upwards pro- 
pulsive force was shorter. Nevertheless, the vertical 
velocity of the body at take-off was still larger, and 

thus a higher height achieved. Since jump height was 
found to increase about linearly at about 120% and 
60% for a 100% increase in strength and speed, re- 
spectively, it seems better to strengthen muscles than 
to condition muscles to be faster (if that could be 
possible), at least in a SJ (sensitivity of CMJ height to 
muscle strength and speed has not been studied). 

Is elastic energy storage important to achieving 
maximum jumping height? 

Data from simulated jumps suggest that storage of 
elastic energy in musculotendon elastic structures is 
unimportant to achieving maximum jump height. 

Solutions to the multijoint, multimuscle optimal con- 
trol problem discussed above showed that SJ and CMJ 
height is insensitive to large and small changes in 
musculotendon compliance (Pandy and Zajac, 1989; 
Pandy, 1990; Anderson and Pandy, 1992). Changes in 
musculotendon compliance were implemented by 
changing the tendon elastic stress-strain curve (cf. 
changing tendon length) of either the plantarflexor 
(Pandy and Zajac, 1989) or the major energy- 
producing muscles in the jump (Anderson and Pandy, 
1992). 

The low sensitivity of CMJ height to compliance 
may seem unexpected. However, series compliance 

slows the dynamic response of musculotendons, just 
as slowly-contracting muscle fibers do (Zajac, 1989). 

If the dynamic response of the musculotendons is slow 
relative to propulsion dynamics, as is indeed the case 
in jumping, then changes in musculotendon compli- 
ance will affect significantly the responsiveness of the 

musculotendons. Thus, perhaps the small positive net 
effect an increase in musculotendon compliance has 
on jumping height occurs because a large positive 
effect, resulting from the ability of the musculoten- 

dons to store and release elastic energy, is significant- 
ly offset by a negative effect, resulting from their 
inability to develop force fast. 

Though simulation data suggest that storage of 
elastic energy in musculotendons is unimportant to 
achieving maximum jump height, this is not to say 
that significant elastic energy is not stored in these 
structures during propulsion. In fact, simulation data 
show that high elastic energy is stored in musculo- 
tendons and utilized during jumping (Anderson and 

Pandy, 1992). For example, up to 70% of the energy 
delivered to the skeleton by plantarflexor muscles was 
found to come from stored elastic energy, consistent 
with or even higher than the calculations of others 
(Bobbert er al., 1986b). 

Musculotendon elasticity may, however, enable a 
CMJ jump to be performed efficiently (Anderson and 
Pandy, 1992). Simulations show that some of the 
gravitational energy from standing is indeed stored 
and utilized in musculotendon elastic structures 

(Anderson and Pandy, 1992). Furthermore, with in- 
creases in musculotendon elasticity, more energy is 
stored and utilized in these elastic structures and less 
energy is delivered to the skeleton by the contractile 
apparatus. Perhaps, as a result, less metabolic energy 
is utilized. Thus, just as animals can hop efficiently by 
having compliant tendons (e.g., Alexander and 
Bennet-Clark, 1977; Morgan et al. 1978). it may be 
that so too could humans if they had compliant ten- 
dons. 

Could energy be stored in elastic structures other 
than musculotendons during the countermovement and 
later be recaptured to enhance lift-off velocity of the 
body? The feet are a candidate because they are elas- 
tic (Ker et al., 1987) and storing energy in elastic 
structures that make contact with the ground during 
countermovement, such as the feet, theoretically can 
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Fig. 7. Optimal strategies for a rod driven by a torque to ‘jump’ as high as possible. (A) A torque generator T is 
assumed to develop only extensor torque on a rod, but the results are generalizable to a flexor/extensor torque 
generator. The rod is assumed to make frictionless, no-slip point contact with the ground as long as the vertical 
ground reaction force is positive (i.e., F, > 0). The rod lifts off the ground (‘jumps’) when F, = 0. (B) The height 
and vertical velocity of the center of mass (em.) of the rod specify the state of the dynamical system since the 
torque generator is assumed to lack dynamics. From any initial state, the optimal feasible trajectory for 
propelling the c.m. (or the tip) of the rod as high as possible can be found. For the rod initially flat on the 
ground and at rest (point o) the trajectory is cc. Point c, being the rod’s height and velocity at lift-off, determines 
jump height. The rod jumps higher if it has momentum when initially flat (trajectory de). The control strategy is 
to fully excite the extensor torque generator when the initial state resides in the region ‘Go for it’. When in the 
region ‘lie down’, the strategy is to let the rod first fall to the horizontal resting position (i.e., point o) and then 
fully excite the torque generator (e.g., if the rod is initially at an inclination, point f, a torque control should be 
employed that first brings the rod to the horizontal resting position, point o, which, after the subsequent full 
thrust, leads to a higher jump, point c, than what would have been achieved with full thrust outright, point g). 

(See text). 

lead to higher jumps (Levine and Zajac, 1984). Future 
simulations are needed, however, to resolve whether 

this suggestion is tenable. 

Why countermove? 

In jumping from a full upright standing position 
the body must first countermove to a squat. In fact, 
subjects even countermove when they start jumping 
from a squat, in agreement with simulated optimal 
jumps (Pandy et al., 1990; Pandy and Zajac, 1991). 
Many biomechanical and physiological mechanisms 
potentially interact in executing an optimal counter- 
movement strategy. Also, there may be non-unique 
optimal strategies in this preparatory phase of the 
jump (see above). Overwhelming evidence supporting 
any one mechanism is non-existent. However, as 
simulations of maximum- height jumping become 
easier to compute (see “The Future: Will Muscle 
Coordination Principles Emerge?“), we should be able 
to gain more insight. 

Nevertheless, simulations and analyses of jumping 
to date have helped to delineate the issues. First, let us 
remember that in attempting to jump as high as pos- 

sible, we want to have as much take-off vertical ve- 
locity as possible. We can maximize vertical take-off 
velocity by either increasing the duration of upwards 
propulsion (i.e., the time when the body center of 
mass accelerates upward) or the vertical acceleration 
of the body during upwards propulsion (i.e., the verti- 
cal ground reaction force). Countermoving to a deep 
squat seems to lengthen upwards propulsion duration. 
It may also cause higher vertical acceleration, espe- 
cially at the beginning of the upward movement of the 
body (Asmussen and Bonde-Petersen, 1974; see later). 

Let me describe results from a simple model 

(Roberts er nl., 1979; Levine et al., 1983a) that sup- 
port the notion that the countermovement enables 
upwards propulsion duration to be longer (Anderson 
and Pandy, 1992). The simple model consists of just 
one segment (a rod) being propelled by a controllable 
extensor torque generator (Fig. 7A). With this model 
we formulated and solved analytically an optimal 
control problem that approximates jumping (Roberts et 
al., 1979; Levine er al., 1983a). That is, assuming the 
rod could have any initial kinematic state (e.g., rod 
height and vertical velocity), we found how a bounded 
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extensor torque generator must be controlled to propel 
the rod’s center of mass (c.m.) or tip as high as pos- 
sible. The solution suggests a basic strategy consistent 
with the more complex models (see above). The more 
extensor torque the generator can produce (cf. exten- 
sor muscle strength), the higher the jump, regardless 
of the initial kinematic state. If the rod is resting on 
the ground (cf. the best resting deep squat position), 
the strategy is to turn the generator on fully through- 

out propulsion until lift-off (Fig. 7B, trajectory oc). 
(Notice that the two-phase control strategy associated 
with jumps starting from a deep squat is not predicted 
from this one-segment model and is, thus, a result of 
the body being multijointed; see above). 

The solution shows that it is better to start the 
upwards movement of the rod from a horizontal posi- 
tion (cf. a deep squat) rather than from a higher posi- 

tion (Roberts et al., 1979; Levine et al., 1983a) be- 
cause upwards propulsion duration is longer (Ander- 

son and Pandy, 1992). Therefore, if the rod is initially 
inclined to the horizontal (cf. not in a deep squat; Fig. 
7B, lie down region; e.g., point 8, the optimal control 

strategy is first to let it fall to the ground to point o 
(cf. countermove to a deep squat) rather than to fully 
excite the extensor torque generator outright and have 

the rod be propelled upwards (cf. propel the body 
upwards without countermovement; Fig. 7B, trajectory 
fg). After the rod falls to the ground, the extensor 
torque generator should be fully excited until lift-off 
(i.e., the rod follows trajectory oc). The rod now 

elastic 
energy 

jumps higher than it would have, had it not at first 
fallen to the horizontal position (compare point c with 
g). Optimal control simulations of jumping using our 
more complex model of the body suggest that prolon- 
gation of the upwards propulsion duration is the key 
benefit received from a countermovement (Anderson 
and Pandy, 1992). 

The solution also shows that the rod should be 
exerting as much propulsive torque as possible when it 
starts upwards from this lowest position, the deep 
squat (cf. the body should have as much vertical ac- 
celeration as possible when it starts moving upwards; 
Roberts et al., 1979; Levine et al., 1983a). Thus, if 
the extensor torque generator should behave like a 
low-pass filter in generating force to neural excitation 
(and a muscle certainly does since force does not 
develop instantaneously; Zajac, 1989), then the opti- 

mal strategy is to have the extensor torque generator 
brake the countermovement so that high torque will be 

exerted on the rod when it reaches the horizontal 
position. This suggests that the energy-producing 
muscles of the jump (see below) should be excited not 
just to brake the fall during countermovement, but 
brake the fall in such a way that high vertical accel- 
eration of the body is attained as it begins to move 

upwards (Asmussen and Bonde-Petersen, 1974; Levine 
et al., 1987). 

Finally, other results from this model show that if 
the rod makes an elastic collision with the ground as a 

result of a countermovement (cf. the feet being elastic 

enhanced muscle 
force-velocity pre-tensing 

Fig. 8. Cartoon showing three mechanisms for why a countermovement may lead to a higher jump height. Initial 
upright position of the body before it countermoves is shown at the left. The mechanisms are: (i) elasric energy, 
stored in stretched musculotendinous structures during the countermovement, is subsequently recaptured during 
upwards movement of the body; (ii) muscle-fiber pm-stretching causes an enhanced force-velocity relation during 
upwards movement of the body; and (iii) a better kinematic and muscle state is reached, such as muscle 
‘pm.-tensing’, from which to launch upwards propulsion. Modeling data suggest that the dominant factors 
affecting jumping height are an enhanced force-velocity relation and muscle pre-tensing. Though elastic energy 

storage is high in jumping, it is unimportant to performance. (See text). 
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and the heels slapping the ground during the counter- 

movement), then elastic energy storage and release 

causes a higher jump (Levine and Zajac, 1984). The 
reason is that the rod’s downward momentum is con- 
verted into upward momentum, a better initial state 
from which to begin upwards propulsion (Fig. 7B, 
compare point d with o and trajectory de with oc). 

In summary, it seems that the body should counter- 
move to a deep squat to compensate for the lags asso- 
ciated with muscle force buildup, thereby enabling the 
body to attain high upwards vertical acceleration at 
the moment the body moves upwards (Fig. 8, muscle 
pre-tensing). In addition, muscles may be ‘temporarily 
stronger’ during upwards movement of the body be- 

cause of prior stretching of activated muscle fibers 
during the braking of the countermovement (Fig. 8, 
enhanced force-velocity; Cavagna et al., 1968). 
Countermovement prolongs upwards propulsion (the 

time when the body center of mass accelerates up- 
ward) and this seems to be very important. Storage 

and release of energy in elastic ankle, knee, and hip 
musculotendon structures seems to be not important to 

‘wo[M usculotendon Power 
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Fig. 9. Musculotendon power during propulsion calculated 
from the optimal control solution for a maximum-height 
squat jump. Uniarticular muscles provide most of the power 
and energy (GMAX, VAS, UPF). Biarticular muscles 
fine-tune the coordination (GAS, HAMS, RF), especially as 
lift-off approaches (i.e., lift-off occurs at 100% of ground 
contact time). UPF (uniarticular planttiexors) are the SOL 
and OPF muscles. See Fig. 5 for muscle nomenclature. 

(Modified from Pandy and Zajac, 1991.) 

upwards propulsion (see above; Fig. 8, elastic energy), 
though storage of elastic energy in the feet may be. 

What is the role of uni- and bi-articular muscles? 

In a SJ, our experimental studies suggest that 
uniarticular extensor muscles provide most of the 
propulsive mechanical energy (i.e., they are the prime 
movers), uniarticular flexor muscles are virtually 
non-participatory, and biarticular muscles fine-tune the 
coordination. We found that uniarticular extensor 
hindlimb muscles of cats jumping to their maximum- 
achievable height are maximally excited after heel-off, 
uniarticular flexor muscles are inactive, and biarticular 

muscles (except gastrocnemius) are deactivated (Zom- 

lefer et al.. 1977; Zajac et al., 1981; Zajac, 1985). 
Prior to heel-off, in preparation for the explosive 2nd 
propulsion phase of jumping, cat biarticular posterior 
thigh muscles (Le.. hip extensor/knee flexor muscles) 

exhibit much more variability than uniartic-ular pos- 
terior thigh muscles (i.e., hip extensor muscles). con- 
sistent with the notion that biarticular muscles 
fine-tune coordination (Zajac, 1985). 

Solutions from our multisegmental, multimuscle 
optimal control model of maximum-height human 
jumping also suggest that uniarticular extensor 
muscles are the prime movers and biarticular muscles 
fine-tune the coordination in both a SJ (Fig. 9; Pandy 
and Zajac, 1991) and a CMJ (Pandy et al., 1992). 

Notice the high power and energy (area under the 
curves) produced by the uniarticular muscles (GMAX, 
VAS. UPF) and the low power and energy developed 
by the biarticular muscles (GAS, HAMS, RF). Most 

of the mechanical energy generated by muscles goes 
into propelling the trunk because its mass dominates. 

Rectus femoris (RF) is excited even though it 
produces negative work throughout propulsion because 
the additional work produced by the other muscles as 
a result of RF being excited more than compensates 
for its negative work (Zajac and Pandy, 1992). This is 
what coordination is all about; i.e., muscles working 
together to achieve a common goal. Recent simula- 
tions of CMJs as well as SJs, where changes were 

made to the musculoskeletal parameters of the optimal 
control model. suggest that hamstrings play a more 
significant role as a prime mover than previously 
thought (Anderson and Pandy, 1992). Gastrocnemius, 
however, still seems to have the same role as the other 
plantarflexors (Pandy and Zajac, 1991; Zajac and 
Pandy. 1992). 

THE FUTURE: WILL MUSCLE COORDINATION 
PRlNClPLES EMERGE? 

Forward dynamics models can be extremely power- 
ful in elucidating task-specific muscle coordination 
principles (e.g.. optimal control models, see above). 
Why then have only a few motor tasks been studied 
with forward dynamics models (e.g., jumping, see 
above; Winters and Stark, 1985; Khang and Zajac, 
1989; Yamaguchi and Zajac, 1990; Self-Naraghi and 
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Winters, 1990; He et al., 1991)? And even for these 
tasks, why have models not been used more (e.g., to 
study fully the sensitivity of coordination to musculo- 
skeletal parameters or structure)? The reasons are: (i) 
the development of a sufficiently complex, realistic, 
multijoint, multimuscle forward dynamics model of 
the body requires considerable effort; (ii) the computa- 
tional time to find how the model-generated move- 
ment of the body responds to an assumed muscle 
excitation pattern is long; (iii) body segments are 
inadequately coordinated when assumed muscle excit- 
ation patterns are applied as inputs to a forward dy- 
namics model (even when the patterns are derived 
from EMG signals since these signals may just rough- 
ly correspond to the neural excitation signals of the 
muscle model); and (iv) dynamic optimization algor- 
ithms to iteratively find an acceptable muscle excit- 
ation pattern are few, not robust, and computer-time 
intensive. 

One possible solution is to develop an interactive 
computer graphics workstation environment that al- 
lows simulations of motor tasks to be generated more 
easily (Fig. 10). This environment could be structured 
to contain a variety of compatible software modules. 
Some modules might be commercial software, and 
others would have to be developed. The environment 
could be structured so a user would, first, develop a 
forward dynamics model of a specific motor task (Fig. 
10, State Equations); second, generate a simulation of 
the task (Fig. 10, Simulations); and third, display and 
compare the computer modeling data with experiment- 
al data (Fig. 10, Display). 

. 
/ \ 4 / 
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In this conception, the user would develop a for- 
ward dynamics model by user-friendly, menu-driven 
workstation interaction. The workstation would ensure 
that all software modules are compatible and transpar- 
ent to the user. The user would have to learn only one 
set of nomenclature. Graphic display and animation 
would facilitate model development. The user would 
be able to: 

(9 

(ii) 

(iii) 

(iv) 

(v) 

create a musculoskeletal model (e.g., specify the 
mass and geometry of the body segments, the 
kinematics of joints, and the musculotendon 
paths; Delp et al., 1990) (Fig. 10, Musculo- 
skeleton); 
create a dynamical model of how musculo- 
tendons generate force from muscle excitation 
signals (Fig. 10, Muscle-Tendon); 
generate the dynamical equations of motion of 
the body segments applicable to a specific 
motor task and the assumed musculoskeletal 
model (Fig. 10, Eqns. ofMotion); 
create a dynamical neural network model (Fig. 
10, Neural Networks); 
combine these dynamical models of the neural 

network, the musculotendons, and the body- 
segments to generate a forward dynamics model 
(Fig. 10, State Equations). 

Once the state equations (Le., forward dynamics 
model) were generated, the next step would be to 
generate a simulation (Fig. 10, Simulations). To gener- 
ate a simulation, an appropriate muscle excitation 
pattern must be applied as an input to the state 
equations. One approach would be to use observed 

AM4 

/Lu A A AA 
Optlmizatfon Data 

Naural fdehvork 

Fig. 10. Proposed interactive computer workstation environment to generate simulations of motor tasks. Modules 
Musculoskeleton, Muscle-Tendon, Eqns. of Motion, and Neural Network allow the user to develop the forward 
(or inverse, not shown) dynamical models of the neuromusculoskeletal system (the State Equations). 
Kinesiological Data and Optimization algorithms enable Sinudations to be generated. Both kinesiological and 
simulation data can be visualized (Display). Bounds on the accelerations achievable in a task (Feasibfe 

Accelerations) can be computed and displayed. (See text). 
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EMG patterns from which to estimate an initial guess 

(Fig. 10, Data) and then use a dynamic optimization 

algorithm (Fig. 10, Optimitntion) to modify this guess 
until the observed movement and kinetics of the body 
are simulated as well as possible. The other approach 
would be to postulate what the purpose of the motor 
task is and use a dynamic optimization algorithm to 
find the excitation pattern that best performs the task 
(See “Integrating Experiments and Models to Study 
Muscle Coordination”). 

The final step would be to display either simula- 
tion data, kinesiological data, or both (Fig. 10, Dis- 

play). Animations of the body could be one option 
since coordination is often subtle and requires dynam- 

ic visualization of motion of the body segments. Com- 
puting bounds on the accelerations the body can 
achieve in executing a motor task could be another 

(Fig. 10, Feasible Accelerations). Such bounds pro- 
vide insight into the extent to which the biomechanics 
or the nervous system dictates movement strategies 

(Kuo and Zajac, 1992, this volume). 
To conclude, we have developed and used forward 

dynamics models to study muscle coordination, e.g., 
of jumping (see above). posture (Khang and Zajac, 
1989; Kuo and Zajac, 1992, this volume), walking 
(Yamaguchi and Zajac, 1990), and pedaling (Sim, 
1988; Sim et al., 1989b; Levine et al., 1989; Fregly 
and Zajac, 1989). Unfortunately, the development 
phase of modeling has been so long that model- 
generated data have been meager. We believe that an 
interactive workstation environment to develop models 
and produce simulations will help circumvent this 

limitation. The decreased cost of high-powered graph- 
ics workstations will also. Perhaps we will soon 
understand well how muscles control many different 
motor tasks. Hopefully muscle coordination principles 
will then emerge. 
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