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A Least-Squares Estimation
Approach to Improving

the Precision of Inverse
Dynamics Computations

A least-squares approach to computing inverse dynamics is proposed. The method
utilizes equations of motion for a multi-segment body, incorporating terms for ground
reaction forces and torques. The resulting system is overdetermined at each point in
time, because kinematic and force measurements outnumber unknown torques, and
may be solved using weighted least squares to yield estimates of the joint torques
and joint angular accelerations that best match measured data. An error analysis
makes it possible to predict error magnitudes for both conventional and least-squares
methods. A modification of the method also makes it possible to reject constant biases
such as those arising from misalignment of force plate and kinematic measurement
reference frames. A benchmark case is presented, which demonstrates reductions in
Joint torque errors on the order of 30 percent compared to the conventional Newton—
Euler method, for a wide range of noise levels on measured data. The advantages
over the Newton—Euler method include making best use of all available measure-
ments, ability to function when less than a full complement of ground reaction forces
is measured, suppression of residual torques acting on the top-most body segment,

and the rejection of constant biases in data.

Introduction

Inverse dynamics, the procedure in which motion data are
used to estimate torques (i.e., moments of muscle force) pro-
duced at the joints, is a primary tool for analysis of gait and
other movements. It is a simple and effective technique, which
can be used to infer which and how muscles are used in a
motor task. A variety of data are needed to make the necessary
calculations, including anthropometric parameters specifying
the inertial properties of each limb, a record of the limb move-
ments, and often, a record of ground reaction forces. Because
these data are not generally known precisely—and in the cases
of limb kinematics and ground reaction forces, their precision
often comes at considerable expense—it is usually desirable to
extract the best possible joint torque estimates from imperfect
measurements.

The conventional method for computing inverse dynamics is
quite simple (Winter, 1990). A typical scheme involves itera-
tive solution of the Newton—Euler equations of motion for each
body segment. If only angular acceleration measurements are
available, the iteration starts at the top-most segment, calculat-
ing joint torques that satisfy dynamic equilibrium conditions at
each successive segment proceeding downward. This method
tends to produce noisy joint torque estimates, because angular
accelerations are typically determined by twice-differentiating
motion data with respect to time, and the differentiation process
tends to amplify measurement noise. A modification of this
scheme is to introduce additional measurements in the form of
ground reaction forces. These data provide boundary conditions
for the bottom-most segment, and the dynamic equilibrium con-
ditions are applied at each successive segment proceeding up-
ward. Because force plate data are typically less noisy than
acceleration data, the resulting joint torque estimates tend to
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be more precise. However, the introduction of additional data
provides more equilibrium conditions than can be satisfied. This
overdeterminacy may be avoided by either discarding the accel-
eration measurements for the top-most segment, or by adding
residual forces and torques to the top-most segment.

There are alternative formulations for the inverse dynamics
problem, which are based on optimization. Vaughan et al.
(1982) noted the overdeterminacy arising from introduction of
ground reaction forces, and proposed using the extra degrees of
freedom to optimize the body segment parameters. This method
indirectly improves inverse dynamics computations by provid-
ing better parameter values and enforcing the boundary condi-
tions, but does not otherwise affect the joint torque estimates.
Perhaps the most sophisticated approach is to use dynamic opti-
mization to compute the trajectory of joint torques, which in a
forward simulation best reproduces the observed motion (Chao
and Rim, 1973). This method enforces the dynamic equatiofis
of motion over time, and thus may be regarded as a theoretically
ideal method for estimating joint torques.

There are, however, several disadvantages to both conven-
tional and dynamic optimization methods for computing inverse
dynamics. In the presence of noise, the conventional Newton—
Euler method produces poor joint torque estimates when ground
reaction forces are not measured, and produces a residual when
they are. It is also highly sensitive to mismatch in the origins
of reference frames for motion data and ground reaction forces
(McCaw and DeVita, 1995). Dynamic optimization can be used
to overcome some of these problems, but practical experience
with this method shows that it is often difficult to find a solution,
or even the initial guess at a solution that is required to start
the optimization. The dynamics of a standing or walking human
are inherently unstable, and so virtually any initial guess will
diverge within a certain number of time constants for the sys-
tem. An initial guess will only work for unstable systems if it
is exceedingly accurate, or if the time period of the analysis is
too short to allow for divergence. For example, Chao and Rim
(1973) demonstrated the use of dynamic optimization for 0.17
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of mass with Cartesian coordinates in the plane described by a
two-component vector x,;, and a scalar orientation in spatial
coordinates ¢; . Knowledge of ¢, fori = 1, 2, . .. n is sufficient
to fully determine the configuration of the system, including
x.;, and so the ¢; may be regarded as generalized coordinates
(Greenwood, 1988). The joints between segments are num-
bered from 1 to n — 1, with joint { articulating segments i and
i + 1. There are intersegmental forces f;-, (with 2 components)
acting on the end of segment i corresponding to joint i — 1,
and — f; acting at the end corresponding to joint i. Similarly
there are joint torques 7,-, and —7; acting on the same respec-
tive ends. The ground reaction forces and torques are f; and 7,
respectively, and so the force plate may be regarded as segment
- i = 0. The following quantities will be also stacked together
and referred to in vector form:

¢, Ty
¢ = ¢?3 , T = 7';2
¢,| Tn-1

It will be convenient to recognize the difference between a
quantity’s actual value denoted by a horizontal bar (e.g., 2), its
measured value denoted by a prime (z'), and its estimated value
(which does not generally equal the measured value) denoted
by the unadorned symbol (z). The errors in measurement arise
from additive noise:

¢ = +w,
Fo=Fo+ wp
T6=7'0+W1-0

where wy, wp, and w.o are white noise vectors, which are
assumed to have Gaussian distribution with zero mean.

Angular acceleration measurements ¢’ are found by twice-
differentiating the angular orientations,

' =d+w

where w; is the (nonwhite) acceleration noise. The process of

numerical differentiation tends to amplify noise, so that velocity

and angular orientation measurements have relatively small errors

relative to the acceleration measurements. Hence, the estimates

of angular orientation and velocity will be set equal to their mea-
. surements, ¢ = ¢’ and ¢ = ¢’ (¢, is assumed constant).

Conventional Newton—Euler Method. Conventional in-
verse dynamics methods compute the intersegmental reaction
forces using Newton’s equation of motion and Euler’s equation,
applied to each of the segments at each point in time:

m; 12x2 f— f (1)
Ii&i =r X fio (2)

where m; is the mass, 2 is the two-by-two identity matrix,
and X, is the translational acceleration vector as described pre-
viously; I; is the moment of inertia, and r; and s; are vectors
from the center of mass to the joints at the bottom-most and
top-most ends, respectlvely, of segment i.

Consider first an inverse dynamics problem in Wthh there
are no ground reaction forces measured. The estimated joint
angular accelerations are set equal to their measured values,
¢: =@/, i =2, ..., n, with the assumption ¢, = 0. The
problem may be solved iteratively by setting boundary condi-
tions on the top-most segment, f, = 0 and 7, = 0, and applying
dynamic equilibrium, Egs. (1) and (2), to calculate the forces
and torques acting at the other end of the segment. This proce-
dure is repeated for each segment from n to 1, solving for each
joint torque successively.

When ground reaction forces and torque are measured, they
may be included by using them as boundary conditions on the

—sixfi"""i-l_’ri
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bottom-most segment, f = f ¢, To = T4, and applying dynamic
equilibrium on each segment proceedmg upward. Equations (1)
and (2) are employed starting at i = 1, with ¢; = ¢/. The extra
force inputs act as additional constraints on the equations, mak-
ing the system overdetermined. This difficulty is typically cir-
cumvented by introducing new degrees of freedom at the oppo-
site end of the body, in the form of residual forces and torques
at the topmost segment, f, and 7,, as illustrated in Fig. 1. When
the measurements are imperfect, the boundary conditions f, =
0, 7, = 0 are generally violated.

Although the precision of the computation is often improved
by the inclusion of ground reaction forces and torques, which
are typically more precise than acceleration measurements,
there are several disadvantages to the methods outlined above.
First, a (generally nonzero) residual is produced for each force
measurement introduced, in direct contradiction of the known
boundary conditions. Second, the results are often poor when
acceleration measurements are noisy, especially if less than a
full complement of the measurements f ¢ and 7 is available.
In addition, errors in alignment of force plate and motion analy-
sis coordinates can result in significant errors in the joint torque
estimates (McCaw and DeVita, 1995).

Proposed Least-Squares Method. An alternative method
1s to solve the overcomplete system of equations without re-
laxing the boundary conditions. Rather, the constraints formed
by imperfect measurements are relaxed by some amount so that
there is a set of joint torques that satisfies a new set of adjusted
measurement constraints. The criterion for choosing the joint
torques is to minimize the adjustments necessary to make the
measurement constraints agree with each other. This has the
effect of canceling out random error in the measurements,
thereby improving the precision of joint torque estimates. The
method is essentially a static optimization problem formulated
in matrix form and soived using the pseudoinverse. The ground
reaction forces and angular accelerations are the measurements
to be adjusted, and the joint torques are the variables to be
estimated. (The intersegmental joint reaction forces f; for i =
2, ..., n need not be estimated directly as in the conventional
methods, because they are noncontributory and can be found
from the estimated joint torques.)

Two sets of equations are necessary to set up the overcom-
plete system. The first is the equations of motion relating joint
torques and angular accelerations, expressed in the form

M($)$ = Q-7 + g(9) + v(o, $) 3)

where M is the mass matrix, Q is a matrix converting joint
torques to segment torques, and g and v are vectors containing
gravitational terms and velocity-dependent terms, respectively
(see Appendix A). The second set relates joint torques to the
other measurements, the ground reaction forces. It can be found
by first deriving the body equations of motion including addi-
tional degrees of freedom for motion of segment i = 1. These
equations are used to find the constraint forces necessary to
keep that segment motionless, which are identical to the ground
reaction forces. The result is an equation that is linear in ¢,

a¢ﬁ=[2]+d¢¢) (4)

where C(¢) is an intermediate term relating angular accelera-
tions and reaction forces (see Appendix A). Equatlon (3)is
then used to replace ¢ in Eq. (4), resulting in the desired
relation,

cwyM*wrQ¢=[”

ﬁ’] +c(¢, )

— C($)- M7 (d) {g(d) + v(¢, D)} (5)
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s of a step in human gait. Even when a suitable initial guess is
found, the iterative methods for finding the optimal solution
pose a heavy computational burden.

An alternative to these methods is to treat the inverse dynam-
ics problem as an overcomplete system of equations, and use -
static optimization to find the set of joint torques that agrees
best with available measurements, at each point in time. The
resulting torques are theoretically not as precise as those found
using dynamic optimization, because (as in the conventional
method) the dynamic equations of motion are not enforced over
time. However, the static optimization approach is far easier
and faster to solve, and has several advantages over the more
widely used conventional method. First, the static optimization
method makes best use of all available data, with the effect of
rejecting random noise in the measurements. Second, it pro-
duces joint torque estimates, which are fully consistent with the
equations of motion at each point in time, without producing
residual forces and torques. Third, the proposed method works
well even without a full complement of ground reaction data.
And finally, the method can be extended to correct for mismatch
between reference frames for ground reaction and motion data,
thereby removing some biases in the joint torque estimates.
Portions of this work have been introduced elsewhere (Kuo,
1994, 1995).

This paper outlines the use of static optimization to solve the
inverse dynamics problem. It discusses both the overdetermi-
nacy in the conventional method, and the use of least-squares
optimization as an alternative way to estimate the joint torques.
Estimation theory is used to provide predictions of error statis-
tics for both methods. A simulated postural motion, for which
exact joint torques are known, is used to compare performance
and to test the error predictions. An alternative formulation is
also given for the purpose of eliminating the effects of measure-
ment bias,

Method

The proposed method differs from the conventional Newton—
Euler method in a fundamental way. The conventional method
treats each body segment separately, applying dynamic equil-
ibrium conditions to compute all intersegmental forces and
torques. The proposed method uses equations of motion based
on generalized coordinates to treat all segments simultaneously,
thereby relating joint torques to angular accelerations without
need for intersegmental forces. Another set of equations relates
joint torques to the ground reaction forces. These two sets of
equations are linear in the joint torques, and form an overcom-
plete system, which can be solved analytically using a simple
least-squares pseudoinverse, providing the optimal solution that
agrees best with the measurements. The problem is formulated
stochastically using estimation theory, to take into account noise
in the measurements and provide a prediction of the error covar-

Nomenclature

Tll
segment n
joint n-1
segment n-1
joint n-2
&
joint 2
! /Sz
,,/ segment 2
joint 1 <f,i  \
N, A

/\ segment 1
N

Fig.1 Configuration of two-dimensional body segment model. The body
consists of n segments, connected by n-1 joints. A joint torque 7, and
an intersegmental reaction force f, act on the two segments (but with
opposite signs) connected by joint i. The angular orientation of each
segment is given by ¢,. Vectors r; and s; are from segment /’s center of
mass to the joints. Segment length and location of center of mass are
specified by /; and /;. The force and torque vectors shown illustrate points
of application and do not imply specific directions. Sign conventions and
angular reference are also arbitrary, but are defined here such that joint
torques are positive in extension and angular orientations are measured
counterclockwise from the horizontal.

iance. An alternate formulation produces a sparse overdeter-
mined system, which can be used to eliminate biases arising
from misalignment of force/motion data or other causes. For
simplicity, the derivations and accompanying test case are per-
formed for a two-dimensional system. The method, however, is
fully applicable to three-dimensional systems with appropriate
changes described in Appendix C.

The following nomenclature will be adopted for the general
two-dimensional system, as shown in Fig. 1. The body com-
prises n segments, of which one, typically the foot, remains
motionless in static contact with a force plate. These segments
are numbered i = 1, 2, ... n, starting with the motionless seg-
ment and moving successively to other segments, which are
more distal from the force plate. Each segment i has a center

n = number of body segments

&: = actual angular orientation of

fi» fi{=estimated and measured

N = number of time steps segment | (segment angle) values of f;

X.; = vector describing linear &, ¢! = estimated _and measured T:-1 = actual joint torque (mo-
(translational) position of - .. values of ¢; ‘ ment of muscle force) ap-
segment i’s center of mass  ¢,, ¢;, ¢! = actual, estimated, and mea- plied on segment i at joint

X.i, x{; = estimated and measured sured angular velocity vec- i-1
values of x; - . . tors . Ti, T; = estimated and measured
Zeis Xa» X4 = actual, estimated, and mea- i+ $i- &/ = actual, estimated, and mea- values of 7;

sured linear velocity vec-
tors

Zis Xy, %l = actual, estimated, and mea-
sured linear acceleration
vectors

vectors
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sured angular acceleration

Fi-1 = intersegmental reaction
force vector acting on seg-
ment i at joint i — 1

Jo, To = estimated ground reaction
forces and torque
W, Wy, We = measurement noise in

fo. 75, ¢
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which is linear in 7. The full derivation for the benchmark
system, as well as definitions of the relevant terms, are given
in Appendix A.

The overdetermined system of equations is formed by com-
bining Eqs. (3) and (5) and substituting measurements for
ground reaction forces and torques and angular accelerations
into the right-hand side:

[C(¢>)-M"(¢)-Q].T= A I 2
M~ () 48 0

_ [cw)

Inxn

]'M"(¢)'{g(¢) +v(é, $)}. (6a)

It is preferable to define new variables to put Eq. (6a) into a
simpler form:

4 [C(¢)°M“(¢)'Q] ’

M™(¢)
79 c(¢, )
b=| fef +] oo
&' 0
C -
- [ ,(ffn)]-M"(cb)- {g(®) + v(d, )}

The linear, overdetermined nature of Eq. (6a) then becomes
more evident:

A'T=5b, (6b)

where the number of rows in A and b exceeds that of 7 by the
number of ground reaction measurements. There is in general
no solution to this equation if the measurements are noisy.

Static optimization may be used to find the joint torques T
which (in the least-squares sense) best agree with the measure-
ments:

)

7 = argmin A+ T — bl

where the norm of a vector of length m is defined by |[x]|*> =
(1/m) 2 x}, and arg min refers to the value of T that minimizes
j=1

j=
the norm. The linear form of Eq. (6b) is convenient because it
affords a linear solution using the pseudo-inverse (Strang,
1988). While the solution to Eq. (7) is straightforward to find
deterministically, it is advantageous to use a stochastic formula-
tion based on estimation theory, because it facilitates a statistical
description of the expected errors (Stark and Woods, 1986).
Assume that the covariance of the (zero-mean) measurement

errors is given by W:
To T
- Zo = W.
e

To To o
E ol Bt )] £
¢r ¢ ¢l

If all of the measurement errors are independent, then W is a
diagonal matrix containing the variances of the measurements.
The optimal estimate 7 is given analytically by

T=(AT-W-A)"AT-W b (8)

in which the weighted pseudo-inverse of the left-hand matrix
multiplier of Eq. (6b) is multiplied against the measurements.
This estimate is optimal in the sense that it is the unbiased (i.e.,
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E[7] = 7) linear estimator that minimizes the covariance of
the estimation error, E[(T — T)(T -~ 7)7].

Besides providing an estimate that is fully consistent with
the boundary conditions and has minimum error covariance,
this formulation is well suited to situations in which not all
measurements are available. If any measurement from ¢/,
f ¢, T¢ is unavailable or unreliable, the corresponding terms in
the covariance matrix W may be set to infinity (or equivalently
the corresponding terms in W ™! are set to zero), which has the
effect of removing measurements from the equations. As long
as the remaining rows of Eq. (8) are well-conditioned and of
sufficient rank, the method provides an optimal estimate.

There are two practical issues to consider when implementing
the solution of Eq. (8). First, it is generally computationally
advantageous to use a method such as singular value decomposi-
tion to solve Eq. (6), rather than to compute the pseudo-inverse
explicitly (Golub and Van Loan, 1989). Second, it is possible
in some cases that the scaling that occurs with use of the covari-
ance W may make the equation ill-conditioned. Such a situation
may arise when several of the measurements are so poor that
there is effectively not enough information to determine the
solution fully. This may be monitored by examining the condi-
tion number of the term multiplying b in Eq. (8) —if it becomes
ill-conditioned, it is preferable to scale W to keep the condition
number under a reasonable value, such as 100. Fortunately, this
situation rarely occurs in practice, as most measurements are
usually within a few orders of magnitude of each other in
precision.

Correction of Measurement Bias. The proposed least-
squares estimation method can be modified to eliminate mea-
surement biases that are constant in time, by including these
biases as estimation variables, and performing the estimation
across all points in time simultaneously. The simplest form of
a bias is a constant offset in some of the forces, as may occur
when load cells drift slowly over time. But constant biases
may also be introduced by mismatch between certain estimated
anthropometric parameters used to model a subject and their
actual values. For example, an improper body mass estimate
will produce a constant error in ground reaction torque equal
to the error in units of weight multiplied by the moment arm
about the force plate’s coordinate origin. Another means by
which constant error may be introduced is in the moment arm
itself, as may occur with misalignment between force plate and
motion analysis system.

Biases may be included in the estimation problem as follows:
Let there be n, unknown biases assembled into a vector S.
These offsets are included by modifying Eq. (6b):

ALKIT{k] = b{K] + B8 9
where the brackets [k] denote evaluation of the quantities at
time k, with a total of N time steps. A selection matrix B is
multiplied against 8 so that the biases affect the appropriate
measurements. B is defined to be of size n,, X n, where n,, is
the number of measurements (or the length of b[k]), and to
have entries B; = 1 if bias j acts on measurement i, B; = 0
otherwise.

Equation (9) may be solved for all 7[k] and 8 simultaneously
by combining all time steps into a block linear system:

T[1]

All] -B b{1]
Al2] -g| |2 b[2]
-B ' ;
AIN] —-B "[g’ ] bN)
(10)

The resulting system, with size n,, by (n*N + n,), is consider-
ably larger than the single A[k] of Eq. (9). It may, however,
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be solved efficiently using algorithms tuned for sparse systems
(Golub and Van Loan, 1989).

Error Analysis. The tools of estimation theory provide a
prediction of the errors arising from each of the methods de-
scribed above. For the conventional method, the prediction is
made by first assembling Egs. (1) and (2) for each segment
together into a matrix equation of the form (see Appendix A)

('1"1
r=F-] 7%

fo

+ 7. (11)

The covariance of torque estimate error using the Newton-
Euler method is given by
Xye=F-W-FT, (12)
Similarly, the error covariance for the least-squares method is
given by
Xis = (ATW™'4)"! = A*'WaAY (13)
where A* denotes the pseudoinverse of A, A* = (ATA)'AT.
The predicted variance for the joint torque errors is given by
the diagonals of X, ;. Assuming that the measurement noise has

zero mean, the joint torque estimation errors using either method
will also have zero mean.

‘“Experimental’’ Comparison of Methods. A simulated
experiment was performed to compare the least-squares and
Newton—Euler methods of estimating joint torques. While ac-
tual joint torques are never known exactly in a real experiment,
a simulation provides the means to test performance objectively
and evaluate the accuracy of the error covariance prediction.
The benchmark case modeled postural sway of a four-segment
body in the sagittal plane. Ground reaction forces (horizontal
and vertical force and reaction torque) and the kinematics of
markers located at the joint centers were calculated and then
‘‘measured’’ by adding zero mean white noise with known
variance. These data were sampled at 60 Hz, and both forces
and angular orientations derived from the marker positions were
low-pass filtered with a cutoff of S Hz (Butterworth, third order,
forward and backward passes). First and second derivatives of
the filtered angular orientations were found using second-order
finite differences. Equations of motion and parameters for the
model are given in Appendix A. This example is not typical
of all possible experiments, but is used to illustrate a single
application of the least-squares method.

The simulated motion consisted of 4 seconds of a postural
movement about the ankle, knee, and hip joints. The movement
was produced by a feedforward trajectory of joint torques equal
to the sum of sinusoids ranging from 0.5 to 2.2 Hz, plus a
feedback component designed to ensure stability of the system.
The amplitudes of the sinusoids were set at physiologically
plausible values, and their respective phases were randomly
assigned (see Fig. 2).

Four sets of simulations were performed, using varying
amounts of measurement noise. For each case, the measurement
noise covariance was computed and used as input to Eq. (8).
Trials using both the Newton—Euler and least-squares methods
were conducted in sets to test the accuracy of the error predic-
tions and to compare the performance of the methods for a
wide variety of noise levels, missing measurements, and biased
measurements.

The first set of trials was used to test the validity of the
error prediction, and indirectly, the assumption that angular
orientation and velocity measurement errors can be considered
negligible compared to the acceleration errors. Fifty (50) en-
sembles of data were produced with each channel of force plate
noise set at a standard deviation of 0.1 N (N-m in the case of
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a. Joint angles vs. time
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Fig. 2 Benchmark simulation of postural movement: (a) Joint angles
versus time for ankle, knee, hip. (b) Joint torques versus time. (¢) Ground
reaction data, for horizontal force (F;), vertical force (F,), and ground
reaction torque (7).

torque) and marker position noise at 1 cm (both horizontal and
vertical ). The square root of the ensemble-averaged square error
was calculated across time, and compared with the predicted
values given by the square roots of the diagonal elements of
the covariance matrix.

The second set of trials was used to compare the performance
of the static optimization and conventional methods for a wide
range of noise variations. The standard deviation of noise on
each of the force measurements was set at values ranging from
0.001 N (0.001 N-m in the case of ground reaction torque) to
10 N (1 N-m for ground reaction torque) in increments of a
factor of 10, and the position measurements at values ranging
from 0.01 cm to 3.2 cm, also in increments of half orders of
magnitude. One ensemble was computed for each combination
of noise levels, and the errors were summarized using the square
root of the time-averaged square error,

N
RMSE; = _ |~ Y (7:[k] = (7i[k])? (14)
le=l
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Fig.3 Comparison of results from benchmark test of Newton-Euler and
least-squares methods. Least-squares method substantially improves
estimates for joints distal to force plate, resulting in lower overall ervor.
(a) Joint torque estimates over time, versus actual torques at ankle,
knee, and hip. (b) Joint torque estimation error, averaged over time,
for each joint and overall error (RMSE). (c) Joint angular acceleration
estimation errors, averaged over time, are reduced using least-squares
method for all joints.

calculated for each joint, and with an overall measure for all
joints taken to be the magnitude of the torque error vector
summarized in a similar manner:

RMSE = % Y lrlk] ~ 7RI . (15)

k=1

The third set of trials was used to compare performance of the
methods with missing reaction force data. RMSE was calculated
with measurement noise set at the same values as used in the first
set, for every possible combination of missing force plate data.
One ensemble was calculated for each combination.

The final set of simulations was used to compare performance
for varying amounts of bias in the force plate measurements.
The bias in this case consisted of misalignment of the force
plate and motion analysis coordinate systems by amounts vary-
ing from 0 to 1 cm in steps of 0.1 cm. Measurement noise
remained at 1 cm for marker positions, 0.1 N for forces (0.1
N-m for ground reaction torque). The RMSE was calculated
for a single ensemble of each of these cases.

Results

Overall time-averaged torque and acceleration errors were
computed for both methods, as shown in Fig. 3. For measure-
ment noise standard deviations of 1 cm for marker position and
0.1 N (horizontal and vertical reaction force) and 0.1 N-m
(ground reaction torque ) for force measurements, the Newton—
Euler method produced more precise estimates of ankle and
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knee torques. The ankle torque was especially precise with an
error of 0.043 N-m, compared to 0.61 N-m (RMSEL1) using the
least-squares method. However, the advantage is reduced for
knee torque, 1.43 N-m compared to 2.13 N-m (RMSE2), and
disappears at the hip, 549 N-m compared to 3.02 N-m
(RMSE3). This dramatic difference in hip torque makes the
least-squares method advantageous overall, with an RMSE 34
percent (2.16 N-m versus 3.27 N-m) lower than that using
the Newton—Euler method. Although the conventional method
produced better results for joints closest to the force plate, this
precision came at the expense of much larger errors at the hip,
and a residual torque of 51.3 N-m (RMSEA4). If this residual
were to be included in overall RMSE, the reduction gained by
using the least-squares method would increase to approximately
95 percent. The least-squares method also resulted in substantial
reductions in error in the joint angular acceleration estimates,
with c;verall error (RMSE) reduced by 30 percent (3.72 to 2.60
rad/s*). i

The results for the ensemble-averaged trials are shown in
Fig. 4. Predicted and actual standard error are given for each
joint torque over time using both Newton—Euler and least-
squares methods (Fig. 4(a)), and for each joint angular acceler-
ation over time using only the least-squares method (Fig. 4()).
Predicted standard error was derived from the predicted covari-
ances of Eqs. (12) and (13). The predictions show that, for the
selected noise levels, the least-squares method should theoreti-
cally outperform the conventional inverse dynamics method
where all measurements are available. This advantage should
be greatest for the joint most distal to the force plate, where
the error is predicted to be reduced by about 30 percent. While
the simulations show that the predictions tend to underestimate
the error, they nevertheless affirm that the least-squares method
outperforms the Newton—Euler method. The poor precision of
the prediction was thought to stem in part from noise in angular
orientations and velocities, which are not taken into account by
the model. To test this possibility, the ensembles were recom-
puted with the same measurement noise levels on f; and ¢, but
with ¢' = @ and ¢’ = ¢. The results, shown in Fig. 4(c),
show that the ensemble errors are much closer to their predicted
values, verifying that angular orientation and velocity errors
adversely affect predictions of overall error.

Comparisons for a variety of motion data and force plate
noise levels show that the proposed method was more precise
for a variety of situations. A graph of absolute joint torque
estimate errors (RMSE, see Fig. 5(a)) shows that error mag-
nitude generally increases with both marker and force mea-
surement noise magnitude using both methods. However, in
all of these cases, the least-squares estimate was more pre-
cise, with a relative reduction in RMSE (Fig. 5(b)) ranging
from 20 to 60 percent for 48 out of the 56 combinations used,
with a median reduction of approximately 35 percent. These
ranges demonstrate that precision may be improved for a
wide range of noise levels, measurement techniques, and dif-
ferentiation methods.

Errors in joint torque estimates (RMSE) with varying force
plate offsets are compared in Fig. 6. For every case in which
at least one force plate measurement was available, the least-
squares method produced more precise estimates; when only
acceleration measurements are available, the system is determi-
nate and the two methods are equivalent. There were three cases
in which the proposed method outperformed the Newton—Euler
method by a factor of four or more: when horizontal ground
reaction force and ground reaction torque (91 percent reduction
in RMSE) were available, horizontal and vertical forces alone
(78 percent), reaction torque alone (90 percent), and horizontal
force alone (76 percent).

Errors for the case when all force measurements are available,
but with a horizontal bias in alignment with the motion data
coordinate system, are compared in Fig. 7. Using the Newton—
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Fig.4 Ensemble-averaged standard errors over time, for Newton—~Euler (NE) and Least-Squares (L.S) meth-
ods applied to benchmark system. Errors are shown in three columns, corresponding to the ankle, knee,
and hip joints. LS results are denoted by a dotted line, and NE by a dashed line. Actual standard errors are
denoted by a thin line, and predicted values by a thicker line. (@) Actual and predicted standard errors
of joint torque estimates. Noise in angular orientation and velocity measurements causes predictions to
underestimate actual error. (For ankle torque, NE and LS predictibns are nearly identical.) (b) Actual and
predicted standard errors of joint angular acceleration estimates. Measured accelerations, found by double-
differentiating filtered angular orientation measurements, are denoted by a solid line. NE method does not
estimate accelerations, but assumes they are equal to the measured values. Acceleration error predictions
are also underestimated. (c) Joint torque errors computed using exact angular orientations and velocities,
but noisy accelerations, result in much better predictions. Motion analysis precision therefore determines
accuracy of error prediction.

Euler inverse dynamics method, the overall RMSE increased  Discussion
linearly with bias. With a misalignment of 1 cm, the error For a wide range of noise levels, the least-squares method

increases from 3.27‘ N-m to 7.52 N-m RMSE, a factor of 2:3. produces smaller overall torque errors than the Newton—Euler
In contrast, the static optimization is unaffected by bias, with method. However, the conventional method often provides better
error remaining constant at 2.17 N-m RMSE. The relative reduc-  estimates for the joints closest to the force plate (see Fig. 3).
tion in error increases from 34 to 71 percent when the bias This comes at the expense of much poorer precision at the other
reaches 1 cm. joints, and the production of residual torques and forces at the
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Fig. 5 Comparison of joint torque estimation errors for varying levels of noise in forces and marker measurements: (a) Absolute errors
(RMSE) for Newton-Euler and least-squares methods. (b) Relative errors, least-squares RMSE as a fraction of Newton-Euler RMSE.
Least-squares method resulted in reduced error for every combination of noise levels, with a median reduction of 30 percent.
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Fig. 6 Comparison of joint torque estimation error (RMSE) for both
methods, with varying number of force plate measurements. All possible
combinations of force measurements were tested, using all acceleration
measurements for each case. The force measurements used are denoted
by F, for horizontal ground reaction force, F, for vertical force, and T for
ground reaction torque. Least-squares method resuits in substantially
reduced error even when some force measurements are not inciuded.
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Fig. 7 Comparison of joint torque estimation error (RMSE) for both
methods, with varying amounts of bias due to misalignment between
force plate and motion measurement coordinate systems. Least-squares
method successfully efiminates effects of bias.
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upper end of the system. In contrast, the least-squares method
performs better on these same joints distal to the force plate,
where absolute errors are usually far greater, and produces no
residual torques at the top-most segment. In terms of overall
RMSE, the proposed method provided better estimates for every
combination of noise levels (Fig. 5), showing that these resuits
are not particular to an ideal test case. Moreover, the proposed
method can also provide minimum mean-square error estimates of
the angular acceleration and ground reaction force measurements.

One major requirement is that measurement covariances are
required. These quantities can be estimated roughly by examin-
ing measurement data after low-pass filtering and (if appro-
priate) numerical differentiation. It is also possible to compute
the covariances theoretically from knowledge of the precision
of measurement equipment and by modeling the data pro-
cessing, as described in Appendix B. It is, however, difficult to
account for other sources of noise such as motion of the markers
on the skin or vibration of the force plate, or to describe non-
white, non-Gaussian noise. Fortunately, these concerns are
somewhat alleviated by the observation that least-squares meth-
ods of this sort are generally quite robust. For the test case
described above, variations of a single covariance value by 100
percent produced a mean change in torque errors of only 7
percent. In fact, another test showed that when all of the covari-
ances were arbitrarily set equal to each other, the least-squares
method still outperformed the conventional method for all but
two of the 54 combinations of noise levels tested (as in Fig.
6). .

There remains nevertheless a compelling reason for accu-
rately estimating measurement covariance: to facilitate predic-
tion of the estimation error. The results show that Egs. (12)
and (13) can be used to predict the estimation error covariance
as long as reasonable estimates of measurement noise covari-
ance are available and angular orientation and velocity measure-
ments are fairly precise (see Fig. 4(¢)). When these last mea-
surements are imprecise, however, the actual error may be sev-
eral times higher than predicted (see Fig. 4(a)). Even in such
cases, the covariance predictions may be useful for three pur-
poses. First, they may still predict the relative changes in estima-
tion error that occur across:time (i.e., as the body changes
configuration). Second, they are useful for predicting theoreti-
cally the amount by which precision can be improved by using
the proposed least-squares techniques. Third, the fact that error
covariance is reduced, even though by an amount smaller than
predicted (see Fig. 5), shows that the errors in angular accelera-
tion and force measurements are dominant, as hypothesized.
Although errors in angular orientation and velocity adversely
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affect the results, the least-squares method still provides better
precision.

The robustness of the least-squares formulation is demon-
strated by its performance when some force measurements are
missing. While error increased with loss of measurement data
regardless of method, the static optimization method outper-
formed the conventional method in every case, and in relative
terms usually experienced a smaller increase in error. In fact,
when horizontal ground reaction forces were removed, the pro-
posed method’s estimates had only 7 percent greater joint torque
error than the standard method’s estimates using all measure-
ments. This robustness indicates that the proposed method is
especially useful when some data are missing or when measure-
ments are especially noisy. There may in fact be cases when a
measurement such as horizontal ground reaction force may be
intentionally discarded to save on equipment expense. The pre-
diction of error covariance can be used to evaluate when such
a situation is warranted.

This robustness stems from the formulation’s flexibility. It
can make use of any number of measurements, as long as they
are sufficient to make the problem determinate. Beyond that
minimum, precision increases with the number of measure-
‘ments, as long as they can be included in equations that are
linear in the estimation variables. For example, accelerometer
measurements are related to the joint angular accelerations by
a simple coordinate transformation, and could be useful for
improving the joint torque estimates at joints far removed from
the force plate.

Another example of the flexibility of this formulation is the
inclusion of measurement bias. Any constant bias in the mea-
surements can be optimized out of the estimates, as long as
they are accounted for in the formulation, and as long as there
are enough data to make the problem determinate. Because
there are typically many time steps, this second consideration
is typically not an issue. And if any calibrations are in doubt,
it is not unreasonable to include them as a conservative measure.
In fact, their inclusion makes it much less important to deal
with issues such as alignment of force plate and measurement
coordinate system origins (although their respective axes must
nonetheless be parailel each other) or zeroing of force measure-
ments. Moreover, this reformulation of the problem poses little
penalty on computation. In fact, using an efficient sparse matrix
solver in MATLAB (The Mathworks Inc., Natick, Mass.), the
inverse dynamics method actually ran about 6 percent faster
using the sparse formulation.

It is theoretically and practically unsurprising that the static
optimization method performs well relative to the traditional
method. An interesting comparison is between the static optimi-
zation method and a dynamic optimization method such as that
proposed by Chao and Rim (1973). These methods differ in
the fact that the method proposed here utilizes the equations of
motion merely as algebraic equations at each point in time, but
the dynamic optimization method recognizes their true utility
as differential equations, which place constraints over time.
Dynamic optimization therefore recognizes physical limitations
on movement over time, and finds the trajectory of joint torques
that best matches the measurements both spatially and tempo-
rally. Theoretically it is the better method, and can achieve high
levels of precision depending on the choice of optimization
parameters, but the difficulties mentioned in the introduction
make dynamic optimization a poor choice in practice.

The least-squares method would therefore appear to be ideal
for many applications. It does, however, have one major disad-
vantage. Implementation requires the formulation of equations
of motion for the system, and equations relating ground reaction
forces and joint torques, which are both more difficult than
simple iteration of the Newton—Euler equations for each seg-
ment. Traditionally, such formulations have required advanced
knowledge of multi-body dynamics (Greenwood, 1988). How-
ever, these equations may also be solved symbolically using
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commercial software packages or numerically using kinematic
constraints, as described in Appendix A. Nonetheless, tradi-
tional methods remain useful, particularly when simplicity is
desired, and when measurements do not suffer from excessive
noise.

Finally, it is important to note that any method mentioned
here is subject to systematic errors that affect accuracy. System-
atic errors may be produced by inadvertant filtering of useful
data along with the noise, by poor placement of body markers,
and by inaccurate estimation of body segment dimensional and
inertial parameters. The proposed method addresses none of
these issues, and seeks only to improve precision by reducing
the effects of random noise. The overall accuracy, on the other
hand, depends on many other factors and is a much more diffi-
cult issue to address.
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APPENDIX A

Equations for Four-Segment Model

This appendix provides the equations of motion for the four-
segment system used as a benchmark. Both equations of motion
(3) and the ground reaction force Eq. (4) are derived using
Newton-Euler equations for rigid-body motion and simple ki-
nematics. They have the advantage of being solvable either
symbolically or numerically. The symbolic solution is exactly
equivalent to the equations found by more advanced methods
such as that of Lagrange (Greenwood, 1988 ) or Kane (Kane and
Levinson, 1985). The numerical solution requires no algebraic
reduction (by eliminating constraints numerically) and is easy
to implement in software. This method can easily be extended
for more segments or to three dimensions as noted in Appen-
dix C.

In order to derive Egs. (3) and (4), it is advantageous first
to derive the equations of motion for the four-segment system
with no constraint on rotation of segment 1. The result is a
superset of the equations of motion with segment 1 held static,
and the extra degree of freedom is used to solve for the ground
reaction torque. To facilitate the derivation, the following
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stacked vectors are defined for angular orientations, joint
torques, segment center of mass positions, and reaction forces:

il _¢ To
d = = ! s = T = To s
: | ¢ ] d i [ T
¢n Ta-1
-xcl ﬁ)
x= %2 f=| 1
_x.cn u.—l

The equations of motion are found by eliminating kinematic
constraints from the Newton—Euler equations. The kinematic
constraints are those relating the position and orientation of the
segments. These constraints are expressed here as the center of
mass positions of the segments as a vector function of the
generalized coordinates, which in this system, are the segment
angles:

Summing the forces acting on each segment and combining
them in vector form, Newton’s equation for rigid-body motion
can be written as

Sz'f= MD'fc + 8v (A4)

where the following additional quantities are defined:

X2

JE I

12><2

S

—_ 12x2
12><2

MD = dlag (mlv my, my, my, ms, ms, my, m4)
8v = [0 m; 0 m; 0 ms; 0 m¢]7g

with 7> denoting the 2-by-2 identity matrix, and g denoting
the gravitational constant. .

Similarly, Euler’s equation for rigid-body rotation can be
written as

- - B=5-7+P-f (AS5)
Lo ¢ ;
Iasy where ] is the diagonal matrix of segment moments of inertia
llcl + ﬁcZCZ I= diag I, Iz, 13, 14), and
— hisy + Leass
Xe = I,C; + lzCz + lc3C3 ’ (Al) 1 -1
1151 + lzsz + lc353 S = 1 -1
11C1 + lzCz + I3C3 + lc4C4 ! 1 -1
_l;Sl + Ly + lica + loaSs B 1
] lasi —lacar (h=1l)si —(h - L)a 0 0 0 0
p=] O Y LSz —lacz (L = l2)s: —(L— l2)c, 0 0
0 0 0 0 leass —lescs (b =13)ss —(b~l3)es
0 0 0 0 0 0 Lo4Ss —1.4Cs

where s; = sin ¢, ¢; = cos ¢;, [; is the length of segment i,
and /; is the distance from the end of segment i most proximal
to the ground to its center of mass (see Fig. 1).

The first and second time derivatives of Eq. (Al) may be
written in matrix form by defining the Jacobian and its deriva-
tive,

(—loss 0 0 0 ]
l,_-\Cl 0 0 0
5 —bsy - —las; 0 0
_xf - ll C lczcz 0 0
J= 8%’ J= —lis;  ~bs; —las; 0 ’
L hLe, lacs 0
—bhsi  —bLsy  —lsy  —lasa
L l| Cy lzCz I3C3 l¢4€4 A
E clcl(:ﬁl 0 0 0 T
= clsl?l 0 . 0 0
=1 cl?] "'lczcz?z 0 0
J= —11514.’1 - czsz{ﬁz 0 N 0
"IICK?! ‘lzcz?z - cscs?s 0
—l,s;d}, —1252({’2 - cssa?s 0 .
=l 1?1 ‘lzcsz’z -l 03?3 "lc4C4<!>4
B =hisid, =bs;p,  —bssps - c434¢4_
so that
i = Jd (A2)
% =J® + Jb. (A3)
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The forces f may be eliminated by substituting Eqs. (A3)
and (A4) into Eq. (AS5):

B =S8,T+P (57" Mp-J® + S5 Mp-JB + S5 - gv)
(A6)

which may be rearranged as

NP =8-T+T+§ (A7)
given the definitions

M=1-P-S5'-Mp-J
T=P-S;' Mp-J®
§= P-S5'- gy

It is instructive to note that Eq. (A7) may be partitioned into

an equation for the motionless segment 0; and the equations of
motion for the remaining segments, Eq. (3):

myimy  my om0
mi2 .
ms M(d) ¢
mys
To— T T S
= o7 | |ved g@)| @
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The ground reaction forces may be found from Eq. (A4),
(A9)

where S% = [172 P 2 ]?%?] is the first (block) row of the
inverse of S,. Similarly, the ground reaction torque may be
found from Eq. (A7) to be

fo=Si-Mp-x+ S5 gy

To=8-Md -1, -4 (A10)

where S/ is the first row of the inverse of S;. The following
definitions then yield Eq. (4):

YR
S 5 * MD -J

i+ G

C(p) = [ —SiMpJd + Slzgv] '

],c(dxé)s[

These same equations given above may be used to derive the
matrix F used in Eq. (12), with a few modifications. Equations
(A4) and (A5) are rewritten to separate the ground reaction
measurements f and 7o, and an extra degree of freedom is
added to allow for a residual, 7,. This is accomplished by
defining

T h -1
z_ |7 :_ | f § — 1 -1
J= I =y SE 1 -1 ’
Ta fa 1 -1
IZXZ
R I2><2 IZXZ
S, = [T »
12><2 _12X2
lasy —lac
_ 0 0
Po=179 o
0 0
(= Lks, —(h — o) 0 0
l2sy —l2cy (b= L2)s: ~(L—l2)c
P= 0 -0 Icsss ~4c3C3
0 0 0 0
which are used to rearrange Eqs. (A4) and (AS) into
| F=S7' Mok + gv} - (Do (A11)
F=S7{I® — P-f— Po-fo} + (SHT70.  (A12)

The output of the Newton—Euler method is 7’, found by com-
bining Eqgs. (A3), (All), and (A12):

J=S7{Id - P-S;' {Mp-(J® + J®) + gv}
+ {P-(85)7 = Po}fo} + (SD)T 70, (A13)
so that

T=[ST'U - PS7'MpJ) (SDT ST{P-(SHT - Po}]

)
. [ro] — STIBS ;' (MpJd + gv). (Al4)
S

Equation (11) is then found by substituting the measured quan-
tities into Eq. (A14), and F is therefore equal to the first block
matrix above, with the first row removed because ¢, = 0.

For completeness, the actual equations of motion Eq. (A8)
and the associated parameters are given below:
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by =ml, + (my + my + my)l;
by = mly + (my + my)l,

by = myl; + myls

by = myly,

ay = I] + m,lf, + (m; + my + m4)l%

an = byl
a3 = bl
ais = by
an =L + mlZ + (my + ma)13
anp = 'bslz
Gy = byl,

as; = I + mylls + md3
ay = b4l3

Aag = I4 + M4l 54
These constants are used in the terms of Eq. (A7): .

an a12C12 Qi3Ci3 G1aCis
(D) = Q12€12 Q2 G23C23 G2C2
a13C13 A23C23 Qs Q34C34
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¢
é3
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0 0 0 0
(= L3)ss —(L—ls)es 0 0
LeaSa ~1c4Ca (s = La)ss —(la = Li)es
§(®) = [~bicv —byca —bsycs —b4C4]T'g

These parameter values were used for the benchmark prob-
lem:

L=0177Tm, [,=0405m, ;=0440m, [,=0795m
I, =008m, I, =0235m, [;,=0268m, /[, =0302m
m,=178%kg, m,=730kg m; =155kg, m, = 4.6 kg
I, = 0.0080 kg-m?, L = 0.097 kg m?,
L =0253kg-m?, I =151kg-m’

APPENDIX B

Prediction of Measurement Noise Covariance

Given certain assumptions regarding the characteristics of
measurement noise, it is possible to estimate the propagation
of noise by the processes of extraction of angular orientation
from marker positions, digital filtering, and numerical differenti-
ation. These estimates are based on the modeling of these pro-
cesses as affine operations on noisy measurements of the form

(B1)

where the estimates y are linear in the measurements x with the

y=Zx+ 2
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addition of some constant term z. The measurements include
additive noise w, which is assumed white with mean O and
covariance W, i.e., x = ¥ + w. This assumption implies that
the error in y will also have zero mean, and from probability
theory, a covariance

El(y - -7 =ZWZ".

Error Covariance From Extraction of Angular Orienta-
tion From Marker Positions. The error associated with an-
gular orientations depends on the method of marker placement
and on the way in which orientation is specified. For the two-
dimensional system described in Appendix A, the markers were
placed at the joint centers, and angular orientation for each joint,
a scalar, was found from

(B2)

- Vi = Yi~i
; = tan”} S—=1
g X — Xt

(B3)

where x; and y; are the horizontal and vertical marker positions,
respectively, at joint i. Taking partial derivatives of Eq. (B3),
the error covariance of ¢, Wy, is found to be

Wy = E[(¢ — $)(¢ — $)7]
2/l

2/ W, (B4)

2/1,

where I; is the length of segment i, and W, is the scalar variance
in marker position.

Error Covariance Due to Digital Filtering. Low-pass fil-
tering reduces, but does not eliminate, noise in the measure-
ments. Assuming that the filter does not appreciably degrade
the desired signal, it is possible to estimate the variance of filter-
induced error by evaluating the output variance of the filter
driven by noise alone. If the noise w is a scalar white noise
random sequence with zero mean and variance W, it has auto-
correlation R,.[n] = W-5[0] and a comresponding power
spectrum S, (e’“) = W. The output of a filter with discrete
transfer function H driven by this noise has spectrum
Supwy = Sun(e7*)|H(e’*)|?, where the subscript w; refers ‘to
filtered noise. The variance of this output is given by the auto-
correlation of S,,., evaluated at time 0, found by evaluating the

integral (Stark and Woods, 1986)
1 ; .
Wy= Rop (01 = - [ Su(emIHeR) s (BS)

Each measurement channel is filtered independently, so the
error covariance is given by a diagonal matrix composed of the
individual error variances. Note that the integral in Eq. (B5)
cannot generally be given in closed form, and is typically evalu-
ated numerically, depending on the type of filter used. If the
desired signal has significant components beyond the bandpass
frequency, Eq. (BS) will tend to underestimate the error vari-
ance. Such a distortion may be considered a systematic exror.

Error Covariance Due to Numerical Differentiation.
The process of numerical differentiation produces two types of
error. The first is a purely numerical effect due to discretization,
which can be estimated using simple numerical analysis. The
second is associated with the noise-amplifying nature of time
differentiation itself, and can only be estimated given knowl-
edge of the frequency content of both the signal and the mea-
surement noise. The numerical error depends on the differentia-
tion approximation used, and its covariance can be computed
given knowledge of the measurement noise covariance. For
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example, a three-point second derivative of a quantity @ is given
by

bLk] = 711-2 ($lk + 1] - 2¢[k] + @[k — 11) + o(h*) (B6)

where k is the time step and o(h?) signifies other terms of order
{z_z. Since each measurement ¢ is subject to noise, ¢[k] =
&[k] + wy[k], the error covariance of ¢ is

Wy = E[($ — $)(d — $)7]
W, 1
M W¢ . —2
W, 1

(B7)

Error Covariance Due to Combined Filtering and Numer-
ical Differentiation. Although measurement noise may rea-
sonably modeled as white noise, the processes of filtering and
numerical differentiation both have the effect of coloring this
noise. The methods for estimating noise covariance given above
are therefore not applicable if the two processes are combined,
because the output of one process is the colored input to the
other. The error covariance for this case may, however, be
estimated by treating both processes as a single filtering opera-
tion, that is, by applying Eq. (B5) on a single transfer function
H{(e’¥), which combines low-pass filtering and numerical dif-
ferentiation.

APPENDIX C

Inverse Dynamics in Three Dimensions

The proposed method may be formulated for three-dimen-
sional systems with minor changes. There is no conceptual
change in the methodology, but the equations must be altered
to reflect the three-dimensional nature of the system. The vec-
tors f;, T:, and x; all become vectors of length 3, and the vector
of generalized coordinates ¢ is of length equal to the number
of degrees of freedom in the system. (There need not be three
rotational degrees of freedom at each joint.) In three dimensions,
a segment’s angular velocity and angular acceleration are func-
tions of ¢, ¢, and ¢, which themselves are not generally based
on segment angles but on an appropriate three-dimensional co-
ordinate scheme.

The method described in Appendix A may be used by deriv-
ing the kinematics for body-centered angular velocity w; and
acceleration «;, and then applying the three-dimensional form
of Euler’s equation:

Loy + w; X Lw;y =1, X fiog — 8 X fi + Ty — 71, (C1)

where I, are three-by-three inertia tensors. Other matrices and
vectors are trivially redefined to reflect changes in size. One
significant change is in the redefinition of P as a block matrix:

A -5 0 O

_l0 &~ -$ 0
P=1o 0o -
0 0

where the quantity £ refers to the matrix

0 -3 2
3 0 =41
L 22 & 0

so that P- f performs the three-dimensional cross products in
the right-hand side of Eq. (C1). A similar block matrix using
&; is used in the left-hand side.

f=
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