
1

CHAPTER

ONE
1BASIC CONCEPTS

1-1 INTRODUCTION
The concept of optimization is basic to much of what we do in our daily
lives. The desire to run a faster race, win a debate, or increase corporate
profit implies a desire to do or be the best in some sense. In engineering, we
wish to produce the “best quality of life possible with the resources avail-
able.” Thus in “designing” new products, we must use design tools which
provide the desired results in a timely and economical fashion. Numerical
optimization is one of the tools at our disposal.

In studying design optimization, it is important to distinguish between
analysis and design. Analysis is the process of determining the response of a
specified system to its environment. For example, the calculation of stresses
in a structure that result from applied loads is referred to here as analysis.
Design, on the other hand, is used to mean the actual process of defining the
system. For example, structural design entails defining the sizes and loca-
tions of members necessary to support a prescribed set of loads. Clearly,
analysis is a sub-problem in the design process because this is how we eval-
uate the adequacy of the design. 

Much of the design task in engineering is quantifiable, and so we are
able to use the computer to analyze alternative designs rapidly. The purpose
of numerical optimization is to aid us in rationally searching for the best
design to meet our needs. 

While the emphasis here is on design, it should be noted that these
methods can often be used for analysis as well. Nonlinear structural analysis
is an example where optimization can be used to solve a nonlinear energy
minimization problem. 
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Although we may not always think of it this way, design can be defined
as the process of finding the minimum or maximum of some parameter
which may be called the objective function. For the design to be acceptable,
it must also satisfy a certain set of specified requirements called constraints.
That is, we wish to find the constrained minimum or maximum of the objec-
tive function. For example, assume we wish to design an internal-combus-
tion engine. The design objective could be to maximize combustion
efficiency. The engine may be required to provide a specified power output
with an upper limit on the amount of harmful pollutants which can be emit-
ted into the atmosphere. The power requirements and pollution restrictions
are therefore constraints on the design. 

Various methods can be used to achieve the design goal. One approach
might be through experimentation where many engines are built and tested.
The engine providing maximum economy while satisfying the constraints
on the design would then be chosen for production. Clearly this is a very
expensive approach with little assurance of obtaining a true optimum
design. A second approach might be to define the design process analyti-
cally and then to obtain the solution using differential calculus or the calcu-
lus of variations. While this is certainly an attractive procedure, it is seldom
possible in practical applications to obtain a direct analytical solution
because of the complexities of the design and analysis problem. 

Most design organizations now have computer codes capable of ana-
lyzing a design which the engineer considers reasonable. For example, the
engineer may have a computer code which, given the compression ratio, air-
fuel mixture ratio, bore and stroke, and other basic design parameters, can
analyze the internal-combustion engine to predict its efficiency, power out-
put, and pollution emissions. The engineer could then change these design
variables and rerun the program until an acceptable design is obtained. In
other words, the physical experimentation approach where engines are built
and tested is replaced by numerical experimentation, recognizing that the
final step will still be the construction of one or more prototypes to verify
our numerical results. 

With the availability of computer codes to analyze the proposed
design, the next logical step is to automate the design process. In its most
basic form, design automation may consist of a series of loops in the com-
puter code which cycle through many combinations of design variables.
The combination which provides the best design satisfying the constraints is
then termed optimum. This approach has been used with some success and
may be quite adequate if the analysis program uses a small amount of com-
puter time. However, the cost of this technique increases dramatically as the
number of design variables to be changed increases and as the computer
time for a single analysis increases. 

Consider, for example, a design problem described by three variables.
Assume we wish to investigate the designs for 10 values of each variable.
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Assume also that any proposed design can be analyzed in one-tenth of a
central processing unit (CPU) second on a digital computer. There are then
10 combinations of design variables to be investigated, each requiring one-
tenth second for a total of 100 CPU seconds to obtain the desired optimum
design. This would probably be considered an economical solution in most
design situations. However, now consider a more realistic design problem
where 10 variables describe the design. Again, we wish to investigate 10
values of each variable. Also now assume that the analysis of a proposed
design requires 10 CPU seconds on the computer. The total CPU time now
required to obtain the optimum design is 1011 seconds, or roughly 3200
years of computer time! Clearly, for most practical design problems, a more
rational approach to design automation is needed. 

Numerical optimization techniques offer a logical approach to design
automation, and many algorithms have been proposed in recent years. Some
of these techniques, such as linear, quadratic, dynamic, and geometric pro-
gramming algorithms, have been developed to deal with specific classes of
optimization problems. A more general category of algorithms referred to
as nonlinear programming has evolved for the solution of general optimiza-
tion problems. Methods for numerical optimization are referred to collec-
tively as mathematical programming techniques. 

Though the history of mathematical programming is relatively short,
roughly 45 years, there has been an almost bewildering number of algo-
rithms published for the solution of numerical optimization problems. The
author of each algorithm usually has numerical examples which demon-
strate the efficiency and accuracy of the method, and the unsuspecting prac-
titioner will often invest a great deal of time and effort in programming an
algorithm, only to find that it will not in fact solve the particular optimiza-
tion problem being attempted. This often leads to disenchantment with
these techniques which can be avoided if the user is knowledgeable in the
basic concepts of numerical optimization. There is an obvious need, there-
fore, for a unified, non-theoretical presentation of optimization concepts. 

The purpose here is to attempt to bridge the gap between optimization
theory and its practical applications. The remainder of this chapter will be
devoted to a discussion of the basic concepts of numerical optimization. We
will consider the general statement of the nonlinear constrained optimiza-
tion problem and some (slightly) theoretical aspects regarding the existence
and uniqueness of the solution to the optimization problem. Finally, we will
consider some practical advantages and limitations to the use of these meth-
ods. 

Numerical optimization has traditionally been developed in the opera-
tions research community. The use of these techniques in engineering
design was popularized in 1960 when Schmit [1] applied nonlinear optimi-
zation techniques to structural design and coined the phrase “structural syn-
thesis.” While the work of Ref. 1 was restricted to structural optimization,
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the concepts presented there offered a fundamentally new approach to engi-
neering design which is applicable to a wide spectrum of design problems.
The basic concept is that the purpose of design is the allocation of scarce
resources [2]. The purpose of numerical optimization is to provide a com-
puter tool to aid the designer in this task. 

1-2 OPTIMIZATION CONCEPTS 
Here we will briefly describe the basic concepts of optimization by means
of two examples. 

Example 1-1 Unconstrained function minimization
Assume we wish to find the minimum value of the following simple
algebraic function. 

(1-1)

F(X) is referred to as the objective function which is to be minimized,
and we wish to determine the combination of the variables X1 and X2
which will achieve this goal. The vector X contains X1 and X2 and we
call them the design, or decision, variables. No limits are imposed on
the values of X1 and X2 and no additional conditions must be met for
the “design” to be acceptable. Therefore, F(X) is said to be uncon-
strained. Figure 1-1 is a graphical representation of the function, where
lines of constant value of F(X) are drawn. This function is often
referred to as the banana function because of its distinctive geometry.
Figure 1-1 is referred to as a two-variable design space, where the
design variables X1 and X2 correspond to the coordinate axes. In gen-
eral, a design space will be n dimensional, where n is the number of
design variables of which the objective is a function. The two-variable
design space will be used throughout our discussion of optimization
techniques to help visualize the various concepts. 

From Figure 1-1 we can estimate that the minimum value of F(X)

will occur at  and . We know also from basic calculus
that at the optimum, or minimum, of F(X), the partial derivatives with
respect to X1 and X2 must vanish. That is 

(1-2)
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(1-3)

Solving for X1 and X2, we find that indeed  and . We
will see later that the vanishing gradient is a necessary but not suffi-
cient condition for finding the minimum. 

Figure 1-1 Two-variable function space. 

In this example, we were able to obtain the optimum both graphically
and analytically. However, this example is of little engineering value,
except for demonstration purposes. In most practical engineering problems
the minimum of a function cannot be determined analytically. The problem
is further complicated if the decision variables are restricted to values
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within a specified range or if other conditions are imposed in the minimiza-
tion problem. Therefore, numerical techniques are usually resorted to. We
will now consider a simple design example where conditions (constraints)
are imposed on the optimization problem.

Example 1-2 Constrained function minimization 
Figure 1-2a depicts a tubular column of height h which is required to
support a concentrated load P as shown. We wish to find the mean
diameter D and the wall thickness t to minimize the weight of the col-
umn. The column weight is given by 

(1-4)

where A is the cross-sectional area and ρ is the material's unit weight. 
We will consider the axial load only, and for simplicity will ignore

any eccentricity, lateral loads, or column imperfections. The stress in
the column is given by

(1-5)

Figure 1-2 Column design for least weight. 
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where stress is taken as positive in compression. In order to prevent
material failure, this stress must not exceed the allowable stress . In
addition to preventing material failure, the stress must not exceed that
at which Euler buckling or local shell buckling will occur, as shown in
Figs. 1-2b and c. The stress at which Euler buckling occurs is given by 

(1-6)

where E = Young's modulus 
I = moment of inertia 

The stress at which shell buckling occurs is given by 

(1-7)

where  = Poisson's ratio
The column must now be designed so that the magnitude of the stress
is less than the minimum of , , and . These requirements can be
written algebraically as 

(1-8)

(1-9)

(1-10)

In addition to the stress limitations, the design must satisfy the
geometric conditions that the mean diameter be greater than the wall
thickness and that both the diameter and thickness be positive 

(1-11)

(1-12)

(1-13)

Bounds of 10-6 are imposed on D and t to ensure that  in Eq. (1-5)
and  in Eq. (1-7) will be finite. 
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The design problem can now be stated compactly as 

Minimize: (1-14)

Subject to: 

(1-15a)

(1-15b)

(1-15c)

 (1-15d)

(1-16a)

(1-16b)

where , , and  are given by Eqs. (1-5), (1-6), and (1-7), respec-
tively. To summarize, Eq. (1-14) defines the objective function and
Eqs. (1-15a) - (1-15d) and (1-16a, 1-16b) define the constraints on the
design problem. Note that Eq. (1-15a to c) is just a normalized form of
Eqs. (1-8) to (1-10). The constraints given by Eq. (1-16) are often
referred to as side constraints because they directly impose bounds on
the value of the design variables. Figure 1-3 is the design space associ-
ated with the column design problem. In addition to contours of con-
stant objective, the constraint boundaries  are also drawn
in the design space. That portion of the design space inside the con-
straint boundaries defined by the hatched lines is referred to as the fea-
sible design space, and all designs in this region are acceptable. Any
design which violates these constraint boundaries is unacceptable and
is referred to as infeasible. This figure represents a simple example of
the general nonlinear constrained optimization problem. 
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σ
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Figure 1-3 Two-variable function space for column. 
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1-3 GENERAL PROBLEM STATEMENT 
We can now write the nonlinear constrained optimization problem mathe-
matically as follows: 

Minimize: objective function (1-17)

Subject to: 

j=1,m inequality constraints (1-18)

k=1,l equality constraints (1-19)

i=1,n side constraints (1-20)

where design variables

The vector X is referred to as the vector of design variables. In the column
design given above, this vector would contain the two variables D and t.
The objective function F(X) given by Eq. (1-17), as well as the constraint
functions defined by Eqs. (1-18) and (1-19) may be linear or nonlinear func-
tions of the design variables X. These functions may be explicit or implicit
in X and may be evaluated by any analytical or numerical techniques we
have at our disposal. However, except for special classes of optimization
problems, it is important that these functions be continuous and have con-
tinuous first derivatives in X. 

In the column design example, we considered only inequality con-
straints of the form given by Eq. (1-18). Additionally, we now include the
set of equality constraints hk(X) as defined by Eq. (1-19). If equality con-
straints are explicit in X, they can often be used to reduce the number of
design variables considered. For example, in the column design problem,
we may wish to require the thickness be one-tenth the value of the diameter,
that is, t = 0.1D. This information could be substituted directly into the
problem statement to reduce the design problem to one in diameter D only.

F X( )
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Xi
l Xi Xi
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 
 
 
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In general, h(X) may be either a very complicated explicit function of the
design variables X or may be implicit in X. 

Equation (1-20) defines bounds on the design variables X and so is
referred to as a side constraint. Although side constraints could be included
in the inequality constraint set given by Eq. (1-18), it is usually convenient
to treat them separately because they define the region of search for the
optimum. 

The above form of stating the optimization problem is not unique, and
various other statements equivalent to this are presented in the literature.
For example, we may wish to state the problem as a maximization problem
where we desire to maximize F(X). Similarly, the inequality sign in Eq. (1-
18) can be reversed so that g(X) must be greater than or equal to zero. Using
our notation, if a particular optimization problem requires maximization, we
simply minimize -F(X). The choice of the non-positive inequality sign on
the constraints has the geometric significance that, at the optimum, the gra-
dients of the objective and all critical constraints point away from the opti-
mum design. 

1-4 THE ITERATIVE OPTIMIZATION 
PROCEDURE

Most optimization algorithms require that an initial set of design variables,
X0, be specified. Beginning from this starting point, the design is updated
iteratively. Probably the most common form of this iterative procedure is
given by 

(1-21)

where q is the iteration number and S is a vector search direction in the
design space. The scalar quantity α* defines the distance that we wish to
move in direction S. 

To see how the iterative relationship given by Eq. (1-21) is applied to
the optimization process, consider the two-variable problem shown in Fig-
ure 1-4.

Assume we begin at point X0 and we wish to reduce the objective
function. We will begin by searching in the direction S1 given by 

(1-22)

X
q

X
q 1–= α*

S
q+

S1 1.0–
0.5– 

 
 

=
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The choice of S is somewhat arbitrary as long as a small move in this direc-
tion will reduce the objective function without violating any constraints. In
this case, the S1 vector is approximately the negative of the gradient of the
objective function, that is, the direction of steepest descent. It is now neces-
sary to find the scalar α* in Eq. (1-21) so that the objective is minimized in
this direction without violating any constraints. 

Figure 1-4 Search in direction S. 

We now evaluate X and the corresponding objective and constraint
functions for several values of α to give 

(1-23a)

α 0= X
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(1-23b)

(1-23c)

(1-23d)

where the objective and constraint values are estimated using Figure 1-4. In
practice, we would evaluate these functions on the computer, and, using
several proposed values of α, we would apply a numerical interpolation
scheme to estimate α*. This would provide the minimum F(X) in this
search direction which does not violate any constraints. Note that by search-
ing in a specified direction, we have actually converted the problem from
one in n variables X to one variable α. Thus, we refer to this as a one-
dimensional search. At point X1, we must find a new search direction such
that we can continue to reduce the objective without violating constraints.
In this way, Eq. (1-21) is used repetitively until no further design improve-
ment can be made. 

From this simple example, it is seen that nonlinear optimization algo-
rithms based on Eq. (1-21) can be separated into two basic parts. The first is
determination of a direction of search S, which will improve the objective
function subject to constraints. The second is determination of the scalar
parameter α∗ defining the distance of travel in direction S. Each of these
components plays a fundamental role in the efficiency and reliability of a
given optimization algorithm, and each will be discussed in detail in later
chapters. 
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1-5 EXISTENCE AND UNIQUENESS 
OF AN OPTIMUM SOLUTION

In the application of optimization techniques to design problems of practical
interest, it is seldom possible to ensure that the absolute optimum design
will be found subject to the constraints. This may be because multiple solu-
tions to the optimization problem exist or simply because numerical ill-con-
ditioning in setting up the problem results in extremely slow convergence of
the optimization algorithm. From a practical standpoint, the best approach is
usually to start the optimization process from several different initial vec-
tors, and if the optimization results in essentially the same final design, we
can be reasonably assured that this is the true optimum. It is, however, pos-
sible to check mathematically to determine if we at least have a relative
minimum. In other words, we can define necessary conditions for an opti-
mum, and we can show that under certain circumstances these necessary
conditions are also sufficient to ensure that the solution is the global opti-
mum. 

1-5.1 Unconstrained Problems 
First consider the unconstrained minimization problem where we only wish
to minimize F(X) with no constraints imposed. We know that for F(X) to be
minimum, the gradient of F(X) must vanish

(1-24a)

where 

(1-24b)
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However, this is only a necessary condition and is not sufficient to ensure
optimality. This is easily seen by referring to Figure 1-5, which is a function
of one variable. Here the gradient of F(X) is simply the first derivative of
F(X) with respect to the single variable X. Clearly the gradient of F(X) van-
ishes at three points in the figure, A, B, and C. Point A defines the minimum
and point C defines the maximum. Point B is neither the minimum nor the
maximum. 

We also know from calculus that in order for a function of one variable
to be a minimum, its second derivative with respect to the independent vari-
able must be positive, and this is certainly true at point A in Figure 1-5. In
the general n dimensional case this translates into the requirement that the
Hessian matrix be positive definite, where the Hessian matrix is the matrix
of second partial derivatives of the objective with respect to the design vari-
ables 

(1-25)

Figure 1-5 Relative optima of an unconstrained function. 
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Positive definiteness means that this matrix has all positive eigenval-
ues. If the gradient is zero and the Hessian matrix is positive definite for a
given X, this insures that the design is at least a relative minimum, but again
it does not insure that the design is a global minimum. The design is only
guaranteed to be a global minimum if the Hessian matrix is positive definite
for all possible values of the design variables X. This can seldom be demon-
strated in practical design applications. We must usually be satisfied with
starting the design from various initial points to see if we can obtain a con-
sistent optimum and therefore have reasonable assurance that this is the true
minimum of the function. However, an understanding of the requirements
for a unique optimal solution is important to provide insight into the optimi-
zation process. Also, these concepts provide the basis for the development
of many of the more powerful algorithms which we will be discussing in
later chapters. 

1-5.2 Constrained Problems 
Now, consider the constrained minimization problem and assume that, at
the optimum, at least one constraint on the design is active. It is no longer
necessary that the gradient of the objective vanish at the optimum. Refer-
ring to Figure 1-3, this is obvious. At the optimum, the objective function,
being the weight of the tubular column, could be reduced by either reducing
the diameter or the wall thickness so that the components of the gradient of
the objective function are clearly not zero at this point. However, any reduc-
tion in the dimensions of the column in order to reduce the weight would
result in constraint violations. 

We can, at least intuitively, define the necessary conditions for a con-
strained optimum by referring to Figure 1-6. Assume a design is specified at
point A. In order to improve on this design, it will be necessary to determine
a direction vector S which will reduce the objective function and yet not
violate the active constraint. We define any direction which will reduce the
objective as a usable direction. Clearly the line tangent to a line of constant
value of the objective function at this point will bound all possible usable
directions. Any direction on the side of this line (hyperplane) which will
reduce the objective function is defined as a usable direction, and this por-
tion of the design space is referred to as the usable sector. Note that if we
take the scalar product of any direction vector S which we choose in the
usable sector, with the gradient of the objective function, the result will be

negative to zero (that is, ). In other words, the angle between
these two vectors must be between 90o and 270o. This is because the scalar
product is the product of the magnitudes of the vectors and the cosine of the
angle between them. The cosine is only negative for angles between 90o and

ST F X( )∇ 0≤
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270o. Similarly, a hyperplane tangent to the constraint surface at point A
will bound the feasible sector, where a direction vector S is defined as feasi-
ble if a small move in this direction will not violate the constraint. In this
case, the scalar product of S with the gradient of the constraint is negative or

zero ( ), so the angle between these two vectors must also be
between 90o and 270o. In order for a direction vector S to yield an improved
design without violating the constraint, this direction must be both usable
and feasible, and any direction in the usable feasible sector of the design
space satisfies this criterion. It is noteworthy here that if the direction vector
is nearly tangent to the hyperplane bounding the feasible sector, a small
move in this direction will result in a constraint violation but will reduce the
objective function quite rapidly. On the other hand, if the direction vector is
chosen nearly tangent to the line of constant objective, we can move some
distance in this direction without violating the constraint, but the objective
function will not decrease rapidly and, if the objective is nonlinear, may in
fact begin to increase. At point A in Figure 1-6 a direction does exist which
reduces the objective function without violating the constraint for a finite
move.

In the general optimization problem there may be more than one active
constraint at a given time in the design process, where a constraint is con-
sidered active if its value is within a small tolerance of zero. If this is the
case, a direction vector must be found which is feasible with respect to all
active constraints. The requirement that a move direction be both usable and
feasible is stated mathematically as 

Usable direction: 

(1-26)

Feasible direction: 

(1-27)

ST g X( )∇ 0≤

F X( )∇ TS 0≤

gj X( )∇ TS 0≤ for all j for which gj X( ) 0=
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Figure 1-6 Usable-feasible search direction. 

Now consider point B in Figure 1-6, which is the optimum design for
this example. Here the gradient of the objective and the gradient of the con-
straint point in exactly the opposite directions. Therefore, the only possible
vector S which will satisfy the requirements of usability and feasibility will
be precisely tangent both to the constraint boundary and to a line of constant
objective function and will form an angle of 90o with both gradients. This
condition can be stated mathematically as 

X1
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(1-28)

(1-29)

 unrestricted in sign (1-30)

Note that if there are no constraints on the design problem, Eq. (1-28)
reduces to the requirement that the gradient of the objective function must
vanish, as was already discussed in the case of unconstrained minimization. 

While Eq. (1-28) defines a necessary condition for a design to be a
constrained optimum, it is by no means sufficient, as can be seen from Fig-
ure 1-7. Points A, B, and C in the figure all satisfy the requirements of Eq.
(1-28) and yet only point C is the true global optimum. 

Figure 1-7 Relative optima of a constrained function. 

F X( )∇ λj gj X( )∇

j 1=

m

∑ λm k+ hk X( )∇

k 1=

l

∑+ + 0=

λj 0≥

λm k+



20  NUMERICAL OPTIMIZATION TECHNIQUES FOR ENGINEERING DESIGN

1-5.3 The Kuhn-Tucker Conditions 
Equation (1-28) is actually the third of a set of necessary conditions for con-
strained optimality. These are referred to as the Kuhn-Tucker necessary
conditions. 

The Kuhn-Tucker conditions define a stationary point of the
Lagrangian

(1-31)

All three conditions are listed here for reference and state simply that if
the vector X* defines the optimum design, the following conditions must be
satisfied: 

1.  is feasible (1-32)

2. (1-33)

3. (1-34)

(1-35)

 unrestricted in sign (1-36)

Equation (1-32) is a statement of the obvious requirement that the optimum
design must satisfy all constraints. Equation (1-33) imposes the requirement
that if the constraint gj(X) is not precisely satisfied [that is, ] then
the corresponding Lagrange multiplier must be zero. Equations (1-34) to (1-
36) are the same as Eqs. (1-28) to (1-30). 

The geometric significance of the Kuhn-Tucker conditions can be
understood by referring to Figure 1-8, which shows a two-variable minimi-
zation problem with three inequality constraints. At the optimum, constraint

 is not critical and so, from Eq. (1-33), . Equation (1-34)

requires that, if we multiply the gradient of each critical constraint [

and ] by its corresponding Lagrange multiplier, the vector sum of

L X λ,( ) F X( ) λjgj X( )

j 1=

m

∑ λm k+ hk X( )

k 1=

l

∑+ +=

X∗

λjgj X∗( ) 0= j 1 m,= λj 0≥

F X∗( )∇ λj gj X∗( )∇

j 1=

m

∑ λm k+ hk X∗( )∇

k 1=

l

∑+ + 0=

λj 0≥

λm k+

gj X( ) 0<

g3 X∗( ) λ3 0=

g1 X∗( )

g2 X∗( )
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the result must equal the negative of the gradient of the objective function.
Thus we see from Figure 1-8 that

(1-37a)

(1-37b)

Since  and , the second Kuhn-Tucker condition is
satisfied identically with respect to these constraints. Also, we see from Fig-
ure 1-8 that X* is feasible and so each of the Kuhn-Tucker necessary condi-
tions is satisfied.
In the problem of Figure 1-8, the Lagrange multipliers are uniquely deter-
mined from the gradients of the objective and the active constraints. How-
ever, we can easily imagine situations where this is not so. For example,
assume that we have defined another constraint, , which happens to
be identical to  or perhaps a constant times . The constraint
boundaries  and  would now be the same and the
Lagrange multipliers  and  can have any combination of values which
satisfy the vector addition shown in the figure. Thus, we can say that one of
the constraints is redundant. As another example, we can consider a con-
straint  which is independent of the other constraints, but at the opti-
mum in Figure 1-8, constraints ,  and  are all critical.
Now, we may pick many combinations of , , and  which will sat-
isfy the Kuhn-Tucker conditions so that, while all constraints are indepen-
dent, the Lagrange multipliers are not unique. These special cases do not
detract from the usefulness of the Kuhn-Tucker conditions in optimization
theory. It is only necessary that we account for these possibilities when
using algorithms that require calculation of the Lagrange multipliers.

F X∗( )∇ λ1 g1 X∗( )∇ λ2 g2 X∗( )∇+ + 0=

λ1 0≥ λ2 0≥

g1 X∗( ) 0= g2 X∗( ) 0=

g4 X( )

g1 X( ) g1 X( )

g1 X( ) 0= g4 X( ) 0=
λ1 λ4

g5 X( )

g1 X( ) g2 X( ) g5 X( )

λ1 λ2 λ5
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Figure 1-8 Geometric interpretation of the Kuhn-Tucker conditions.

The question now arises, when are the Kuhn-Tucker conditions both
necessary and sufficient to define a global optimum? We can intuitively
define these requirements by referring to Figs. 1-6 and 1-7. Assume we
draw a straight line between points A and B in Figure 1-6. Any design
which lies on this line will be a feasible design. On the other hand, in Figure
1-7 if we draw a straight line between points A and C or points A and D, at
least some portion of this line will be outside the feasible region. If we pick
a line connecting any two points in the feasible region and all points on the
line lie within the feasible region, as in Figure 1-6, we say that the con-
straint surfaces are convex. 

A similar argument holds when we consider the objective function. If
the objective function satisfies the requirements that it can only have one
global optimum as discussed previously in the case of unconstrained mini-
mization, then the objective is said to be convex, that is, the Hessian matrix
of the objective function is positive definite for all possible designs. If the
objective function and all constraint surfaces are convex, then the design
space is said to be convex and the necessary Kuhn-Tucker conditions are
also sufficient to guarantee that if we obtain an optimum it is the global
optimum. This definition of sufficient conditions for a global optimum is

X*
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actually more restrictive than is theoretically required but is adequate to
provide a basic understanding of the necessary and sufficient conditions
under which a design is the true global optimum. A detailed discussion of
the Kuhn-Tucker conditions as well as a concise definition of the suffi-
ciency requirements can be found in Ref. 3. 

Just as in the case of unconstrained minimization, it is seldom possible
in practical applications to know whether the sufficiency conditions are met.
However, most optimization problems can be stated in many different
forms, and an understanding of the desirable characteristics of the design
space is often useful in helping us to cast the design problem in a form con-
ducive to solution using numerical optimization. 

Calculating the Lagrange Multipliers

Now consider how we might calculate the values of the Lagrange Mul-
tipliers at the optimum. First, we know that if a constraint value is non-zero
(within a small tolerance), then from Eq. (1-33), the corresponding
Lagrange multiplier is equal to zero. For our purposes here, both inequality
and equality constraints are treated the same, so we can treat them all
together. It is only important to remember that the equality constraints will
always be active the optimum and that they can have positive or negative
Lagrange Multipliers. Also, assuming all constraints are independent, the
number of active constraints will be less than or equal to the number of
design variables. Thus, Eq. (1-34) often has fewer unknown parameters, 
than equations. 

Because precise satisfaction of the Kuhn-Tucker conditions may not be
reached, we can rewrite Eq. (1-34) as

(1-38)

where the equality constraints are omitted for brevity and R is the vector of
residuals.

Now, because we want the residuals as small as possible (if all compo-
nents of R = 0, the Kuhn-Tucker conditions are satisfied precisely), we can
minimize the square of the magnitude of R. 
Let

(1-39a)

λj

F X∗( )∇ λj gj X∗( )∇

j 1=

m

∑+ R=

B F X∗( )∇=
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and

(1-39b)

where M is the set of active constraints.
Substituting Eqs. (1-39a) and (1-39b) into Eq. (1-38),

(1-40)

Now, because we want the residuals as small as possible (if all compo-
nents of R = 0, the Kuhn-Tucker conditions are satisfied precisely), we can
minimize the square of the magnitude of R. 

Minimize (1-41)

Differentiating Eq. (1-41) with respect to λ and setting the result to zero
gives

(1-42)

from which

(1-43)

Now if all components of λ corresponding to inequality constraints are
non-negative, we have an acceptable estimate of the Lagrange multipliers.
Also, we can substitute Eq. (1-43) into Eq. (1-40) to estimate how precisely
the Kuhn-Tucker conditions are met. If all components of the residual vec-
tor, R, are very near zero, we know that we have reached at least a relative
minimum.

Sensitivity of the Optimum to Changes in Constraint Limits

The Lagrange multipliers have particular significance in estimating how
sensitive the optimum design is to the active constraints. It can be shown
that the derivative of the optimum objective with respect to a constraint is
just the value of the Lagrange multiplier of that constraint, so

(1-44)

A g1 X∗( )∇ g2 X∗( )∇ . . . gM X∗( )∇=
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R
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B 2λT
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B–=

gj X*( )∂
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or, in more useful form;

(1-45)

If we wish to change the limits on a set of constraints, J, Eq. (1-45) is
simply expanded as

(1-46)

Remember that Eq. (1-45) is the sensitivity with respect to gj. In prac-
tice, we may want to know the sensitivity with respect to bounds on the
response. 

Assume we have normalized an upper bound constraint

(1-47)

where R is the response and Ru is the upper bound.

(1-48)

Similarly, for lower bound constraints

(1-49)

Therefore, the Lagrange multipliers tell us the sensitivity of the opti-
mum with respect to a relative change in the constraint bounds, while the
Lagrange multipliers divided by the scaling factor (usually the matnitude of
the bound) give us the sensitivity to an absolute change in the bounds.

Example 1-3 Sensitivity of the Optimum
Consider the constrained minimization of a simple quadratic function
with a single linear constraint.

Minimize (1-50)

Subject to; (1-51)

F X
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jεJ
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---------------=
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---------–=
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δRl
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--------+=

F X( ) X1
2 X2
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2 X1 X2+( )–

2
-------------------------------- 0≤=
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At the optimum;

(1-52a)

and

(1-52b)

Now, assume we wish to change the lower bound on g from 2.0 to 2.1.
From Eq. (1-49) we get

(1-53)

The true optimum for this case is

(1-54)

1-6 CONCLUDING REMARKS 
In assessing the value of optimization techniques to engineering design, it is
worthwhile to review briefly the traditional design approach. The design is
often carried out through the use of charts and graphs which have been
developed over many years of experience. These methods are usually an
efficient means of obtaining a reasonable solution to traditional design
problems. However, as the design task becomes more complex, we rely
more heavily on the computer for analysis. If we assume that we have a
computer code capable of analyzing our proposed design, the output from
this program will provide a quantitative indication of the acceptability and
optimality of the design. We may change one or more design variables and
rerun the computer program to see if any design improvement can be
obtained. We then take the results of many computer runs and plot the
objective and constraint values versus the various design parameters. From
these plots we can interpolate or extrapolate to what we believe to be the
optimum design. This is essentially the approach that was used to obtain the
optimum constrained minimum of the tubular column shown in Figure 1-3,
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and this is certainly an efficient and viable approach when the design is a
function of only a few variables. However, if the design exceeds three vari-
ables, the true optimum may be extremely difficult to obtain graphically.
Then, assuming the computer code exists for the analysis of the proposed
design, automation of the design process becomes an attractive alternative.
Mathematical programming simply provides a logical framework for carry-
ing out this automated design process. Some advantages and limitations to
the use of numerical optimization techniques are listed here. 

1-6.1 Advantages of Numerical Optimization 
• A major advantage is the reduction in design time – this is especially true 

when the same computer program can be applied to many design 
projects. 

• Optimization provides a systematized logical design procedure. 
• We can deal with a wide variety of design variables and constraints 

which are difficult to visualize using graphical or tabular methods. 
• Optimization virtually always yields some design improvement. 
• It is not biased by intuition or experience in engineering. Therefore, the 

possibility of obtaining improved, nontraditional designs is enhanced. 
• Optimization requires a minimal amount of human-machine interaction. 

1-6.2 Limitations of Numerical Optimization 
• Computational time increases as the number of design variables 

increases. If one wishes to consider all possible design variables, the cost 
of automated design is often prohibitive. Also, as the number of design 
variables increases, these methods tend to become numerically ill-condi-
tioned. 

• Optimization techniques have no stored experience or intuition on which 
to draw. They are limited to the range of applicability of the analysis pro-
gram. 

• If the analysis program is not theoretically precise, the results of optimi-
zation may be misleading, and therefore the results should always be 
checked very carefully. Optimization will invariably take advantage of 
analysis errors in order to provide mathematical design improvements. 
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• Most optimization algorithms have difficulty in dealing with discontinu-
ous functions. Also, highly nonlinear problems may converge slowly or 
not at all. This requires that we be particularly careful in formulating the 
automated design problem. 

• It can seldom be guaranteed that the optimization algorithm will obtain 
the global optimum design. Therefore, it may be desirable to restart the 
optimization process from several different points to provide reasonable 
assurance of obtaining the global optimum. 

• Because many analysis programs were not written with automated 
design in mind, adaptation of these programs to an optimization code 
may require significant reprogramming of the analysis routines. 

1-6.3 Summary 
Optimization techniques, if used effectively, can greatly reduce engineering
design time and yield improved, efficient, and economical designs. How-
ever, it is important to understand the limitations of optimization techniques
and use these methods as only one of many tools at our disposal. 

Finally, it is important to recognize that, using numerical optimization
techniques, the precise, absolute best design will seldom if ever be
achieved. Expectations of achieving the absolute “best” design will invari-
ably lead to “maximum” disappointment. We may better appreciate these
techniques by replacing the word “optimization” with “design improve-
ment,” and recognize that a convenient method of improving designs is an
extremely valuable tool. 
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PROBLEMS 
1-1 Consider the 500-N weight hanging by a cable, as shown in Figure 1-9. A hor-

izontal force, F = 100 N, is applied to the weight. Under this force, the weight 
moves from its original position at A to a new equilibrium position at B. 
Ignore the cable weight. The equilibrium position is the one at which the total 
potential energy PE is a minimum, where PE = WY – FX.
a. Write an expression for PE in terms of the horizontal displacement X 

alone. 

b. Write an expression for PE in terms of the angle  alone. 

c. Plot a graph of PE versus  between  and  = . 

d. Find the angle corresponding to the minimum value of PE both graphi-
cally and analytically. Prove that this is a minimum. 

e. Using statics, verify that the  at which PE is minimum is indeed the 
equilibrium position. 

Figure 1-9

1-2 Given the unconstrained function 

a. Calculate the gradient vector and the Hessian matrix.
b. At what combinations of X1 and X2 is the gradient equal to zero? 

c. For each point identified in part b, is the function a minimum, a maximum, 
or neither? 
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1-3 Given the unconstrained function, 

a. At X1 = 2 and X2 = 2, calculate the gradient of F. 

b. At X1 = 2 and X2 = 2, calculate the direction of steepest descent. 

c. Using the direction of steepest descent calculated in part b, update the 
design by the standard formula 

Evaluate X1, X2 and F for  = 0, 0.2, 0.5, and 1.0 and plot the curve of
F versus . 

d. Write the equation for F in terms of  alone. Discuss the character of this 
function. 

e. From part d, calculate  at . 

f. Calculate the scalar product  using the results of parts a and b and 
compare this with the result of part e. 

1-4 Consider the constrained minimization problem: 

Minimize: 
Subject to: 

a. Sketch the two-variable function space showing contours of F = 0, 1, and 
4 as well as the constraint boundaries. 

b. Identify the unconstrained minimum of F on the figure. 
c. Identify the constrained minimum on the figure. 
d. At the constrained minimum, what are the Lagrange multipliers? 

1-5 Given the ellipse , it is desired to find the rectangle of 
greatest area which will fit inside the ellipse. 
a. State this mathematically as a constrained minimization problem. That is, 

set up the problem for solution using numerical optimization. 
b. Analytically determine the optimum dimensions of the rectangle and its 

corresponding area. 
c. Draw the ellipse and the rectangle on the same figure. 
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1-6 Given the following optimization problem; 
Minimize: 
Subject to: 

The current design is X1 = 1, X2 = 1. 
a. Does this design satisfy the Kuhn-Tucker necessary conditions for a con-

strained optimum? Explain. 
b. What are the values of the Lagrange multipliers at this design point? 

1-7 Given the following optimization problem: 
Minimize: 
Subject to: 

a. Plot the two-variable function space showing contours of F = 10, 12, and 
14 and the constraint boundaries  and . 

b. Identify the feasible region. 
c. Identify the optimum. 
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