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Abstract

The objective of this study was to develop an efficient methodology for generating muscle-actuated simulations of human walking

that closely reproduce experimental measures of kinematics and ground reaction forces. We first introduce a residual elimination

algorithm (REA) to compute pelvis and low back kinematic trajectories that ensure consistency between whole-body dynamics and

measured ground reactions. We then use a computed muscle control (CMC) algorithm to vary muscle excitations to track

experimental joint kinematics within a forward dynamic simulation. CMC explicitly accounts for delays in muscle force production

resulting from activation and contraction dynamics while using a general static optimization framework to resolve muscle

redundancy. CMC was used to compute muscle excitation patterns that drove a 21-degrees-of-freedom, 92 muscle model to track

experimental gait data of 10 healthy young adults. Simulated joint kinematics closely tracked experimental quantities (mean root-

mean-squared errors generally less than 11), and the time histories of muscle activations were similar to electromyographic

recordings. A simulation of a half-cycle of gait could be generated using approximately 30min of computer processing time. The

speed and accuracy of REA and CMC make it practical to generate subject-specific simulations of gait.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Forward dynamic simulation offers a potentially
powerful methodology for characterizing the causal
relationship between muscle excitations and multi-joint
movement during gait. For example, recent studies have
used simulations of normal walking to quantify the
contributions of lower extremity muscles to vertical
support, forward progression, and swing leg kinematics
(Neptune et al., 2001; Anderson and Pandy, 2003;
Anderson et al., 2004; Goldberg et al., 2004; Neptune et
al., 2004). Unfortunately, conventional approaches for
generating dynamic simulations of gait require inordi-
e front matter r 2005 Elsevier Ltd. All rights reserved.

iomech.2005.02.010

ing author. Tel.: +1608 262 1902;

2316.

ess: thelen@engr.wisc.edu (D.G. Thelen).
nate amounts of computation time (Anderson and
Pandy, 2001; Neptune et al., 2001) making the wide-
spread use of forward dynamic simulation, particularly
on a subject-specific basis, impractical.

Computed muscle control (CMC) is a new approach
for generating forward dynamic simulations that offers
substantial performance benefits over conventional
dynamic optimization techniques. Dynamic optimiza-
tion typically require thousands of complete integrations
of the model state equations to converge to a solution
(Neptune, 1999; Anderson and Pandy, 2001), which
translates into days, weeks or even months of computer
time depending on the complexity of the model. Even
then, numerical difficulties are endemic to dynamic
optimization of complex nonlinear problems, which can
lead to sub-optimal solutions (Neptune, 1999). In
contrast, CMC, by employing feedforward and feedback
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control, is able to closely track experimental kinematics
using only a single integration of the model state
equations. We previously demonstrated that CMC
could generate an accurate, coordinated simulation of
bicycle pedaling with less than 10min of computer
processing time (Thelen et al., 2003).

CMC is well suited for simulating movements in
which all degrees-of-freedom can be independently
controlled via muscle actions. However, during gait,
the motion of the center-of-mass is dictated by inter-
mittent foot–floor reaction forces. While both foot–floor
forces and whole-body motion can be recorded experi-
mentally, they generally are not dynamically consistent
due to measurement errors and modeling assumptions
(Vaughan et al., 1982; Kuo, 1998; Cahouet et al., 2002).
As a result, it is not possible to use CMC to vary muscle
excitations to drive a forward dynamic model to
replicate both experimental kinematic and kinetic
measures without the application of additional external
forces, often referred to as residual forces. Furthermore,
the original formulation of CMC did not explicitly
account for delays in force production due to muscle
activation and muscle–tendon contraction dynamics.
Although the motions of the body segments are
relatively slow during gait, ground reaction forces do
change rapidly during loading and push off. As a
consequence, failure to account for delays involved in
the production of muscle forces can lead to substantial
tracking errors.

The objective of this study was to develop a
methodology for efficiently generating simulations of
human walking that closely track experimental measures
of body kinematics and ground reaction forces without
the application of residual forces. In this paper, we first
describe a technique for ensuring consistency between
whole-body dynamics and measured ground reaction
forces. We then introduce a modified version of CMC
that explicitly accounts for delays in muscle force
production. This approach is shown to generate
accurate subject-specific forward simulations of normal
gait with relatively little computer processing time.
2. Methods

2.1. Forward dynamic musculoskeletal model

The body was modeled as an 8-segment, 21-degree-of-
freedom articulated linkage actuated by 92 Hill-type
muscle–tendon units. Major aspects of this musculoske-
letal model have been described elsewhere (Delp et al.,
1990; Delp and Loan, 2000) and previously used to
reproduce the salient features of normal gait in the
sagittal, transverse, and frontal planes (Anderson and
Pandy, 2001). The coupling of muscle excitation (u) to
activation (a) was modeled as a first-order process with
rise and decay time constants of 10 and 40ms,
respectively (Zajac, 1989). Musculotendon contraction
dynamics were described by a lumped-parameter model
that accounts for the interaction of the force–length–ve-
locity properties of muscle and the elastic properties of
tendon (Zajac, 1989; Schutte et al., 1993). The model
controls (u

*
; individual muscle excitation levels) were

allowed to vary continuously between zero (no excita-
tion) and one (full excitation).

The generalized coordinates (q
*
) of the model corre-

spond to the 21 independent degrees-of-freedom of the
system:

q
*
¼ fq

*T

x q
*T

p q
*T

r q
*T

l q
*T

b g
T, (1)

where q
*

x is the translational position of the pelvis, q
*
p

are body-fixed Z–X–Y rotation angles describing the
pelvis orientation, q

*
r and q

*
l are 6� 1 vectors of the

joint angles of the right and left limb, and q
*
b is a vector

of low back angles describing successive flexion/exten-
sion, lateral bending, and transverse rotations, and the
superscript T indicates the transpose of the vector. The
limb joint angles included three rotations to describe the
orientation of the femur relative to the pelvis, a knee
flexion angle that governs tibiofemoral and patellofe-
moral kinematics in the sagittal plane (Yamaguchi and
Zajac, 1989), and rotation angles about the ankle and
subtalar joint axes.

The accelerations of the generalized coordinates of the
model,

€
q
*
; are dictated by the system equations of

motion:
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where
_
q
*

are the generalized speeds, M
2

is the system

mass matrix, G
*

is a vector of generalized forces due to

gravity, C
*

is a vector of generalized forces arising from

Coriolis and centripetal forces, 0
2

6�n is a matrix of zeros
signifying that muscles forces do not directly actuate the

position or orientation of the pelvis, R
2

m is a matrix of
the muscle moment arms about the anatomic joints, n is

the number of muscles, f
*

m is a vector of muscle forces

and R
2

grf is a matrix that transforms the resultant

ground reactions, f
*

grf ; to generalized forces acting on

the system.

2.2. Residual elimination algorithm

We used a residual elimination algorithm (REA) to
compute pelvis translations and low back angles that
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eliminate the need for residual forces. This was
accomplished using the overall equations of motion
(first 6 equations of (2)) which are independent of
muscle forces and require that the net external forces
balance the sum of forces and torques due to coriolis,
centripetal, gravitational and inertial effects (Green-
wood, 1988). These equations were solved for the pelvis
translational accelerations (

€
q
*

x) and low back angular
accelerations ð

€
q
*
bÞ; assuming the ground reactions and

all other generalized coordinates were well represented by
experimental values. Given initial states (i.e., q

*
x;
_
q
*

x; q
*

b;
and

_
q
*
b at t ¼ 0), the accelerations were solved at each

time step and integrated forward to produce new
estimates for pelvis translational ðq

*exp

x Þ and low back

angular ðq
*exp

b Þ trajectories. Nonlinear optimization was

used to solve for a set of initial states that minimized a
cost function:

J ¼
XN

j¼1

wxjq
*exp

x ðjTÞ � q
*kin

x ðjTÞj
2

þ
XN

j¼1

wbjq
*exp

b ðjTÞ � q
*kin

b ðjTÞj
2

þ
XN

j¼p

ws½jq
*exp

b ðjTÞj � jq
*kin

b ð½j � p�TÞj�2 ð3Þ

which is the weighted sum of the squared deviations
from the kinematically determined trajectories plus a
penalty term for nonperiodic behavior of the back
angles. In Eq. (3), N is the number of data points, T is
the sample interval ( ¼ 0.01 s), p is the number of data
points within a half-gait cycle, and wx, wb, and ws are
weighting parameters. The optimal pelvis translation
and back angle trajectories were then combined with the
kinematically determined lower extremity joint angular
kv

kp

Fig. 1. Schematic of the computed muscle control algorithm applied to gait

dynamic simulation. A set of desired accelerations ð
€
q
*

des

Þ are first computed th
_
q
*
) toward the experimental kinematics (q

*
exp and

_
q
*exp

). kv and kp are feedba

respectively. Static optimization is used to compute a set of desired muscle for

ð€~q
des
Þ in the current configuration, and also minimizes a cost function to resol

forces are then found by inverting contraction and activation dynamics. Exci

state equations are used to advance all states to t+T. The tracking algorith

completion.
trajectories to form a set of generalized coordinate
trajectories, q

*exp
; to be tracked by the model. The

generalized coordinates of the musculoskeletal model
were set to q

*exp
to determine the corresponding

trajectories of the muscle–tendon lengths ð l
*exp

mt Þ: Both

q
*exp

and l
*exp

mt were subsequently fit with seventh-order

splines (Woltring, 1986) prior to tracking.
2.3. Computed muscle control algorithm

CMC was used to compute muscle excitations that
would drive a forward dynamic simulation to track the
subset of generalized coordinates, q

*
j ; corresponding to

anatomical joints (Fig. 1):

q
*

j ¼ fq
*T

r q
*T

l q
*T

b g
T. (4)

Only the anatomical joint angles were tracked since the
pelvis (i.e., the base segment) motion is dictated by the
foot–floor reactions. At a time t in the simulation, the
tracking errors ðe

*
q;
_
e
*

qÞ between the simulated ðq
*

j ;
_
q
*

jÞ

and corresponding experimental states were used to
compute a set of desired joint angular accelerations

ð
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q
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Þ that should be achieved a short interval

(T ¼ 0:01 s) later to track q
*exp
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€
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where kv and kp are feedback gains for the velocity and
position errors, respectively.

Muscle activation and contraction dynamics were
integrated forward from t to t+T for a range of muscle
. The algorithm is applied every T( ¼ 0.01) seconds during a forward

at will drive the generalized coordinates and speeds of the model (q
*
and

ck gains that weight the current velocity ð
_
e
*

qÞ and position errors ðe
*

qÞ;

ces that are achievable at t+T, would produce the desired accelerations

ve muscle redundancy. Muscle excitations ðu
*
Þ that produce the desired

tations are held constant while numerical integration of the full system

m is applied repeatedly every T seconds until the simulation runs to
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Table 1

Gait characteristics of the 10 young adults who were included in this

study

Mean (S.D.)

Toe-off (% gait cycle) 61 (1)

Stride length (m) 1.35 (0.11)

Cycle time (s) 1.04 (0.03)

Cadence (steps/min) 115 (4)

Gait speed (m/s) 1.29 (0.10)
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excitations ð0
*
o u

*
o 1

*
Þ; with the muscle–tendon

lengths during these integrations computed directly

from the experimentally derived splines, l
*exp

mt : In this

way, the cost of solving the model equations of motion
could be avoided at this stage. Forces generated using
zero and full excitation provided estimates of the lower

ðf
*

m;minÞ and upper ðf
*

m;maxÞ bounds on the muscle-

tendon forces that could be achieved at t+T.
Static optimization was then used to compute a set of

desired muscle–tendon forces ðf
*des

m Þ within the range of

feasible forces that, when input into the system
equations of motion, produce the desired accelerations

€~q
des

and minimize a cost function, J, that resolves muscle
redundancy (Happee, 1994):

J ¼
Xm

i¼1

Vi½aiðtþ TÞ�2. (6)

In Eq. (6), Vi is the volume of muscle i and ai(t+T) is the
activation of muscle i at t+T corresponding to the

desired muscle force, f des
m;i: After solving for the desired

muscle forces, a root solver was used to determine the

muscle excitations ðu
*
Þ that, when input into the

activation and contraction dynamic equations, would

produce the desired muscle forces f
*des

m : Muscle excita-

tions were then input into the forward dynamic
simulation and held constant during integration of the
entire set of system state equations from t to t+T. The
computed muscle control algorithm was repeated every
T seconds until the final time of the simulation was
reached. The procedures used to obtain the initial values
for the muscle–tendon states (i.e., muscle fiber lengths
and activations at time t ¼ 0) are described in the
Appendix.

Foot–floor forces during the forward simulation were

prescribed to experimental values ðf
*exp

grf Þ; with variations

determined by linear translational and rotational spring-
dampers applied at the ground reaction center-of-
pressure under each foot. The translational spring-
damper was applied between the point where the center-
of-pressure would act on the foot assuming the
experimental generalized coordinates are achieved, and
the corresponding location of that point on the foot
within the actual simulation. Similarly, rotational
spring-dampers were applied in proportion to the
difference in orientation between the feet orientations
assuming the desired generalized coordinates are
achieved and the actual feet orientations. The stiffness
and damping of the passive constraints were scaled in
and out according to the ratio of body weight supported
by each foot.
k
*

r ¼ ar K
*
,

~kl ¼ ½1� ar�K
*
, ð7Þ

b
*

r ¼ ar B
*
,

b
*

l ¼ ½1� ar�B
*
, ð8Þ

where ar is the ratio of the vertical force under the right

foot divided by the total vertical external force, K
*

is a

6� 1 vector containing three linear ðK
*lin

Þ and three

rotational ðK
*rot

Þ stiffnesses, k
*

r and k
*

l are the current
stiffnesses of the springs acting on the right and left foot,

respectively, and B
*
; b
*

r and b
*

l are the corresponding
damping parameters. Important to note is that both the
stiffness and damping parameters go to zero when the
foot is unloaded so that no force is applied to the foot
during swing phase.
2.4. Implementation using experimental gait data

We used the residual elimination and the extended
CMC algorithm to generate forward dynamic simula-
tions of a half-cycle of comfortable speed gait for each
of 10 young adults (Table 1). For each subject, segment
lengths were scaled based on estimated joint-to-joint
lengths of the lower extremity and overall subject height.
Anthropometric parameters of the musculoskeletal
model were estimated based on the subject’s total body
mass and segment lengths (McConville et al., 1980).
Maximum isometric muscle strengths and pennation
angles were based on a generic young adult male model
(Delp et al., 1990; Carhart, 2000; Anderson and Pandy,
2001). Optimal muscle fiber lengths and tendon slack
lengths (Delp et al., 1990; Carhart, 2000; Anderson and
Pandy, 2001) were scaled by a ratio of the muscle–ten-
don length of the scaled model in an upright posture to
the corresponding muscle–tendon length of the generic
model in the same posture.

The musculoskeletal model and the code describing
activation and contraction dynamics were produced
using SIMM and the Dynamics Pipeline (Delp and
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Table 2

Parameters used in the residual elimination (REA) and computed muscle control (CMC) algorithms. The residual elimination algorithm weights are

used in the computation of the objective function given in Eq. (3), where pelvis translational deviations are measured in mm and low back angular

deviations are measured in deg. Position and velocity feedback gains (kp, kv) are used in computing the desired joint accelerations (Eq. (5)). Vertical

and rotational spring-dampers between the feet and floor were employed to permit variations in ground reactions from experimental values during

the forward simulation. The linear and rotation stiffness and damping coefficients for each foot were scaled with the % of body weight support, such

that stiffness and damping went to zero during swing (Eqs. (7–8))

Parameter Description Value

REA

wx Weight—pelvis translation deviation 1

wb Weight—back angle deviation 1

ws Weight—back angle symmetry 1

CMC

kp Position error feedback gain 100

kv Velocity error feedback gain 20

K
*lin Linear stiffness (N/m) in x, y, z directions {1000 10000 1000}T

K
*rot Rotational stiffness (Nm/rad) about x-, y-, z-axes {500 500 500}T

B
*lin Linear damping (N/m s�1) in x, y, z directions {20 200 20}T

B
*rot Rotational damping (Nm/rad s�1) about x-, y-, z-axes {20 20 20}T
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Loan, 2000). Equations of motion for the gait model
were derived using SD/FAST (Parametric Technology
Corporation, Waltham, MA). All numerical optimiza-
tions were performed using a sequential quadratic
programming algorithm (FSQP; AEM Design, Tucker,
GA). Parameters used in the pre-processing and CMC
algorithms are given in Table 2. All computations were
done on a personal computer with a 2.2GHz Pentium
processor.
3. Results

The residual elimination algorithm introduced rela-
tively small changes in the pelvis translations. Average
root-mean-squared (RMS) differences of less than 5mm
were introduced into the pelvis translations to achieve
dynamic balance (Table 3). Slightly larger variations of
the low back angles from the kinematically derived
values were required to achieve dynamic consistency.
Mean RMS differences ranged from 11 in the sagittal
plane to 51 in the transverse plane (Table 3). The use of
nonlinear optimization to converge to a set of optimal
initial states for pelvis translation and low back
orientation required about 500 iterations, corresponding
to about 10min of computer processing time.

The CMC algorithm was able to track the experi-
mental joint angles accurately for each subject with only
small deviations from the experimental kinematics and
ground reaction forces. Mean RMS errors in the lower
extremity joint angles ranged from 0.11 to 1.01 over a
half-cycle of gait (Fig. 2, Table 4). Mean RMS errors in
the ground reaction forces were less than 2N in the
anterio-posterior and medio-lateral directions, and less
than 7N in the vertical direction (Table 5). The pelvis
translations and orientations, despite not being tracked
by CMC, remained very similar to experimental values
(mean RMS error in translation were o10mm). The
timing of computed muscle activations were all rela-
tively smooth throughout the movement and corre-
sponded closely to published EMG activities of the
major lower extremity muscles (Fig. 3). The CMC
algorithm required approximately 20min of computer
time to generate each simulation.
4. Discussion

In this study we sought to develop a computationally
feasible method for generating forward dynamic simula-
tions of gait that closely track experimental data. We
achieved this goal by first using a residual elimination
algorithm (REA) to generate a set of desired kinematic
trajectories that were dynamically consistent with
ground reactions. We then applied a computed muscle
control algorithm to determine muscle excitations that
drive a forward dynamic simulation to track the desired
kinematics. Generating simulations of normal gait from
experimental data using this approach required about
30min (�10min for the residual elimination algorithm,
and �20min for the tracking), which is orders of
magnitude faster than conventional dynamic optimiza-
tion approaches. Just as important, these computational
benefits were not gained at the expense of tracking
accuracy. On the contrary, joint angles were tracked
with RMS differences of less than 11, which is
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Ankle Dorsiflexion

Knee Flexion

Hip Internal Rotation

Hip Adduction

Hip Flexion

Back Transverse Rotation

Back Lateral Bending

Back Extension

Pelvic Transverse Rotation

Pelvic Obliquity

Pelvic Anterior Tilt

Fig. 2. Simulated joint angles (solid lines) closely tracked experimental values (dashed lines), as demonstrated for one of the subject’s gait data. A

half-cycle of gait was tracked for each of the subjects. A full cycle of lower extremity joint angles was obtained by juxtaposing the right and left side

joint angle trajectories, which created the discontinuities that are evident at 50% of the gait cycle. A zero subtalar angle was tracked since inversion

angles were not estimated from the marker set that was used (Davis et al., 1991).

Table 3

The residual elimination algorithm generated pelvis translation and low back angular trajectories that were dynamically consistent with measured

ground reactions. Given are the mean (S.D.) root-mean-squared deviations of these trajectories from the measured kinematics. Note that the back

flexion/extension angles were zero-order detrended prior to computing the angular deviations. This allowed for the simulated trajectory to track the

pattern of the measured back kinematics, without a penalty being imposed for any constant offset that might be present in the measured low back

flexion/extension angle

Pelvis translation (mm) Low back angle (deg)

Anterio-posterior 3.3 (1.3) Flex/extension 0.9 (0.6)

Medio-lateral 1.8 (1.3) Ad/abduction 2.9 (1.1)

Superior-inferior 4.1 (1.7) Int/external rotation 4.9 (2.5)
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substantially smaller than results obtained using dy-
namic optimization approaches (Neptune et al., 2001;
Anderson and Pandy, 2001).

Forward dynamic simulation permits lines of inves-
tigation not available to inverse dynamic techniques
(Zajac et al., 2003). Well-established inverse dynamics
approaches have been developed for computing and
comparing joint kinematics, moments, and powers
across subjects (Davis et al., 1991). While these
approaches have provided useful information for
clinical decision making, they are ultimately limited in
that they do not establish cause-and-effect relationships
between the underlying elements of the neuromusculos-
keletal system and observed kinematics. For example,
EMG recordings can indicate when a muscle is active
but cannot explain why a muscle is active or how a
muscle contributes to movement. Muscle-actuated for-
ward dynamic simulations bridge this gap by providing
a means of estimating the contribution of a muscle to
movement (Neptune et al., 2001, 2004) or predicting
how movement would be altered as a result of a change
to the system or controls (Anderson et al., 2004;
Goldberg et al., 2004).

Computed muscle control makes it feasible to use
complex, detailed musculoskeletal models when simu-
lating gait without neglecting physiological constraints.
The pseudo-inverse method described by Yamaguchi et
al. (1995) has been used to simulate gait with complex
models (Carhart, 2000) and exhibits fast computational
performance, but is limited in that it does not allow
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Table 4

Computed muscle control was used to determine muscle excitations

that drove the forward simulation to track the experimental joint

angles. Given are the mean (S.D.) root-mean-square (RMS) errors

between the simulated and experimental quantities over a half-gait

cycle

Joint Direction RMS error

Pelvis translation Antero-posterior (mm) 6.3 (1.9)

Medio-lateral (mm) 0.6 (0.2)

Vertical (mm) 0.9 (0.4)

Pelvis orientation Anterior tilt (deg) 0.9 (0.2)

Obliquity (deg) 0.1 (0.1)

Internal-external rotation (deg) 0.3 (0.1)

Hip Flexion-extension (deg) 0.8 (0.2)

Adduction-abduction (deg) 0.2 (0.1)

Internal-external rotation (deg) 0.3 (0.1)

Knee Flexion-extension (deg) 1.0 (0.2)

Ankle Flexion-extension (deg) 0.3 (0.1)

Subtalar Inversion-eversion (deg) 0.1 (0.1)

Back Flexion-extension (deg) 0.6 (0.2)

Adduction-abduction (deg) 0.1 (0.1)

Internal-external rotation (deg) 0.3 (0.1)

Table 5

Translational and rotational spring-dampers between the feet and

ground allowed the ground reactions the measured values during

stance phase. Given are the mean (S.D.) root-mean-square (RMS)

errors between simulated and experimental ground reaction forces

Force (N) RMS error

Antero-posterior 2.2 (0.4)

Medio-lateral 6.5 (2.2)

Vertical 1.0 (0.3)
1

0
0 20 40 60 80 100

Time (% Gait Cycle)

Tibialis Anterior

Soleus

Lateral Gastrocnemius

Medial Gastrocnemius

Vastus Medialis

Vastus Lateralis

Rectus Femoris

Satorius

Biceps Femoris Long Head

Semimembranosus

Tensor Fasciae Latae

Gluteus Maximus

Gluteus Medius

Fig. 3. Estimated muscle activations (solid black lines) for thirteen of

the muscles included in the model. Muscle activations over a half-gait

cycle from the right and left sides were juxtaposed to create an estimate

of activities over a full-gait cycle. Timing of the major muscle

activation patterns compare closely with mean (71 S.D.) rectified

EMG activities (shaded curves) of young adults reported by Winter

(1990).
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activation or contraction dynamics to be included in the
problem formulation. As a result, unrealistic instanta-
neous changes in muscle forces can occur, particularly
when tracking rapid movements. In contrast, CMC
explicitly incorporates activation and contraction dy-
namics within the problem formulation. Because CMC
solutions are excitation driven, CMC allows for changes
in excitations to be introduced as a means of assessing
how movement might change as a consequence to
changes in motor control.

An important component of our approach is the use
of the residual elimination algorithm as a pre-processing
stage to resolve dynamic inconsistencies between mea-
sured kinematics and ground reaction forces. It is not
possible to generate a forward dynamic simulation of
gait that will simultaneously replicate both measured
kinematics and ground reactions without the application
of residual forces to the base segment. Other researchers
have used this observation to refine anthropometric
parameter estimates (Vaughan et al., 1982) and to
improve the accuracy of joint moments computed using
inverse dynamics (Kuo, 1998; Cahouet et al., 2002). Our
approach was to compute pelvis translations and low
back angles so as to enforce dynamic consistency
between kinematics and external forces. Justification
for this approach is three-fold. First, the estimation of
pelvis orientation and lower extremity joint angles
during gait using motion analysis systems is fairly well
established and widely used (Davis et al., 1991). There-
fore it is desirable to retain this aspect of the movement
in any simulation. Second, due to flexibility throughout
the torso, the upper body is least well approximated by
rigid body assumptions. Consequently, any estimates of
representative low back joint angles from kinematic
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measures is likely more error prone than lower extremity
joint angles. Finally, ground reactions can be very
reliably and accurately measured. Thus, the translation
of the whole-body motion, as specified by the base
segment (pelvis) acceleration, should conform to that
dictated by the ground reaction forces. The nominal
parameters we used in the residual elimination algo-
rithm (wx ¼ wb ¼ ws ¼ 1.0, Table 1) placed equal
emphasis on generating pelvis translations and back
angles that were consistent with experimental estimates,
and back angles that were also cyclically repeating with
time. In practice, it would be desirable to select the error
weighting parameters based on the variance of noise
present in the measured kinematics, when such data is
available or can be reliably estimated (Kuo, 1998).

The residual elimination algorithm was capable of
fairly quickly converging to a solution that minimally
altered measured pelvis kinematics while maintaining a
relatively upright posture over a half-gait cycle. The
algorithm can be extended for a longer period of time,
e.g., a full-gait cycle. However, in practice, we found
doing so tended to require larger alterations of the low
back angles such that the trunk did not remain as
upright. The incorporation of active balance control
within CMC, e.g., modulation of foot placement (Bauby
and Kuo, 2000), may be needed to simulate a stable
upright gait for longer periods of time. Even with a half-
gait cycle, exaggerated transverse rotations of the trunk
were needed to achieve dynamic balance (Table 3). This
likely resulted, in part, from the simplified head–
arms–trunk segment which does not model the dynamic
contributions of arms to walking (Callaghan et al., 1999)
and thus necessitates increased rotation of the rigid
upper body to achieve an equivalent dynamic effect. As
formulated, the residual elimination algorithm can
accommodate models with more detailed representa-
tions of the upper body (e.g., inclusion of arms) when
such data are available.

The major improvement to the previously employed
CMC algorithm (Thelen et al., 2003) is a means of
accounting for delays between muscle excitation and
active force development. Considering both activation
and contraction dynamics, the time constants associated
with muscle force development are approximately
10–40ms during activation and 40–100ms during
relaxation. The slower responses occur in muscles with
longer tendons (Zajac, 1989). Such delays in force
production can be problematic when solving a tracking
problem, particularly during the loading and pushoff
phases of the gait cycle when ground reaction forces
change rapidly. Our approach to this problem was to
anticipate the muscle–tendon forces that could actually
be achieved a short time later by integrating the
equations for muscle activation and contraction dy-
namics forward in time. To make these estimates, it was
assumed that the muscle–tendon lengths would track
those obtained from experimental joint angles. Note
that this assumption was made only when anticipating
achievable forces; during the actual forward simulation,
the muscle–tendon lengths were computed from the
simulated states. While this assumption introduces some
error, the feedback components of Eq. (4) were
sufficient to correct for these errors. We found that a
time window of T ¼ 0:01 s produced reasonably smooth
muscle excitations and good tracking accuracy. The use
of smaller windows tended to introduce substantial
fluctuations in muscle excitations (small windows were
not long enough to allow muscle forces to change
sufficiently), while longer windows resulted in larger
tracking errors (greater errors due to substantial
changes in the body configuration).

To resolve muscle redundancy, CMC is dependent on
a static optimization criterion. In this study, we used the
sum of volume-weighted, squared muscle activations
(Happee, 1994), but other criteria could be used. For
example, a measure of the variation between muscle
excitations and measured EMG may be more appro-
priate for representing the abnormal muscle activation
patterns seen in individuals with gait pathologies.

It is important to distinguish tracking approaches,
like CMC, from performance-based dynamic optimiza-
tion of movement (e.g., Anderson and Pandy, 1999).
Tracking algorithms determine muscle excitations that
closely replicate an observed movement (e.g., Neptune
and Hull, 1998). In contrast to this, performance-based
dynamic optimization is capable of generating novel
movement based on a quantifiable objective (e.g.,
minimization of metabolic energy during gait (Anderson
and Pandy, 2001)), and thus are a powerful means of
testing the validity of basic principles that may guide the
control of movement. However, due to the nonlinea-
rities of large-scale musculoskeletal models, solving
dynamic optimization problems relies heavily on the
specification of a good initial estimate to progress to a
true optimal solution. In this respect, when a problem
necessitates dynamic optimization, efficient tracking
algorithms like CMC may be a feasible alternative for
generating an initial estimate of the solution.

In conclusion, the speed and accuracy of CMC greatly
expand the feasibility of using forward dynamic simula-
tions of gait to investigate muscle function. Future
applications include using CMC to generate subject-
specific simulations of gait for individuals with move-
ment disorders. Such simulations may prove to be a
valuable aid in identifying the underlying causes of a
movement disorder and in planning treatment.
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Appendix

Following are the steps used to set the initial values of
the muscle–tendon states (i.e., muscle fiber lengths and
activations at time t ¼ 0). We extended the experimental
kinematic and muscle–tendon length trajectories to
negative time assuming that the gait cycle repeats.
Muscle activations at a negative time, t ¼ �0:10 s; were
first set to nominally low levels ( ¼ 0.01), and the
corresponding steady-state muscle fiber lengths and
forces were computed (Delp and Loan, 2000). We then
used the CMC algorithm to compute constant muscle
excitations that, when input into the activation and
contraction dynamics equations over the subsequent
T ¼ 0:10 s; would generate the experimental accelera-

tions,
€
q
*
exp

ð0Þ; at t ¼ 0: Muscle activations and fiber
lengths at t ¼ 0 s were then set to the values that resulted
from integrating the activation and contraction
dynamics using the optimal excitations and the kine-
matic muscle–tendon length trajectories as inputs from
t ¼ �0:10 s to t ¼ 0 s: The other system states, initial
generalized coordinate and speeds, were then set directly
to experimental values at time t ¼ 0. The CMC
algorithm was then used to compute the excitations
necessary to track the experimental kinematics from
time t ¼ 0 forward.
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