OpenSim
Developer’s Workshop

August 27-29, 2008,
Stanford University

Website: SimTK.org/home/opensim






OpenSim Workshop Agenda (Day 1)

DAY 1— Wednesday, August 27, 2008

8:00am — 8:45am OpenSim 1.6 installation and setup
—You
8:45am — 9:00am Welcome and goals of workshop
— Scott Delp
9:00am — 10:00am Participant Information and Goals
—You
10:00am — 10:10am BREAK
10:10am — 10:30am Preparing your data
— Sam Hamner
10:30am — 10:40am Inverse dynamics and static optimization analyses
— Jeff Reinbolt
10:40am — 11:30am Guided analyses and exploration on your own
— Jeff Reinbolt & You
11:30am — 12:30pm LUNCH
12:30pm — 12:40pm Forward dynamics simulation
— Ajay Seth
12:40pm — 1:00pm Guided simulation and exploration on your own
— Ajay Seth & You
1:00pm — 1:10pm Computed muscle control
— Ajay Seth
1:10pm — 1:30pm Guided simulation and exploration on your own
— Ajay Seth & You
1:30pm — 2:00pm Guided model editing and exploration on your own
— Jeff Reinbolt & You
2:00pm — 2:10pm Simulation analysis
— Ajay Seth
2:10pm — 2:40pm Guided analyses and exploration on your own
— Ajay Seth & You
2:40pm — 3:00pm BREAK
3:00pm — 3:10pm Analysis template
— Ajay Seth
3:10pm — 4:30pm Creating your own analysis
— Ajay Seth & You
4:30pm — 5:00pm Form groups and create project plans

— Scott Delp & You






OpenSim Workshop Agenda (Days 2 & 3)

DAY 2 — Thursday, August 28, 2008

8:30am — 9:30am Presentations of group project plans
—You

9:30am — 11:45am Work on projects
—You & OpenSim Team

11:45am — 12:45pm LUNCH

12:45pm — 1:00pm Open discussion of common issues
— Scott Delp & You

1:00pm — 4:45pm Work on projects
—You & OpenSim Team

4:45pm — 5:00pm Open discussion of common issues
— Scott Delp & You

6:00pm — STANFORD FOOTBALL

DAY 3 — Friday, August 29, 2008

8:30am — 8:45am Open discussion of tips and comments
— Scott Delp & You
8:45am — 11:45am Work on projects
—You & OpenSim Team
11:45am — 12:45pm LUNCH
12:45pm — 2:45pm Presentations of progress, hurdles, feedback, and future plans
—You
2:45pm — 3:00pm Closing remarks
— Scott Delp

3:00pm —4:30pm RECEPTION






vii

Trademarks and Copyright and Permission Notice

SimTK and Simbios are trademarks of Stanford University. The documentation for OpenSim is freely available and
distributable under the MIT License.

Copyright (c) 2008 Stanford University

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.



Acknowledgments

OpenSim was developed as a part of SImTK and funded by the Simbios National Center for
Biomedical Computing through the National Institutes of Health and the NIH Roadmap for
Medical Research, Grant U54 GM072970. Information on the National Centers can be found at
http://nihroadmap.nih.gov/bioinformatics.




Table of Contents

1 INTRODUCTION..ccicesuricsssrecsssresssssesssssssssssosssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 1
1.1 What is OpenSim? 1
1.2 L OF: ) 1031 1 U 2
1.3 Model and Simulation Repository 2
14 Compatibility with SIMM ........ 2
1.5 Additional Resources and Help testesssetessasesssttssnatesnsiosratesateseretesensessrstessasessrasss 3

2 PREPARING YOUR DATA.ccccouiiisneeisnnecsuncssnecsssnecssssesssssessssssssssssssssssssssesssssessssasssssssssssnes 5
2.1 OVEIVIEW..uuuuriirunrisinerssssnessnnessnsiossssessnssssassosssssssassssessessssssssssossssessassossssssssssssassessnssssasssssssessnses 5
2.2 Laboratory CoOrdiNates ..........coeeecvveicscneissssncsssncssnsissssnosssssssassesssssssssssssssessassssassosssssssassssens 5
2.3 FIlE FOIMALS «.cvveiieiireiicnsssnniosssseneosssensossssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssssssssss 6

P22 T R |V - U T (1 (o) N 1TSS 6
P T |V (o €T T (077 T 1 TSRS 7
2.3.3  SEOrage (S10) FIIES ..ottt 9
2.4 Representing Ground Reaction Data . 10
2.5 Marker Set R |
2.6 OpenSim Utilities........cevueereeesecseesensnnee 13

3 INVERSE KINEMATICS..ccccsceecssueecsarccsneessanecssssecssssessssssssssssssssssssssssssssssssssssssssssssssssssssssss 15

3.1 HOW It WOIKS...cocieueiivcnicscnercsnrnssennssssicscnnessasnossssesnseone .15
TN O R V.- VT g 1y o] OSSOSO 16
N o o (o [ =L (= =1 (0] £SO SO PR 16
3.1.3  Weighted Least SQUares EQUALION ..........ccerieiirrieieeieeiereesies et se et eeesee e nes 16

3.2 INPULS c.eeeiiiiciiicinittisntncsetissennesstessssesssnessssesssstessssssssssessssesssssesssssssssssssssesssssessssssassese 17



33 OULPULS cccoeeerreneiinnerisnnissneissttessseessssnssstessssssssssessssesssssesssssssssssssssssssssssssssssssssssssssssssssssssns 17
34 Inverse Kinematics Tool . 17
4 INVERSE DYNAMICS cuccerversunrssnessannssnessanssnsssansssnssssssssssssssssssssssssssssssassssssssasssassssassssasssnes 21
4.1 How it Works .21
4.2 INPULS coneereinneicncnnisssisssanessnsiosssssssasssssssossnssosssssssasssssssossnssssssssssasssssssossassssssssssassssnssosssssssasese 21
4.3 OULPULS coereenrirnereseneissssnsssnnessssrossssessssssssssosssssosssssssssssssssosssssssssssssasssssssossassssssssssssessnssssassssss 22
4.4 Inverse Dynamics Tool 22
S STATIC OPTIMIZATION ..uuceuerseesseessessacssesssessassasssssssasssassasssasssssssessasssassssssasssssssassassssssnass 25
5.1 How it Works .25
5.2 INPULS ceeeiieiiiiiicnnittennticsstisseneesstesssssesssnessssesssstesssssssssessssessssssssssssssssssassesssssessssesassese 25
53 OULPULS ccconeerrinerinnerisnnissntessttessseessssnssstesssssessssessssssssssesssssssssssssssssssssesssssssssssssssssssssssssssns 26
5.4 Static OptimizZation TOOl........ieiiniiiniinsiniinninniennensnensnnninssessessesssesssesssssssssssessasssss 26

6 EXAMPLE: INVERSE KINEMATICS, INVERSE DYNAMICS, AND STATIC OPTIMIZATION 29

6.1 Importing a SIMM Model of the Upper Extremity . 29
6.2  Performing Inverse Kinematics ......ccccereesueesuecsensenssncssnecsaccnecsaes 30
6.3 Viewing Inverse Kinematics ReSUILS........cocvervurirsrercssnnissnnisssarcssnsissssssssasessnssssssssssassssnsasss 30
6.4 Performing Inverse DYNAMICS .....ccccverescarescrercssancssassssaresnsesssssssassssnsssse 31
6.5 Comparing Inverse Dynamics Results........ccceeeresvurescnenene 31
6.6 Performing Static Optimization ........c...cceeveresrnreccneneee 32
6.7 Comparing Static Optimization ReSUILS ......ccceerevercrvnrisssencssnncscneissersssanssssssssssessassssssseses 33
7 FORWARD DYNAMICS ..ccuersuessenssnesaessucssessaessassasssssssacssassasssassssssssssssssassasssassssssssssasssassasss 35
7.1 How it Works .35
7.2 INPULS ceeeeieiiiiiicniintennticsntisennesstessssesssnessssesssstessssssssssessssesssssesssssssssssssssesssssessssesassese 35
7.3 OULPULS c.coneerrceerinnercsnnissstissattessseessssnssstessssssssssessssesssssesssssssssssssssssssssessssssssssssssssssssssssasssss 36

7.4 Forward Dynamics Tool ................. 37



Xi

8  EXAMPLE: FORWARD DYNAMICS...ucesstessansssnesssnsssnessansssaesssnsssssssasssssssssssssssssassssasssassssnes 39
8.1 Generating a Forward Dynamics Simulation of the Upper Extremity.........cccccceeeuernees 39
8.2  Analyzing your Forward Dynamics Simulation in the GUI...........cocceevueerueisuecsecsecsnnee. 40
8.3 A Forward Dynamics Simulation with Different Controls 40
8.4 Comparing Forward Dynamics ResSults .......ccccceeverercnercsercssarcscnenea 41
8.5 Modifying the MUSCle CONLIOIS ....ccccviervrrinssrncssaressneicsssrssssssssssrssssssssssssssasssnssssssssssassssssssse 41
8.6  Experiment On Your Own 42

9 COMPUTED MUSCLE CONTROL..cuuerseesseesnessaesanessessacssassaessassssssssssasssassasssasssssssassassssssaass 43
9.1 Why is Computed Muscle Control Necessary 43
9.2 How it Works .43
9.3 INPULS ceeeeieiiiiiicniintennticsntisennesstessssesssnessssesssstessssssssssessssesssssesssssssssssssssesssssessssesassese 44
9.4 OULPULS cccoeeerreeerinnerisnnissntissttessseessssnsssstessssssssssessssesssssessssssssssessssssssssessssssssssssssssssssssssssssns 45
9.5 Computed Muscle Control (CMC) Tool 45

10 EXAMPLE: COMPUTED MUSCLE CONTROL «uuvteceessaessnesssnsssnssssssssssssassssasssssssassssassns 49
10.1 Using Computed Muscle Control..........eeeeeeneesenssensseesseccsaecsaecsnes 49

11 EXAMPLE: MODEL EDITING «.ucocueinueseesuensaessnnssessncssacssessacsansssessssssasssessassssssssssssssassases 51
11.1 Connecting an Additional Segment to the Model 51

12 SIMULATION ANALYSIS cuueerueeeessessacssasssessaessassasssassssssssssasssassasssassssssasssassssssasssassasssaosss 55
12.1 How it Works .55
B0 1Y 1] 1 L 55
123 OULPULS wecueereeicnicsnicsuiesecsessstssstssstsssssssssssssssstosstosssssssssssssssssssessssssssssssssssssssssssosssssssssssssses 56
12.4  Analyze Tool ..56

13 EXAMPLE: ANALYZING SIMULATIONS «uecesseecsueesnesssecssncsssesssassssesssasssassssasssssssassssasssns 59
13.1 Analyzing Muscle Behavior from a Forward Dynamics Simulation ...........ccecceeveeeuneens 59

13.2  Analyzing Muscle Behavior from Computed Muscle Control . 60




13.3 Comparing Muscle Behavior across Multiple Simulations

14 EXTENDING OPENSIM’S CAPABILITIES: USER PLUGINS ..ceeeeeeeereeneecrenee

14.1 Organization of OpenSim with SimTK

14.2 OpenSim Architecture and Important Objects

14.3  Steps to Build Plugins for OpenSim.........cccceeuee.

15 EXAMPLE: CREATING YOUR OWN ANALYSIS . .uceeeeeeeeerveseeeccccsssssssssssssoee

15.1 Build a Body Position Analysis from the Template

15.2 Build a Body Position, Velocity, and Acceleration Analysis

Xii

60

.61

.62

.63

65

66



1 Introduction

1.1 What is OpenSim?

OpenSim is a freely available software package that enables you to build, exchange, and
analyze computer models of the musculoskeletal system and dynamic simulations of
movement. OpenSim version 1.0 was introduced at the American Society of Biomechanics
Conference in 2007. Since then, many people have begun to use the software in a wide
variety of applications, including biomechanics research, medical device design, orthopedics
and rehabilitation science, neuroscience research, ergonomic analysis and design, sports

science, computer animation, robotics research, and biology and engineering education.

The software provides a platform on which the biomechanics community can build a library
of simulations that can be exchanged, tested, analyzed, and improved through multi-
institutional collaboration. The underlying software is written in C++ and the graphical user
interface (GUI) is written in Java. OpenSim plug-in technology will make it possible to
develop customized controllers, analyses, contact models, and muscle models among other
things. These plug-ins can be shared without the need to alter or compile source code. You
can analyze existing models and simulations and develop new models and simulations and

visualize them within the GUI.

OpenSim is built using SimTK, an open-source simulation toolkit developed to create
mathematical models of biological dynamics. SimTK is being developed by Simbios, an NIH
National Center for Biomedical Computation based at Stanford University. Open-source,
third-party tools are used for some basic functionality, including the Xerces Parser from the
Apache Foundation for reading and writing XML files (xml.apache.org/xerces-c) and the
Visualization Toolkit (VTK) from Kitware for visualization (www.vtk.org). Use of plug-in
technology will allow low-level computational components such as integrators and

optimizers to be updated as appropriate without extensive restructuring.



2 Capabilities

1.2 Capabilities

OpenSim includes a wide variety of features. You can find out about them by completing the
tutorials and browsing the user guide and this handout. Some of the most useful features

include:

Scaling a Model

e Performing Inverse Kinematics Analyses

e Performing Inverse Dynamics Analyses

e Performing Static Optimization Analyses

e Generating Forward Dynamics Simulations
e Analyzing Dynamic Simulations

e Plotting Results

e Creating Snapshots and Making Animations

1.3 Model and Simulation Repository

You can create your own models of musculoskeletal structures and dynamic simulations of
movement in OpenSim, as well as take advantage of computer models and dynamic
simulations that other users have developed and shared. For example, you can use existing
computer models of the human lower limb, upper limb, cervical spine, and whole body
which have already been developed and posted at https://simtk.org/home/nmblmodels. You
can also use dynamic simulations of walking and other activities that have been developed,
tested and posted on Simtk.org. We encourage you to share your models and simulations

with the research community by setting up a project on SimTK.org.

1.4 Compatibility with SIMM

SIMM (Software for Interactive Musculoskeletal Modeling) from Motion Analysis Corp. is a
widely used software application for biomechanical simulation, surgical planning, and
ergonomic analysis. The joint (*.jnt) and muscle (*.msl) files used by SIMM to describe

models of the musculoskeletal system can be converted into OpenSim models (*.0sim) and
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brought into the OpenSim framework, thus allowing users of OpenSim to build on the
wealth of models built and validated in SIMM. In this way, OpenSim complements SIMM by
enabling forward dynamics simulations of models without third party software or the need

to compile your own source code.

1.5 Additional Resources and Help

You can learn more at the OpenSim project site at http://simtk.org/home/opensim. The

project site provides a forum for users to ask questions and share expertise. You can also get
additional information in the following article: Delp, S.L., Anderson, F.C., Arnold, A. S,
Loan, P., Habib, A., John, C., Guendelman, E.G., Thelen, D.G., OpenSim: Open-source
software to create and analyze dynamic simulations of movement. IEEE Transactions on
Biomedical Engineering, vol. 54, no. 11, pp. 1940-1950, 2007.






2 Preparing Your Data

2.1 Overview

This chapter describes the formats for data files that can be imported into OpenSim.

Generally, you must input the following types of data into OpenSim to generate simulations:

1. Marker trajectories

2. Ground reaction forces and moments and centers of pressure

You may also import joint angles to provide additional kinematic data. Marker trajectories
must be specified in .trc files, and ground reaction and center of pressure data must be
specified in .sto or .mot files. Joint angles must be specified in .sto or .mot files. The .sto file
format, which is similar to the .mot file format, is described below. EMG data may also be
imported using .sto or .mot files, for example, to compare experimental EMG data to muscle

excitations obtained from a simulation.
2.2 Laboratory Coordinates

Every set of (X, y, z) coordinates obtained from a motion
capture system is given relative to some coordinate
system. Typically, this coordinate system is called the
laboratory coordinate system. The laboratory coordinate
system is generally an inertial frame fixed to ground.
Before inputting any coordinates from motion capture
into OpenSim, you must to ensure that all (x, y, 2)
coordinates have been transformed from the laboratory
coordinate system to the model coordinate system used
in OpenSim. Although you can define an arbitrary model

coordinate system, the standard convention used in

OpenSim is shown in Figure 2-1.

Figure 2-1. Model coordinate system.



6 File Formats

OpenSim uses meters for all position and distance data. Once converted to the proper units,
all (x, y, z) coordinates can be mapped from the laboratory coordinate system to the model
coordinate system by a transformation. This transformation can be represented by a 3 x 3
rotation matrix which represents the orientation of the laboratory coordinate frame in the
model coordinate frame. To transform the coordinates of a point 1P = (x, y, z) given in the
laboratory coordinate frame to its coordinates modelp = (x’, y’, z") in the model coordinate
frame, you would employ the following transformation, where modelRIab js the matrix whose
columns are the vectors of the laboratory coordinate frame specified in the model coordinate

frame:
modelp — modeIRIab * Iabp

External forces and moments are usually given in the coordinate system of a particular force
sensor, such as a force plate, which may be different than the laboratory coordinate system.
In this case, the force and moment data must be transformed from the appropriate force

sensor’s coordinate system to the model coordinate system.

2.3 File Formats

2.3.1 Marker (.trc) Files

The .trc (Track Row Column) file format was created by Motion Analysis Corporation to
specify the positions of markers placed on a subject at different times during a motion
capture trial. An example .trc file (subjectOl_walkl.trc) is provided in the
examples/Gait2354 directory, which is part of the OpenSim distribution. A fragment of this
file is shown in Figure 2-2.

The first three lines of the .trc file is a header, followed by two rows of column labels,
followed by a blank row, followed by the rows of data. Each row of data contains a frame
number followed by a time value followed by the (X, y, z) coordinates of each marker. As a
plain text file, a .trc file is commonly tab-delimited. So, for example, the fourth line in the

.trc file in Figure 2-2 would look like this in plain text:

Frame#t<tab>Time<tab>R.ASIS<tab><tab><tab>L . AS1S<tab><tab><tab>V.Sacral...

where <tab> indicates each tab character that would be present in the file.
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E Microsoft Excel - subject0l _walk1.trc [ (O] x|
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DataRate CameraRa NumFrameMumbdarke Units OrigDataR: OrigDataS: OrighlurnFrames
&]1] &]1] ano 41 imm &]1] 1 ano

Frame# iTime R.ASIS L.ASIS W Sacral R.Thigt
#1 il 1 H2 Y2 L2 #3 Y3 i 4

0: B17.2476: 1055275 170,782 639.6064: 1044 255 -55.9095: 430.0693: 1031.265: 29.96675: 517 .32
0.017: 617.99581: 1053.218: 168.5132: 641.2362: 1042 279: -90.9321: 432.3406: 1050.237: 26.84679: 516.6°
0.033: 6202922 1051.771: 165.8594: 6435060 1041.061: -94 3072 4340994 1049 341 23 .81936¢ 517.7;

0.05: 621.5404: 1050.552: 163.5325: B46.751: 1040357 -96.8619: 436.2799: 10458.707: 20.95202: 5191t
0.067: 624 5884 1050.9258: 161.2451: B49.25420 1041 425 85 4546 4358.8279: 1045 451 1827267 5221t
0.033: 623.1586; 1051.42; 155.449; B52.0413; 1043.047; -101.857; 441.6721: 1043.661; 15.77033; 526.50
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Figure 2-2: .trc File. The first few lines of the file are shown here.

DataRate indicates the sampling rate of the data in this .trc file in Hertz. NumFrames,
indicates the number of frames (rows) of data in the whole .trc file. OrigDataStartFrame,
indicates the frame number of the first frame (row) of data in the .trc file. Thus, the time t at

which frame f was captured is t = (f — OrigDataStartFrame) / DataRate.

Note that the fourth row, which contains column labels, contains the name of each marker in
the first column where the marker’'s coordinates appear. In the fifth row, the individual
coordinates of each marker are labeled as X1, Y1, Z1, X2, Y2, Z2, etc. If this format for the
fourth and fifth rows is not followed by a .trc file, OpenSim may fail to read the marker data

correctly.

2.3.2 Motion (.mot) Files

The .mot (motion) file format was created by the developers of SIMM (Software for
Interactive Musculoskeletal Modeling). The .mot file format is compatible with both SIMM
and OpenSim. A .mot file consists of two parts: the motion header and the data. The motion

header can come in two forms: (1) SIMM header only or (2) OpenSim and SIMM header.
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(1) SIMM Header Example:

name subjectO0l walkl grf._.mot
datacolumns 19

datarows 9009

range 0.000000 15.013300
endheader

The first line must start with name followed by a space and the name of the .mot file. The
next line should contain datacolumns, a space, and then the total number of columns of
data in the .mot file (including the time column). The next line should contain datarows, a
space, and then the total number of rows of data in the .mot file. The next line should
contain range, a space, the first time value in the time column, a space, and then the last
time value in the time column. Optionally, other comments could be included in subsequent
lines. The final line endheader indicates the end of the header.

(2) OpenSim and SIMM Header Example:

Coordinates
nRows=500
nColumns=24

# SIMM Motion File Header:
name Coordinates
datacolumns 24

datarows 500

otherdata 1

range 0.750000 1.249000

Units are S.I1. units (second, meters, Newtons, ...)
Angles are in degrees.

endheader
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The first line is the name, which is Coordinates in this case, to be used to represent this
.mot file when it is loaded into OpenSim. This does not have to be the name of the .mot file.
The second line contains NnRows= followed by the number of rows of data in the .mot file.
The third line contains nColumns= followed by the number of columns of data (including
the time column) in the .mot file. The fourth line is empty. The fifth line has a comment
indicating that the SIMM motion file header is beginning, and then the following lines

should have the same format as SIMM Header example.

Note that extra lines containing newline characters or comments can be included before the

endheader line in the SIMM header section of both header types.

Immediately after the endheader line, the data section of the .mot file begins. The first line
after the endheader line should contain tab-delimited labels for each column of (tab-
delimited) data in the .mot file. The first column is assumed to be time, followed by values
that vary with time such as generalized coordinates, marker coordinates, ground reaction
forces and moments, centers of pressure, muscle activations, or muscle lengths. The names
of these column labels should match the names used in the model with which the .mot file is
intended to be used. The rows below this line of column labels must be the corresponding

values of each of these quantities at the time represented by the first number in each row.

The time values in the time column of a .mot file must be uniformly spaced. An example
.mot file (subjectOl_walkl grf.mot) is provided in the examples/Gait2354 directory, which
is part of the OpenSim distribution.

2.3.3 Storage (.sto) Files

The .sto file format was created by the developers of OpenSim. It is very similar to the .mot

file format, with two main differences:

e The time values in the time column of a .sto file do not have to be uniformly spaced
e The first column of a .sto file must contain time, whereas a .mot file can contain other

guantities in the first column
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There is only one format for the header of a .sto file and it is very simple, as shown below:

Coordinates
nRows=153
nColumns=24
endheader

The first line contains the name with which the .sto file will be referred to when it is loaded
into OpenSim. The second line is nRows= followed by the number of rows of data in the
.sto file. The third line is nColumns= followed by the number of columns of data in the .sto
file (including the time column). The last line is endheader. Immediately following the
endheader line is the data section of the .sto file, which is identical to the data section of a

.mot file, except that the time column is allowed to have non-uniform spacing.
Example .sto files, such as subjectO1_walkl RRA_Actuation_force.sto, are provided in the

examples/Gait2354/0utputReference/ResultsRRA directory, which is part of the OpenSim
distribution.

2.4 Representing Ground Reaction Data

You need to represent your ground reaction data in a .mot or .sto file for input into
OpenSim. An example file (subjectOl_walkl grf.mot) is given in the examples/Gait2354

directory, which is part of the OpenSim distribution.

The first row below the header must contain the following column headings, in this order:

time

ground_force_vx

ground_force_vy

ground_force_vz

ground_force_px

ground_force_py

ground_force_pz

.ground_force_vx

ground_force_vy

ground_force_vz

ground_force_px

ground_force_py

ground_force_pz

ground_torque_x

ground_torque_y

ground_torque_z

ground_torque_x

ground_torque_y

ground_torque_z

All rows below this line contain the corresponding data in each column. All data (except for
the time column, column 1) must be specified in the model coordinate system. The labels
_ VX, _Vvy, and _vz correspond to the X, y, and z components of the ground reaction force

vector in the model coordinate system. The labels _px, _py, and _pz correspond to the x, vy,
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and z components of the center of pressure (COP) in the model coordinate system. The

column headings correspond to:

Bodyl Force Body2 Force Bodyl COP | Body2 COP Bodyl Torque | Body2 Torque

Bodyl and Body? are specified in the External Loads settings of either the Inverse Dynamics

or Computed Muscle Controls Tools. The examples presented in the examples/Gait2354

directory specify Bodyl as the right foot (calcn_r) and Body 2 as the left foot (calcn_I).

2.5 Marker Set

A marker set contains a list of the virtual markers that are placed on
the body segments of a model. An example of a marker file is shown
in Example 2-1 (next page), which can be found in the
examples/Gait2354 directory. Additionally, if a marker set is
appended to a model file, it can be visualized with the model as

shown in Figure 2-3.

A list of markers are enclosed inside the opening and closing tags
<MarkerSet> and </MarkerSet>. Specifying a marker consists of
specifying its <location>, as well as the <body> to which the marker
is attached (i.e., which body its location is measured with respect to).
The marker name is given by the name attribute of the <Marker>

tag (e.g., Sternum for the first marker in Example 2-1).

The <fixed> property is used in the marker placement step and can
be set to either true or false. If it is set to false, the marker will
move during Scale if the Adjust Model Markers option is chosen to

match the position of its corresponding experimental marker.

Figure 2-3. Model with Marker Set.
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Marker Set

Example 2-1: XML file for a scale marker file
(e.g., gait2354_Scale_MarkerSet.xml)

<?xml version="1.0" encoding="UTF-8"7>
<MarkerSet name='gait2354 Scale'>
<objects>

<Marker name=''Sternum’'>
<location> 0.07 0.3 0 </location>
<body> torso </body>
<fixed> false </fixed>

</Marker>

<Marker name="'R.Acromium'>
<location> -0.03 0.44 0.15 </location>
<body> torso </body>
<fixed> false </fixed>

</Marker>

<Marker name=""L.Acromium'>
<location> -0.03 0.44 -0.15 </location>
<body> torso </body>
<fixed> false </fixed>

</Marker>

<Marker name="Top.Head">
<location>0.00084 0.657 0.0</location>
<body> torso </body>
<fixed> false </fixed>
</Marker>
<I-- _ _ additional <Marker> tags cut for brevity .
</objects>

</MarkerSet>

——>
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2.6 OpenSim Utilities

Example Matlab scripts for converting certain specific types of motion capture data into a
form recognized by OpenSim are provided in the OpenSim Utilities project on Simtk.org

(https://simtk.org/home/opensim-utils). We provide these utilities as examples that have

been applied successfully to data sets from the Center for Gait and Motion Analysis at
Gillette Children’s Specialty Healthcare in St. Paul, MN, USA, and the Human Performance
Laboratory at Stanford University in Stanford, CA, USA. However, it is difficult to anticipate
lab-specific formats and conventions, so it is your responsibility to adapt these examples to

the needs of your individual laboratories and motion capture systems.






3 Inverse Kinematics

3.1 How It Works

The Inverse Kinematics Tool goes through each time step (frame) of motion and computes
generalized coordinate values which position the model in a pose that “best matches”
experimental marker and coordinate values for that time step. Mathematically, the “best match”
is expressed as a weighted least squares problem, whose solution aims to minimize both marker

and coordinate errors.

Figure 3-1: Inverse Kinematics Tool Overview. Experimental markers are
matched by model markers throughout the motion by varying the generalized

coordinates (e.g., joint angles) through time.

15
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3.1.1 Marker Errors

A marker error is the distance between an experimental marker and the corresponding marker
on the model (Figure 3-1) when the model is positioned using the generalized coordinates
computed by the Inverse Kinematics solver. Each marker has a weight associated with it,

specifying how strongly that marker’s error term should be minimized.

3.1.2 Coordinate Errors

A coordinate error is the difference between an “experimental coordinate value” and the
generalized coordinate value computed by the Inverse Kinematics Tool. Experimental coordinate
values can be joint angles obtained directly from a motion capture system (i.e., built-in mocap
inverse kinematics capabilities), or may be computed from experimental data by various
specialized algorithms (e.g., defining anatomical coordinate frames and using them to specify
joint frames that, in turn, describe joint angles) or by other measurement techniques that involve
other measurement devices (e.g., a goniometer). A fixed desired value for a coordinate can also be
a specified constant (e.g., if we know that a specific joint angle should stay at 0%). The inclusion of
experimental coordinate values is optional; the Inverse Kinematics Tool can solve for the

generalized coordinates using marker matching alone.

3.1.3 Weighted Least Squares Equation

The weighted least squares problem solved by the Inverse Kinematics Tool is

I -x @+ ¥ o(¢-q)

min w,
1 iemarkers jeunprescribed coords

q,=q;" forall prescribed coordinates ;

where q is the vector of generalized coordinates being solved for, x;&® is the experimental position
of marker i, xi(q) is the position of the corresponding marker on the model (which depends on

the coordinate values), and g;&® is the experimental value for coordinate j.
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3.2 Inputs

Three files are required as input by the Inverse Kinematics Tool:

arm26_elbow _flex.trc: Experimental marker trajectories for a motion trial.

arm26_InverseKinematics Tasks.xml: Contains the inverse kinematics tasks
(i.e., a specification of which virtual and experimental markers should be matched up

during the inverse kinematics solution) and their relative weightings.

armz26.osim: The current model loaded in OpenSim

3.3 Outputs

The Inverse Kinematics Tool generates a single file:

arm26_ InverseKinematics.mot: Motion file containing the time histories of

generalized coordinates that describe the movement of the model.

3.4 Inverse Kinematics Tool

To launch the Inverse Kinematics Tool, select Inverse Kinematics... from the Tools
menu. The Inverse Kinematics Tool dialog (Figure 3-2) like all other OpenSim tools,
operates on the Current Model open and selected in OpenSim (e.g., arm26). Inverse
kinematics requires that a marker set is associated with the model and the number of
markers is reported (e.g., 3 markers). The IK Trial section specifies the experimental
marker data that the Inverse Kinematics Tool will match with the current model. A Trial
name can be associated with the trial to uniquely identify the resultant motion. The Marker
data for trial field must contain the path to the marker data (in .trc format) and OpenSim
will report the information it recognizes from the file such as the number of markers, the
number of frames and sampling frequency as well as the start and end times of the data set

in the Marker Data pane. Any subset of the time range can be specified for performing
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inverse kinematics in the Time range field, but by default the complete time range is
specified. If the Coordinate data for trial flag is checked, then the Inverse Kinematics Tool

will require coordinate values specified in a motion (.mot) file to be loaded.

&% Inverse Kinematics Tool

Setkings | wWeights

Current Maode

Mame | arme

Marker set | 3 markers

Ik Trial
Trial name | inverse kinematics
Marker Crata
Marker data For brial | SrmZeiInversekinematicsiarm26_elbow_Flex.trc S .
Time range 0 | and 1 Frames 121 @ 120 Hz
[] Coordinate data for trial [ ] U2 o - e
[ Settings = ] [ Fun ] [ Close ] [ Cancel

Figure 3-2: Inverse Kinematics Tool Dialog

Once a marker file, and possibly a coordinate file, are specified, the behavior of the Inverse
Kinematics Tool can be modified under the Weights tab (Figure 3-3). Each entry in the
table represents a weight in the least-squares equation for either a marker (top table) or a
coordinate (lower table). By selecting a row (or multiple rows), the entry fields below the
panes become editable allowing the marker(s) or coordinate(s) to be enabled and allowing
the user to specify a weight. The weight value will affect to what degree a match should be
satisfied with larger weights penalizing errors for that marker or coordinate more heavily
and thus attempting to match the experimental value more closely. For coordinates, the
coordinate value to be matched can come from a specified motion file or set to its default or

a user-specified (manual) constant value.

When running the Inverse Kinematics Tool from the GUI, the results from inverse

kinematics are not automatically saved to file but are associated with the model under the
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Motions category in the model Navigator. One can view multiple Inverse Kinematics results
before saving to file. To save a motion, right click on the motion in the Navigator and select

“Save as.”

4 Inverse Kinematics Tool

| Settings | Weights |

Enabled Matker Mame Yalue Weight
[¥]  |r_acromion FROM FILE 1.0
[v] r_humerus_epicandyle FROM FILE 1.0
[v] r_radius_skyloid FRiJM FILE 1.0
Enabled Coordinate Name Yalue Weight

Enable all selected Yalue «  From File | | ‘Weight I:l

Disable all selacted Drefault value | |

Manual value | |

[ Settings = I [ Run ] [ Close l [ Cancel

Figure 3-3: Specifying Inverse Kinematics Tool Weights






4 Inverse Dynamics

4.1 How it Works

The equations of motion for a multibody system may be written in the following form:

M(q)4+C(q.9)+G(q)= =

[}
unknowns

knowns

where N is the number of degrees of freedom; ¢,4,q4 € R" are the vectors of generalized
positions, velocities, and accelerations, respectively; M(q) € R™" is the system mass matrix;
C(q.q4) € R" is the vector of Coriolis and centrifugal forces; G(q) € R" is the vector of

gravitational forces; and 7 € R" is the vector of generalized forces.

The motion of the model is completely defined by the generalized positions, velocities, and
accelerations. Consequently, all of the terms on the left-hand side of the equations of motion are
known. The remaining term on the right-hand side of the equations of motion is unknown. The
Inverse Dynamics Tool uses the known motion of the model to solve the equations of motion for
the unknown generalized forces (e.g., joint torques).

4.2 Inputs

Two files are required as input by the Inverse Dynamics Tool:

arm26_ InverseKinematics.mot: Motion file containing the time histories of
generalized coordinates that describe the movement of the model. This file may be

generated by the Inverse Kinematics Tool.

armz26.osim: The current model loaded in OpenSim.
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4.3 Outputs

The Inverse Dynamics Tool generates a single file in a specified folder:

arm26_ InverseDynamics_force.sto: Storage file containing the time histories of the

net forces and torques at each joint.

4.4 Inverse Dynamics Tool

To launch the Inverse Dynamics Tool select Inverse Dynamics... from the Tools menu.
The Inverse Dynamics Tool dialog (Figure 4-1) like all other OpenSim tools operates on
the Current Model open and selected in OpenSim (e.g., arm26). The Inverse Dynamics Tool
is controlled by a dialog with two tabbed panes. The Main Settings pane specifies
parameters relating to the input kinematics of the current model, the time range for the
analysis, and the output of the results. The External Loads pane specifies parameters

relating to the external loads applied to the model during the analysis.

The Main Settings pane (Figure 4-1) is organized into four main sections entitled Current
Model, Input, Time, and Output. The Current Model section displays an uneditable
name for the current model being used for the inverse dynamics analysis. The Input section
displays editable information specifying the kinematics (e.g., states or motion) describing
the movement of a model. The Time section displays editable information specifying the
start and end time for the inverse dynamics analysis. The Output section displays editable
information specifying the prefix appended to the resulting output file, the directory to
which the file is saved, and the precision (number of decimal places) used when writing
results. You may use the button to browse for a directory to save the output files, and the

(&J button to open an explorer to the specified directory.
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1* Inverse Dynamics Tool

Main Settings | External Loads |

—Current Model

Marne | armzt |

Inpuk
() States | | [
(%) Motion () From File | amicsiarmze_Inversekinematics. mok | [
{*) Loaded motion |inverse kinermnatics v |
[#] Filter coordinates | 6 |H2
~Time
Time range to process | u} | ko | 1
rCukpuk

Prefix | arm26 |
Directary | ensim 1,6\examples\armZelInversebynamics|FiberedResults |@

Precisian

[ Settings = ] [ Run ] [ Close ] [ Cancel ]

Figure 4-1: Dialog for the Inverse Dynamics Tool. The main settings pane.






5 Static Optimization

5.1 How it Works

As described in Chapter 4 covering Inverse Dynamics, the motion of the model is completely
defined by the generalized positions, velocities, and accelerations. The Static Optimization Tool
uses the known motion of the model to solve the equations of motion for the unknown

generalized forces (e.g., joint torques) subject to one of the following constraints:

nm

Z(amFrr?) rm,j = z-j or nZi[amf(Fn?’lm’vm )] rmyj - Z-J'

m=1

ideal force generators constrained by force-length-velocity properties

while minimizing the objective function:

s=%(a.)

where nm is the number of muscles in the model; a,, is the activation level of muscle m at a
discrete time step; F, is its maximum isometric force; [, is its length; v, is its shortening

velocity; f (F 01 vm) is its force-length-velocity surface; » . is its moment arm about the j ™

m?'"m? m,j

joint axis; 7, is the generalized force acting about the ; ™ joint axis; and p is a user defined

constant.
5.2 Inputs

Two files are required as input by the Static Optimization Tool:

25



26 Outputs

arm26_ InverseKinematics.mot: Motion file containing the time histories of
generalized coordinates that describe the movement of the model. This file was

generated by the Inverse Kinematics Tool.

arm26.osim: The current model loaded in OpenSim.

5.3 Outputs

The Static Optimization Tool generates three files in a specified folder:

arm26_ StaticOptimization_controls.xml: Contains the time histories of muscle
activations. These controls were minimized by the Static Optimization Tool.
arm26_StaticOptimization_activation.sto: Storage file containing the time
histories of muscle activations.

arm26_ StaticOptimization_force.sto: Storage file containing the time histories of

muscle forces.

5.4 Static Optimization Tool

To launch the Static Optimization Tool, select Static Optimization... from the Tools
menu. The Static Optimization Tool dialog (Figure 5-1) like all other OpenSim tools
operates on the Current Model open and selected in OpenSim (e.g. arm26). The Static
Optimization Tool is controlled by a dialog with two tabbed panes. The Main Settings pane
specifies parameters relating to the input kinematics of the current model, the time range for
the analysis, and the output of the results. The External Loads pane specifies parameters

relating to the external loads applied to the model during the analysis.

The Main Settings pane (Figure 5-1) is organized into five main sections entitled Current
Model, Input, Objective Function, Time, and Output. The Current Model section
displays an uneditable name for the current model being used for the static optimization
analysis. The Input section displays editable information specifying the kinematics (e.g.,

states or motion) describing the movement of a model. The Objective Function section
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displays editable information specifying the power to which the muscle activations should be
raised and whether or not to use the muscle force-length-velocity properties. The Time
section displays editable information specifying the start and end time for the Static
Optimization analysis. The Output section displays editable information specifying the
prefix appended to the resulting output file, the directory to which the file is saved, and the
precision (number of decimal places) used when writing results. You may use the button
to browse for a directory to save the output files, and the [&J button to open an explorer to

the specified directory.

“+ Static Optimization Tool

Main Settings | External Loads

Current Model

MName | arm6 |
Input
() States | | [ ]
(%) Motion () Fram File | | [ ]
(%) Loaded mation |in'u'erse kinernatics A |
Filter coordinates | & | Hz

Objective Function

Sun of {muscle achivation)

Use muscle force-length-velocity relation

Tirne

Time range to process u] | ko | 1

Cukpuk
Prefix | armaa |

Director';.-'l 1.8hexamplesiarmn2a| SkaticOptimization|PhysiclogicalResulks |[E]

Precisian

[ Settings > ] [ Run ] [ Close ] [ Cancel ]

Figure 5-1: Dialog for the Static Optimization Tool. The main settings pane.






6 Example: Inverse Kinematics,
Inverse Dynamics, and Static

Optimization

6.1 Importing a SIMM Model of the Upper Extremity

4 Import SIMM Model X]

Taint file | m Filesiopensin 1,6 examples\Arm2eiarm2e, jnt

Muscle file | m Files\OpenSim 1.61examples|Arm26)arm 2, msl

Cpensim Model Options
Files are generated in the same directory as the Joint File

Opensim File § osim) | arm26_0.0sim

[] separate markers il ( xmi)

I K l[ Cancel ]

Figure 6-1: Dialog for Importing a SIMM Model

1. Open Import SIMM Model Dialog. To import a SIMM model into OpenSim,
select Import SIMM Model... from the File menu.

2. Specify Joint File. Browse to a the Arm26 example directory (e.g., ..\OpenSim
1.6\examples\Armz26) and select the joint file (e.g., arm26.jnt).

3. Specify Muscle File. Continue by selecting a muscle file (e.g., arm26.msl).
Specify OpenSim File. Enter a name (e.g., arm26_0.osim) for the OpenSim
model to be generated.
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5. Specify Dynamics Engine. Select Simbody engine (for dynamics) from the drop
down list.
6. Close Import SIMM Model Dialog. Click the OK button.

6.2 Performing Inverse Kinematics

1. Open Inverse Kinematics Tool. To open the tool (Figure 3-2), select Inverse
Kinematics... from the Tools menu.

2. Specify Trial Name. Begin in the Settings pane and enter a name (e.g., inverse
kinematics) for the trial.

3. Specify Marker Data for Trial. Browse to the inverse kinematics directory (e.g.,
.NArm26\InverseKinematics) and select the marker file (e.g.,
arm26_elbow_flex.trc).

4. Specify Time Range. Enter a range from O to 1 seconds corresponding to the
interval in the marker file.

5. Confirm Weights. Move to the Weights pane and confirm that all marker weights
are 1.

6. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,
arm26_Setup_ InverseKinematics.xml).

7. Run and Close Inverse Kinematics Tool. You will see the model begin to move
as the optimization flexes the elbow to best match marker trajectories. When the
analysis has completed by reaching the end of the specified time range, the Motions
branch under the model in the Navigator will be populated by the inverse

kinematics motion.
6.3 Viewing Inverse Kinematics Results

1. View Motion. Use the motion viewer controls to play back the inverse kinematics
motion.

2. Save Results from Inverse Kinematics. Right click the new motion in under the
model in the Navigator and select Save As to save the file (e.g.,

arm26_ InverseKinematics.mot).
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3. Plot Joint Angles from Inverse Kinematics. From the resulting motion (e.g.,

inverse kinematics), plot r_shoulder_elev and r_elbow_flex versus time.

6.4 Performing Inverse Dynamics

Open Inverse Dynamics Tool. To open the tool (Figure 4-1), select Inverse
Dynamics... from the Tools menu.

Specify Unfiltered Input Motion. Use the radio buttons to select the Loaded
motion (e.g., inverse kinematics) and uncheck the Filter coordinates option.
Specify Time Range. Enter a range from O to 1 seconds corresponding to the
interval in the motion.

Specify  Output Directory. Set the output Directory (e.g.,
.\InverseDynamics\UnfilteredResults), so that you are able to compare the results
of inverse dynamics analyses using unfiltered and filtered input motions.

Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,
arm26_Setup_ InverseDynamics.xml).

Run Inverse Dynamics Tool. You will see the model begin to move as the analysis
flexes the elbow while computing joint torques. When the analysis has completed by
reaching the end of the specified time range, the specified output directory will be
populated by a storage file (e.g., arm26__InverseDynamics_force.sto).

Specify New Filtered Input Motion. Check the Filter coordinates option and
enter a cutoff frequency of 6 Hz.

Specify New Output Directory. Rename the output Directory (e.g.,
.\InverseDynamics\FilteredResults).

Run and Close Inverse Dynamics Tool.

6.5 Comparing Inverse Dynamics Results

1.

Plot Noisy Joint Torques from Inverse Dynamics. From the resulting file
(e.q., .\UnfilteredResults\arm26_ InverseDynamics_force.sto), plot
r_shoulder_elev and r_elbow_flex versus time. Leave the Plotter dialog open to

compare subsequent joint torques.
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2. Plot Smooth Joint Torques from Inverse Dynamics. From the resulting file
(e.g., ..\FilteredResults\arm26_ InverseDynamics_force.sto), plot r_shoulder_elev

and r_elbow_ flex versus time. Compare with noisy joint torques.
6.6 Performing Static Optimization

1. Open Static Optimization Tool. To open the tool (Figure 5-1), select Static
Optimization... from the Tools menu.

2. Specify Filtered Input Motion. Use the radio buttons to select the Loaded
motion (e.g., inverse kinematics), check the Filter coordinates option, and enter
a cutoff frequency of 6 Hz.

3. Specify Nonphysiological Objective Function. Raise Sum of (muscle
activation) to a power of 2.0 and uncheck the Use muscle force-length-
velocity relation option.

4. Specify Time Range. Enter a range from O to 1 seconds corresponding to the
interval in the motion.

5. Specify  Output Directory. Set the output Directory (e.g.,
.\StaticOptimization\NonphysiologicalResults), so that you are able to compare the
results of static optimization analyses using nonphysiological and physiological
objective functions.

6. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,
arm26_Setup_ StaticOptimization.xml).

7. Run Static Optimization Tool. You will see the model begin to move as the
analysis flexes the elbow while computing muscle activations. When the analysis has
completed by reaching the end of the specified time range, the specified output
directory will be populated by a controls file (e.g.,
arm26_StaticOptimization_controls.xml) and two storage files (e.g.,
armz26_ StaticOptimization_activation.sto and
armz26_ StaticOptimization_force.sto).

8. Specify New Physiological Objective Function. Check the Use muscle force-
length-velocity relation option.

9. Specify New Output Directory. Rename the output Directory (e.g.,
.\StaticOptimization\PhysiologicalResults).
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10. Run and Close Static Optimization Tool.

6.7 Comparing Static Optimization Results

1.

Plot Nonphysiological Muscle Activations from Static Optimization. From
the resulting file (e.g.,
.\NonphysiologicalResults\arm26_ StaticOptimization_activation.sto), plot
BIClong versus time. Leave the Plotter dialog open to compare subsequent
activations.

Plot Physiological Muscle Activations from Static Optimization. From the
resulting file (e.g.,
..\PhysiologicalResults\arm26_ StaticOptimization_activation.sto), plot BIClong
versus time. Compare with nonphysiological muscle activation.






/ Forward Dynamics

7.1 How it Works

The Forward Dynamics Tool uses the model together with the initial states and controls to run a
muscle-driven forward dynamics simulation. A forward dynamics simulation is the solution to
the differential equations that define a dynamical system (model). For example, the dynamics of

musculoskeletal models typically take the form of :

i=M@]" {‘r(a, 1,)-C(q.9)+ G(q)} Multibody dynamics
[ = A(a,l,q) Muscle contraction dynamics
a=A(a,x) Muscle activation dynamics

describing the acceleration, ¢, of the bones as rigid bodies due to muscle loads, T, centrifugal,
Coriolis, C, and gravity forces, G, as a function of joint angles, q, and their velocities, g . The

muscle loads are a function of muscle activations, a, and muscle fiber lengths and velocities, | and

[ . In turn, fiber velocity and muscle activation rates are governed by muscle contraction and
activation dynamics that are dependent on the current muscle and model kinematic state as well

as the input excitations, x, generally termed the model’s controls.

A 5" order Runge-Kutta-Feldberg integrator is used to solve (numerically integrate) the
dynamical equations for the trajectories of the states for the musculoskeletal model over a definite
interval in time. The Forward Dynamics Tool is an open-loop system that applies actuator

controls with no feedback or correction mechanism to ensure that states follow a desired

trajectory.

7.2 Inputs

Three files are required as input by the Forward Dynamics Tool:
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arm26_StaticOptimization_controls.xml: Contains the time histories of

muscle activations computed by the static optimization tool.

arm26_ InitialStates.sto: Contains the model initial states including joint angles,
joint velocities, muscle activations, and muscle fiber lengths. These states are used by
the forward dynamics tool to set the initial states of the model for forward

integration.

armz26.osim: The current model loaded in OpenSim.

7.3 Outputs

The Forward Dynamics Tool generates the complete state trajectory over the
interval of integration and writes them to a file in a specified directory. Any analyses
associated with the model to compute derived quantities (like joint powers or

induced accelerations) will also generate files in the output directory.

At a minimum Forward Dynamics Tool generates three files in a specified folder:

armz26_ states.sto: Contains the time histories of all the states of the model including
joint angles (coordinates) and velocities and muscle states such as activation and fiber
length.

arm26_states degrees.mot: Is a SIMM compatible motion file that has joint states in
degrees.

armz26_ controls.sto: The control values used by the model at each integration step.

Additional files relating to Kinematics (joints trajectories), BodyKinematics (center-of mass
trajectories), and Actuator (forces, powers) analyses are automatically associated with a

forward simulation.
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7.4 Forward Dynamics Tool

To launch the Forward Dynamics Tool, select Forward Dynamics... from the Tools
menu. The Forward Dynamics Tool is controlled by a dialog with three tabbed panes (Fig. 6-
1). The Main Settings pane specifies parameters relating to the controls and states that will
be input into the model, the time range for the simulation, and the output of the results. The
Actuators and External Loads pane specifies the actuator set and the external loads
applied to the model during the simulation. The Integrator Settings pane specifies
integrator step sizes and tolerances used to solve the simulation. The controls and states (if
available) from Static Optimization or Computed Muscle Control can be used directly as

input to the Forward Dynamics Tool.

The Main Settings pane (Fig. 6-1) is organized into four main sections entitled Current
Model, Input, Time, and Output. The Current Model section displays uneditable
information about the current model being used for analysis by the Forward Dynamics Tool.
The Input section displays editable information specifying the controls and initial states to
be used to run the forward simulation. You may use the button to browse for the
controls and initial states files. The Time section displays editable information specifying
the start and end time for the forward simulation. The Output section displays editable
information specifying the prefix appended to all of the resulting output files, the directory
to which the files are saved, and the precision (number of decimal places) used when writing
results. You may use the button to browse for a directory to save the output files, and the

(&J button to open an explorer to the specified directory.
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4+ Forward Dynamics Tool

Main Settings | Actuatars and External Loads || Integrator Settings

—Current Model

Mame | armzf

rInput

Contrals | ysiologicalResultstarmz26_SkaticOptimization_contrals, xml |[ & ]

Skates | amplestarm2aiForwardDynamics|arm26_InitialStates.sto |

Solve for equilibrium For actuator skates

~Time

Time range to process u} | ko | 1

Coukpuk
Prefix | armz6 |

Directary | 1.ghexamplesiarm2el ForwardDynamicsiPhysiologicalR esults |@

Precision

[ Settings = ] [ Run ] [ Close ] [ Cancel ]

Figure 7-1: Dialog for the Forward Dynamics Tool. The main settings pane.



8 Example: Forward Dynamics

8.1 Generating a Forward Dynamics Simulation of the Upper

Extremity

1. Open Forward Dynamics Tool. To open the tool (Figure 7-1), select Forward
Dynamics... from the Tools menu.

2. Specify Nonphysiological Controls. In the Forward Dynamics Tool dialog, select
the Controls file (e.g., arm26_StaticOptimization_controls.xml) from the static
optimization results that do not use the muscle force-length-velocity relation. These
results are located in  your specified output directory (e.g.,
..\StaticOptimization\NonphysiologicalResults).

3. Specify Initial States. An initial States file is provided in the Forward Dynamics
directory (..\ForwardDynamics\arm26_InitialStates.sto) and the Forward
Dynamics Tool should be set to use this file.

4. Solve for Equilibrium. This option makes sure that the initial actuator states
(muscle activation, fiber length) are in static equilibrium, that is the rate of
contraction is zero. This is a useful option for setting initial states when one does not
have reliable estimates and the model is starting from rest. It utilizes the input state
to determine the position of the model and initial activation of the muscles from
which the initial muscle fiber lengths are computed.

5. Specify Time Range. The time range for the forward simulation is specified and
these should be set from O to 1 sec to correspond to the interval upon which the
controls from static optimization were computed.

6. Specify Output Directory. Set the output Directory (e.g.,
.\ForwardDynamics\NonphysiologicalResults), so that you are able to compare the
results of a forward simulation using nonphysiological and physiological controls
earlier by static optimization.

7. Specify Model’'s Actuators. Set the actuator settings to Append (rather than
replace).

8. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,

arm26_Setup_ForwardDynamics.xml).
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9. Run Forward Dynamics Tool. You will see the model begin to move as muscles
contract and accelerate the model. When the simulation has completed by reaching
the end of the specified time range, the specified output directory will be populated
by states files (e.g., arm26_states_degrees.mot) and the corresponding motion file

(e.g., arm26_states) will be associated with the model in the GUI.

8.2 Analyzing your Forward Dynamics Simulation in the GUI

1. View Motion. Use the motion viewer controls to play back the forward dynamics
motion.

2. Plot Nonphysiological Joint Angles from Forward Dynamics. Browse to the
output directory specified above (e.g.,
..\ForwardDynamics\NonphysiologicalResults\arm26_states degrees.mot). Plot
r_shoulder_elev and r_elbow_flex versus time. Leave Plotter dialog open to
compare subsequent joint angles.

3. Plot Joint Angles from Inverse Kinematics. Use the motion loaded in the
model (e.g., inverse kinematics) or browse to the inverse kinematics directory (e.g.,
.\InverseKinematics\arm26__ InverseKinematics.mot). Plot r_shoulder_elev and
r_elbow_flex versus time. How do they compare? Leave Plotter dialog open to

compare subsequent joint angles.

8.3 A Forward Dynamics Simulation with Different Controls

1. Specify New Physiological Controls. In the Forward Dynamics Tool dialog,
select the Controls file (e.g., arm26_StaticOptimization_controls.xml) from the
static optimization results that use the muscle force-length-velocity relation. These
results are located in  your specified output directory (e.g.,

.\StaticOptimization\PhysiologicalResults).

2. Specify New Output Directory. Rename the output Directory (e.g.,
.\ForwardDynamics\PhysiologicalResults).

3. Run Forward Dynamics Tool.



Comparing Forward Dynamics Results 41

8.4 Comparing Forward Dynamics Results

1.

View New Motion. Use the motion viewer controls to playback the forward
dynamics motion.

Plot Physiological Joint Angles from Forward Dynamics. Browse to the
output directory specified above (e.g.,
.\ForwardDynamics\PhysiologicalResults\arm26_ states_degrees.mot). Plot
r_shoulder_elev and r_elbow_flex versus time. Leave Plotter dialog open to

compare subsequent joint angles.

How do the joint angles from the physiological controls compare to the previous
nonphysiological motion? Why do the controls estimated from static optimization
not sufficiently flex the elbow and extend the shoulder too much? To explore this
question, use plot muscle states (activation and fiber lengths) and compare forces
between the forward simulation and the static optimization activations (controls)
and forces.

8.5 Modifying the Muscle Controls

Open Excitation Editor. To open the editor, select Excitation... from the Edit
menu.

Load Controls. In the Excitation Editor dialog, load the controls file (e.g.,
armz26_ StaticOptimization_controls.xml) from the static optimization results that
use the muscle force-length-velocity relation. These results are located in your
specified output directory (e.g., .\StaticOptimization\PhysiologicalResults). Select
muscle excitations to edit (e.g., BIClong).

Modify Controls. The controls appear as individual graphs with moveable control
nodes, which enable you to reshape the controls as desired. To select an individual
control node, hold the Ctrl key and click the control node of interest. To select
multiple control nodes, hold the Ctrl key and drag a box (from top left to bottom
right) around control nodes of interest. Use the left mouse button to drag selected
control node(s) to new location. Increase the excitation to Biceps Long (BIClong) by
25% or so.
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Experiment On Your Own

Save Modified Controls. Use the Save As button to save the modified controls to
anew file (e.g., ..\ForwardDynamics\arm26_Modified_controls.xml).

Specify New Modified Controls. In the Forward Dynamics Tool dialog, select the
Controls file (e.g., .\ForwardDynamics\arm26_Modified_controls.xml) saved
above.

Specify New Output Directory. Rename the output Directory (e.g.,
..\ForwardDynamics\ModifiedPhysiologicalResults).

Run and Close Forward Dynamics Tool.

. View New Motion. Use the motion viewer controls to play back the forward

dynamics motion. Was performance improved?

8.6 Experiment On Your Own

Experiment with Different Controls. Repeat section 8.5 with other muscle
controls.

View Results Simultaneously. Multiple models can be open at once to visualize
simulation results simultaneously. Open another model (e.g., arm26.0sim) by
selecting Open model... from the File menu. The new model will appear offset
from the original model. You can associate previously computed states (e.g.,
armz26_states_degrees.mot) to this model by selecting Load motion... from the
File menu.

Make a Movie. Use the camera tool to take snapshots or use the movie-camera to
generate animations. The camera dolly allows the view point of the movie-camera to
change during when the animation is being captured, by interpolating between user

defined views.



9 Computed Muscle Control

9.1 Why is Computed Muscle Control Necessary

Muscle controls computed from static optimization (Chapter 5) applied to a musculoskeletal
model are likely to fail to reproduce the observed motion (the inputs to inverse dynamics and
static optimization) when applied in a forward dynamics simulation. There are three principle
causes for this discrepancy: 1) forward and inverse musculoskeletal models do not share identical
dynamics, 2) experimental noise and sampling results in dynamically inconsistent kinematics and
3) musculoskeletal models are nonlinear dynamical systems and inherently chaotic. Cause 3) is
often overlooked but it is important to realize that even if identical models where used in an
inverse and then forward analysis with noiseless and error-free kinematics (i.e. synthetic data) a
forward simulation will fail to reproduce the initial performance if the initial states of the
simulation are not identical, since even the smallest of differences (too machine precision) can
lead to diverging solutions. Cause 2) stems from the reality that data acquired (from a subject)
does not match what could be generated by the model (satisfying modeled dynamics) and the
estimates of joint kinematics (from 1K) does not take into the continuity of system dynamics
from one instant to the next given discrete samples of position data. The largest source of
discrepancies is the fact that different models are used to perform inverse dynamics and static
optimization versus that of a forward simulation. Even when static optimization includes force-
length and force-velocity relationships, the estimate of muscle length and velocity are determined
by the length of the whole muscle-tendon unit (inelastic tendon) and activations do not satisfy

excitation-to-activation dynamics present in forward.
9.2 How it Works

Computed muscle control (CMC) attempts to bridge the gap between forward and inverse
dynamics by combining: PD feedback control to track experimental kinematics, static
optimization to estimate the feedforward controls (muscle excitations) in order to generate
desired accelerations at a small time (T) in the future, and then forward integration to generate

new states and step forward in time.
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Figure 9-1: Overview of Computed Muscle Control
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Two formulations of the static optimization problem are currently available in CMC. The first

formulation, called the slow target, consists of a performance criterion () that is the sum of

squared actuator controls (x; ) normalized by optimal force (F)) plus the weighted sum of errors

between desired acceleration (('j;) and actual acceleration (g, ):

2

nx X~2 nq .
Slow Target: J= Z_l + ij (QJ - qj)
o F, ‘4

The second formulation, called the fast target, is the sum of squared controls augmented by a set
of equality constraints (C ) that requires the desired accelerations to be achieved within the

tolerance set for the optimizer:

2
X

Fast Target: J:ZF : Cj=éj—é]'j =0, forall j
i1

o

9.3 Inputs
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The primary inputs to CMC consist of:
arm26_ InverseKinematics.mot: Desired kinematics [.mot or .sto file] to be tracked

arm26_ComputedMuscleControl_Tasks.xml : Tracking tasks [.xml file] specifying which
coordinates are to be tracked

(arm26_CMC_Control_Constraints.xml): Optional control constraints [.xml file] used to
limit the allowed values of the actuator controls.

arm26.osim: The current model loaded in OpenSim.

(arm26_Reserve Actuators.xml): Optional set of actuators (reserve are ideal torques)
to append or replace the model’s current set of actuators. Falls under the “Actuators and
External Loads” tab of the CMCTool. In this case, ideal torques supplement muscles if

muscles are unable to generate the required net joint moments.

9.4 Outputs

The following primary CMC outputs are placed in the specified output directory:

arm26_ controls.xml: Actuator control [.xml file] (e.g., muscle excitations) computed by CMC
that will drive a forward dynamic simulation.

armz26_ controls.sto: Actuator controls [.sto file] computed by CMC in a format suitable for
plotting.

armz26_ states.sto: Model states file [.sto file] containing the time histories of all model states
that occurred during the CMC simulation.

arm26_Kinematics_qg.mot: SIMM compatible joint motion file [.mot file] containing the
time histories of the generalized coordinates resulting from CMC.

9.5 Computed Muscle Control (CMC) Tool

To launch the Computed Muscle Control Tool, select Computed Muscle Control... from
the Tools menu. The Computed Muscle Control Tool is controlled by a dialog with three
tabbed panes (Fig. 8-2). The Main Settings pane specifies parameters relating to the
controls and states that will be input into the model, the time range for the simulation, and

the output of the results. The Actuators and External Loads pane specifies the actuator
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set and the external loads applied to the model during the simulation. The Integrator
Settings pane specifies integrator step sizes and tolerances used to solve the simulation.
Limits on the range of controls can be defined by selecting the option Actuator
constraints check box.

The Main Settings pane (Fig. 8-2) is organized into five main sections entitled Current
Model, Input, Reduce Residuals, Time, and Output. The Current Model section
displays uneditable information about the current model being used for analysis by the
Computed Muscle Control Tool. The Input section displays editable information specifying
the desred kinematics to be tracked by the CMC Tool. You may use the button to browse
for the desired kinematics as either a storage (.sto) or motion (.mot) file. Filtering options
are the next set of inputs, followed by the Tasks (.xml) file that specifies the kinematics to be
tracked, their relative weightings and PD controller gains. The Time section displays
editable information specifying the start and end time for the forward simulation during
CMC as well at the look-ahead time window CMC uses to estimate accelerations in the future
from current controls. The Output section displays editable information specifying the
prefix appended to all of the resulting output files, the directory to which the files are saved,
and the precision (number of decimal places) used when writing results. You may use the
button to browse for a directory to save the output files, and the [&J button to open an

explorer to the specified directory.
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“+ CMC Tool

Main Settings | Actuatars and External Loads || Integratar Settings

—Current Model

Mame | armza |
rInput
Desired kinematics | kedMuscleControlarmze_Irwversekinematics, ot |
[#] Filker kinematics | 6 |H2
Tracking tasks | arm26_ComputedMuscleCantrol_Tasks.xm |
[ Ackuataor constraints | | 2
—Reduce Residuals
[] Adjust model | | ]
Body COM to adjust |
[] Adjust kinematics
~Time
Time range to process | 1] |to | 1
CMC look-ahead window
rCubpuk
Prefix | armze |
Directary | en3im 1elexamplastarmzelComputedMuscleControliResults |E]
Precision

[ Settings = ] [ Run ] [ Close ] [ Cancel ]

Figure 9-2: Dialog for the Compute Muscle Control Tool. The main settings pane.






10 Example: Computed Muscle

Control

10.1Using Computed Muscle Control

1. Open Computed Muscle Control Tool. To open the tool (Figure 7-1), select
Compute Muscle Control... from the Tools menu.

2. Specify Filtered Input Motion. Browse to the inverse kinematics directory and
select the Desired kinematics file (e.g.,
.\InverseKinematics\arm26__InverseKinematics.mot), check the Filter
kinematics option, and enter a cutoff frequency of 6 Hz.

3. Specify Tracking Tasks. Browse to select the tasks file (e.g.,
arm26_ComputedMuscleControl_Tasks.xml) specifying the joint coordinates for
CMC to track and their relative weightings as well as the Kp and Kv gains on the
errors.

4. Uncheck Adjust Model and Adjust Kinematics. These options are used when
performing residual reduction to obtain more dynamically consistent simulations.
For our Arm26 example, residual reduction is not necessary.

5. Specify Time Range. The time range for the forward simulation is specified and
these should be set from O to 1 sec to correspond to the interval upon which the
controls from static optimization were computed.

6. Set CMC look-ahead window. A time window of 0.01 is generally sufficient for
muscle activations to change enough to produce the desired accelerations.

7. Specify  Output Directory. Set the output Directory (e.g.,
..\ComputedMuscleControl\Results), so that you are able to compare the results of a
CMC simulation with Forward Dynamics simulations using Nonphysiological and
Physiological controls generated earlier by Static Optimization.

8. Specify Additional Model Actuators. Set the actuator settings to Append
(rather than replace) and edit the Additional actuator set files field by adding an

actuator set file (e.g., arm26_Reserve_ Actuators.xml) containing reserve torques.
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Using Computed Muscle Control

9. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,
arm26_Setup_ ComputedMuscleControl.xml).

10. Run and Close CMC Tool. You will see the model begin to move as muscles
contract and accelerate the model. When the simulation has completed by reaching
the end of the specified time range, the specified output directory will be populated
by states files (e.g., arm26_states_degrees.mot) and the corresponding motion file
(e.g., arm26_ states) will be associated with the model in the GUI.



11 Example: Model Editing

11.1 Connecting an Additional Segment to the Model

1. Save Model File for Editing. To save the model, select Save Model As... from

the File menu. Specify a File name (e.g., arm26_ editable.osim) and click the Save

button.

2. Open Model File for Editing. Use an XML editor (e.g., Notepad++) to open the

OpenSim model file (e.g., arm26_editable.osim). When collapsed to the 3 level

(e.g., AIlt+3
DynamicsEngine tag has been highlighted):

in Notepad++), you should see

Ecw rogram Files\OpenSim 1. 6\examplesMirm26sarm26.0sim - Notepad++

the following (Note:

the

File Edit Search View Format Language Settings Macro Run TextFx  Plugins  Window 7 *
. cEHEHEB R & 2€ My a2k |BE 1| E=FE| @ ] = B v
= arm2E.osiml
1 <?¥ml wersion="1.0" encoding="UTF-§" >
2 <OpenSimbocument Version="10600">
8 E <Model name="arm26" >
4 <defaultas
109 <credits> Model aunthors names.. </creditss>
110 <publications> List of publications related to model... </publications>
111 [H <ContactForceSet name="">
115 [+ <DynamicsEngine>
431 [H <ActuatorZet name=""x>
1146 <length units> meters <Hlength_units>
1147 <force_units:> H <.a’f0rce_unit.s>
1145 i </ Model>
1149 - </ OpenSimDocument>
< >
exkensible Markup Language filk nb char | 52979 Ln: 115 Cal: 24 Sel:n DosiWindows | ANST INS
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115
116
117
115
119
1z0
355
356
360
361
43E
430
231l

115
1ia
117
115
113
120
121
122
1e7
286
8583
HE3
EIEEE

115
11a
117
115
119
1z0
121
122
167
Z86
352
415
4AE

3.

P HEHFHTHT

Connecting an Additional Segment to the Model

Explore DynamicsEngine Children. The DynamicsEngine tag has four
children named gravity, BodySet, ConstraintSet, and MarkerSet. Note: the
BodySet tag has been highlighted.

<DynamicsEngine>
<Z3irbodyEngine name="default":
<l-Acceleration due to gravity.--
“ravicys 0.00000000 -9.850665000 0.00000000 </gravitys
<l--Bodies in the madel -
<BodySet nswe=""|>

<-Constraints in the model.--»
<ConstraintSet nawe="">

<l-pharkers in the model -
<Markeriet nams="">

</ SinbodyEngines
</ DynamicsEngines
<hotustoriset name="">

Explore BodySet Children. The BodySet tag has three grandchildren Body
objects named ground, r_humerus, and r_ulna_radius_hand. Note: the

Body tag named r_ulna_radius__hand has been highlighted.

<DynamicsEngine:-
<Z3irbodyEngine name="default":
<--Acceleration due to grawity.-—»
<gravitys 0.00000000 -9.80665000 0.00000000 </gravity:
<l--Bodies in the model.--
<Body3et nsme="">
<objects>
<Body nsme="ground" >

<Body nsme="r humerus">

430-:15! name="r ulna radius hand">

</ohjectes
<groups/ >
</BodyZet>

Add New Body. Highlight the Body named r_ulna_radius__hand along with all

of its children and copy (Ctrl+C) to the Clipboard. Paste the Clipboard contents
immediately below the Body named r_ulna_radius_hand. Rename the new

Body to bucket. Note: the new Body tag named bucket has been highlighted.

<DyhamicsEngine>
<SikbodyEngine nae="default":>
<-Acceleration dus to gravity -
“gravitys 0.00000000 -9.80665000 0.00000000 </gravicys
<l--Bodies in the model.--»
<BodySet nsmwe="">
<objects>
<Body natme="ground" >

<Body name="r humerus">

<Body name="r nlna radius hand">

<Body name="bucket">

</ohjectss
<groupss s
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353
357
358
359
360
361
362
363
364
365
366
407

365
366
367
365
369
370
371
372
373
FTE
ESiECT
405
406

373
374
NS
376
377
373
379
380
381
382
383
3E4
383

6. Specify Mass Properties.

Connecting an Additional Segment to the Model 53

Enter values for the mass, mass_center,

inertia_xx, inertia_yy, and inertia_ zz of the bucket as seen below:

<EBody name="bucket" >

<Wraplhjectiet name="">

<mas s

<WRSS_CEnter
<inertia xx>
<inertia_ yy>
<inertia_zz>
<inertia xy>
<inertia xz>
<inertia_yz>

1.00000000 </massy - Specifymass and inertia as desired -

>

[— I — T — I — ]

0.

0.00000000

.00223958
00281250
-00223958
-00000000
. 00000000
00000000

-0.10000000 0.00000000 </m&ass_centers
<finertia xx> <k T =m/12(3r" 240" 2) = m*0.002239565533
</inertia yyr < Iyy =md2(r"2) = m*0.0028125 -
<finertia_zz> <k Tzz =m/12(3r"2+h"2) = m*0.0043575 -
</inert im xy>
</inertia xz>
<finertia yzr

<k-Taint that connects this body with the parent body --»

<Joint>

<Wisiblelbject nsme="">

7. Specify Joint. Enter names for the CustomJoint and parent_body, and enter

values for location_in__parent as seen below:

<l--Jaoint that connects this body with the parent body.--»

<Joint>

<Customloint name="r handle":> k- Specify joint name (2. r_handle) -
<parent_body> r ulna radius hand </parent_body> <-- Specify parent body name (eq. ¢
<location in parent:
<orientation in parent> 0.00000000 0.00000000 0.000001
0.00000000 0.00000000 0.00000000 </ locatiol

<location:>

<orientation:

0.03100000 -0.31000000 0.07000000 -

0.00000000 0.00000000 0.00000000 </orie:

<-Generali zed coordinates parameterizing thiz joint -
<Coordinatefet name="">

<Transformixisiet nams="">

</Customdoint>

</ Joint>

8. Specify Generalized Coordinate. Enter name for the Coordinate, and enter

values for range as seen below:

th-Seneralized coordinates parameteri zing thiz joint.--»

<Coordinatelet name="">
<objects>

<Coordinate name="r handle rot"> <-- Specify coordinate name (e.g., r_handle_rof
<default_wvaluex 0.00000000 <f’default_value>
<initial_ wvaluex> 0.00000000 </initial wvaluex
<tolerance: 0.00000000 </tolerances
<stiffness> 0.00000000 </stiffness:>
<ranger -3.14159265 3.14189265 </ranger < Specify

<keysr & key leftmouse button </keys:

<o latpeds

true </clampeds

<locked> false </ locked:>
<restraint functiond:>
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9. Specify Joint Axis. Enter name for coordinate, and enter values for axis as seen

below:
394 <TransformixisSet nams="">
395 % <objectss
398 = <Transformixis name="r3i":>
397 cfunction >
398 <zoordinater ¥ handle rot </coordinates < Specify coordinate name (
Sl=lE <is_rotationr true </is_rotation>
400 <axis> 0.04940001 0.03660001 0.99810825 <,
401 B </ Transformixis>
40z B </objects:
403 <groups/>
404 B </ TransformixisSets
405 - </CustomJoint>
405 B </Joint:>

10. Specify Geometry File. Enter name for geometry_files as seen below:

407 <VisibleChiject nsme="">

405 E <geometry files: bucket.wtp </geometry filess <-- Specify geometry file name (e bucket.y
409 = <WizibleProperties name="">

410 <display preference> 4 <,-"display_preference>

411 <show_normals> false </shovw_normals:>

412 <szhow_axes> false </show_axes:>

413 <mwaterial name> DEFAULT </mater ial name>

414 - </VisihlePropertiess

415 <scale_fact0rs> 1.00000000 1.00000000 1.00000000 <,-’scale_:
416 B </WVigikbledbjects

417 B </ Body>

415 B </objects>

419 <groups/ >

11. Save Model File. From the XML editor, save the OpenSim model file (e.g.,

arm26_ with_bucket.osim).



12 Simulation Analysis

12.1How it Works

The Analyze Tool uses the model together with states and/or controls to perform an analysis on a
muscle-driven forward dynamics simulation (Chapter 8). An analysis consists of calculations
based on the states and/or controls of the model to provide more in depth information about the

performance of the model.
12.2 Inputs

Three files are required as input by the Forward Dynamics Tool:

arm26_controls.xml: Contains the time histories of muscle excitations (the
controls in arm26) which can be used in conjunction with states to compute

guantities of interest (such as muscle force per unit of excitation).

arm26_states.sto: Contains the model states including joint angles, joint
velocities, muscle activations, and muscle fiber lengths from a forward simulation
(including results of Computed Muscle Control). These states are used by the

individual analyses setup with the Analyze tool.

Depending on the actuator type (e.g. muscle vs. an applied force) an analysis, such as
Actuation, will report both controls (i.e. for an applied force, the force is the control)
or quantities calculated from the states (i.e. muscle output force is calculated from

tendon strain).

armz26.osim: The current model loaded in OpenSim.
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12.3 Outputs

The Analyze Tool writes results of analyses associated with the model to files in the

output directory.

Every analysis in the specified by the Analyze Tool typically generates at least one file in the

specified folder:

<modelPrefix>_<AnalysisName>_<outputType>.sto: Contains the time
histories of all the computed quantities. There are multiple file according to the number of
analyses specified by the Analyze Tool and the number of output types (for example, there
are three files corresponding to positions, velocities and accelerations in a Kinematics

analysis).

12.4 Analyze Tool

To launch the Analyze Tool, select Analyze... from the Tools menu. The Analyze Tool is
controlled by a dialog with three tabbed panes (Fig. 11-1.a). The Main Settings pane
specifies files for the input controls and states of the model, the time range for the
analysis(es), the set of analyses to be run and the output folder for the results. The
Actuators and External Loads pane specifies the actuator set and the external loads
applied to the model during the simulation. The Analyses pane (Fig. 11-1.b) enables the
selection of analyses to be run by the AnalyzeTool from a list of analyses available in

OpenSim including those contributed by user plugins.

The Main Settings pane (Fig. 11-1.a) is organized into four main sections entitled Current
Model, Input, Time, Analysis Set, and Output. The Current Model displays
information about the current model being used by the Analyze Tool. The Input section
enables the entry of the input (optional) controls and states files to be used to run the
analysis. The Time section enables the specification of the start and end time for the
analysis. The Output section allows you to provide the prefix for all of the resulting output
files, the directory to which the files are saved, and the precision (number of decimal places)

used when writing results.
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o Analyze Tool

(:3 Analyze Tool

Main Settings | Actuators and External Loads | Analyses

Current Model

Mame | armzs

Input
[] Cantrals =
(%) States |\ ComputedMuscleContraliResults\armz6_states.sta
() Mation B
Hz

[] Salve For equilibrium for ackuator states

Time:

Time range to process a

Analysis Set
active analyses | Muscleanalysis
Ckpuk
Prefix | armze
Directory E:\asethlAppsiOpensSimi . Glexamplesiarm2aianalyzeiResults @

Precision z0

[ Settings = H Run

J1

Close

J

Cancel

]

Main Settings | Actuators and External Loads | Analyses
Enabled Type Mame
[v] Muscleanalysis Muscleanalysis
[v] Actuation Actuation
[] JointReaction JointR.eaction
[+] Pointkinematics Pointkinematics
(0] Property Editor
Marne | |Valua | |Dascription |
;_| Paintkinematics Paintkinematics
~@ on Flag {true or falsel specifyi...
- start_time -1.0E30  Start time.
~@ end_time 1.0E30  End time.
<4 skep_interval 1 Specifies how often ko stor...
@ in_degrees Flag {krue or False) indicati, ..
@ body_name ground
& point_name MOMAME
+_ | point (ooo
[ Add> || Edt | [ Delete |
[ Settings = ] [ Run ] [ Close ] [ Cancel

Figure 12-1: The Analyze Tool. The main settings (a) and analyses (b) panes.

The Analyses pane provides a list view of analyses associated with the tool, which is initially

empty. By clicking Add> available analyses are added to the list. To edit the properties of
an analysis, highlight it in the list and the click Edit, which opens a property editor. The

property editor is a generic object editor that enables common property data types (bool, int,

double, array of doubles, etc...) associated with an Analysis to be edited. For example, the

body and point names (strings) and coordinates of the point (array of three numbers) for the
PointKinematics analysis is shown in Figure 11-1.b.






13 Example: Analyzing

13.1

Simulations

Analyzing Muscle Behavior from a Forward Dynamics

Simulation

Open Analyze Tool. To open the tool (Figure 12-1), select Analyze... from the
Tools menu.

Specify States from a Forward Simulation. Select a States file from an earlier
forward dynamics simulations directory (e.0.,
..\ForwardDynamics\PhysiologicalResulst\arm26_ states.sto) in the Analyze Tool.
Specify Time Range. The time range should be set from O to 1 sec to correspond
to the interval for the forward dynamics simulation.

Specify  Output Directory. Set the Output Directory (e.g.,
.\nalyze\ForwardResults), so that you are able to compare the results of a
Forward Dynamics simulation using controls generated earlier by Static
Optimization.

Specify MuscleAnalysis. From the Analyses pane (Figure 12-1) Add >
MuscleAnalysis to the list of analyses.

Specify Muscles to Analyze. Select the MuscleAnalysis (only member of the
Tool’s list) and click the Edit button. In the PropertyEditor click the + icon to add a
muscle to the muscle_list. Add TRllong and Bllong be particularly careful of typos,
since an exact match is required to report results for that muscle.

Specify moment_arm_coordinates: Since both muscles are biarticular their
behavior at the shoulder and the elbow is of interest, so keep the default (ALL)
setting.

Finalize properties. Click the OK button.

Run Analyze Tool. You will see the model begin to move as it analyzes the states.

When the analysis has completed by reaching the end of the specified time range, the
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13.2

1.

13.3

Analyzing Muscle Behavior from Computed Muscle Control

specified output directory will be populated by muscle analysis storage files.

Analyzing Muscle Behavior from Computed Muscle

Control

Specify New States from Computed Muscle Control. Select a new States file
from an earlier computed muscle control directory
(..\ComputedMuscleControl\Results\arm26_ states.sto) in the Analyze Tool.
Specify New Output Directory. Set the new Output Directory (e.g.,
..\Analyze\CMCResults), so that you are able to compare the results of a Computed
Muscle Control simulation with a Forward Dynamics simulation using controls
generated earlier by Static Optimization.

Run Analyze Tool.
Comparing Muscle Behavior across Multiple Simulations

Plot Muscle Moments from Forward Dynamics. Browse to the output
directory specified above (e.0., .\Analyze\ForwardResults
arm26_MuscleAnalysis_Moment_r_elbow_flex.sto). Plot TRIlong and BIClong
versus time. Leave Plotter dialog open to compare subsequent muscle moments.
Plot Muscle Moments from Computed Muscle Control. Browse to the output
directory specified above (e.g., .\Analyze\CMCResults
arm26_MuscleAnalysis_ Moment_r_elbow_flex.sto). Plot TRIllong and BIClong
versus time.

How do the muscle moments from the Forward Dynamics simulation using controls
generated earlier by Static Optimization compare to the Computed Muscle Control

simulation?



14 Extending OpenSim'’s

Capabilities: User Plugins

14.10rganization of OpenSim with SImTK

OpenSim is built on the computational and simulation core provided by SimTK. These
include low level efficient math and matrix algebra libraries such as LAPACK. At the
modeling layer, Simbody™ is a powerful multibody dynamics solver. OpenSim is yet a
higher modeling layer which maps biomechanical structures (bones, muscles, tendons, etc...)

into bodies and forces so that the motion of the structure can be resolved by Simbody.

Forward APPLICATIONS Ana|ysi s
GUI Problem solving

MODELING
Physics, mathematics, logic Controller

OpenSim

14-1: Organization of Simulation Tools in SImTK.

OpenSim is essentially a set of modeling libraries for building complex actuator (muscle)
force generators and capturing the motion (kinematics) of highly articulated bodies (bones)
that can be controlled by model controllers (Computed Muscle Control) to estimate the
neural control and muscle forces required to produce human movement. At the highest level
these blocks are assembled into specialized applications (ik.exe, forward.exe, analyze.exe) to

simulate and analyze model movement and internal dynamics.
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14.2 OpenSim Architecture and Important Objects

Simulation Library

' Simulation Manager
So
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Figure 14-2: Schematic of the OpenSim Architecture

OpenSim specifically targets, actuators and contact as plugin components of a model used to
define the dynamics of the model. At the system level, controllers that dictate how the model
will move and analyses that quantify various measures of performance can also be developed
as plugins, to enable a user or outside application to extend OpenSim’s capabilities.
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OpenSim Program Tool
forward.exe
% setModel() l
Main() Run() Model
/ Integrand
: | t
Analysis Controller step()
printResults() computeControls()
\"N. L ] ‘
Model
Model (string aFileName)
DynamicsEngine ActuatorSet ContactSet
getPosition() setStates() setStates
applyForce() computeActuation() computeCont(a)ct()

computeDerivatives() computeStateDerivatives()

Figure 14-3: Hierarchy of Important OpenSim Objects

In order to build custom components it is necessary to have a general understanding which
objects (classes) are responsible for what actions/behaviors. The functions (methods) that
OpenSim’s public classes provide (so outside applications/programs can call) define its
Application Programming Interface or API. Figure 13-3 is an overview of relationships
between the main objects that provide the API. The best way to obtain details about the
methods each object provides, refer to the Doxygen generated documentation in
<OpenSimInstallDir>/sdk/doc/html.

14.3 Steps to Build Plugins for OpenSim
1. Install Visual C++ 2008 Express Edition freely available from

http://www.microsoft.com/express/download/ if you do not already have Visual
C++ 8.0 (2005) or 9.0 (2008) setup on your computer.

2. Install CMake. CMake is a cross-platform open-source build system that will
setup the build environment for creating an OpenSim plug-in. CMake is freely
available from http://www.cmake.org/files/v2.6/cmake-2.6.1-win32-x86.exe.
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Steps to Build Plugins for OpenSim

Dowload OpenSim 1.6 at
https://simtk.org/project/xml/downloads.xml?group id=331 and make note where

you have installed OpenSim (referred to as <OpenSimInstallDir>).

Prepare your development folder. Copy the
<OpenSimInstallDir>/sdk/examples/plugin directory into a folder (work space)
outside of the OpenSim installation so that future uninstalls and installs of OpenSim
do not destroy your work. Any empty folder will do, for example, C:/OpenSimPlugin/

would be easy to recognize.

Run CMake. Select the plugin folder you just copied for “Where is the source
code:” and for “Where to build the binaries:” select a build directory that is
convenient, like C:/OpenSimPlugin/build. Click Configure which will setup CMake
so it creates a build profile compatible with your version of Visual C++, which you
must select from the list it presents. Additional settings that CMake requires to
proceed will appear in red. For the CMAKE_INTSTALL_ PREFIX field, select
<OpenSimlInstallDir>, which tells Visual C++ where to install your plug-in also set
the <OpenSimlinstallDir> for the OPENSIM_INTSTALL_DIR field, which identifies
where OpenSim and its libraries live. Click Configure again and when there are no
fields in red, the OK button will be enabled. Click OK. This will setup all the

necessary build files in your build directory.

Open the OsimPlugin.sin from your build directory which will launch Visual
C++ with OsimPlugin as a project. Change the Solution Configuration from Debug

(default) to Release.

Build solution (from the Build menu) which will compile the template analysis into
a .dll (plugin). Follow that with a build Install which will install the osimplugin.dil

into <OpenSimlInstallDir>/plugins.

Launch OpenSim and load the plug-in from Tools->User Plugins, by clicking on

the osimplugin.dll. This will confirm that the plug-in is available to use in OpenSim.



15 Example: Creating Your

15.1

Own Analysis

Build a Body Position Analysis from the Template

Rename Template. In your plugin directory (e.g., C:\OpenSimPlugin\plugin),
rename the AnalysisPlugin_Template.h and .cpp to MyAnalysis.h and .cpp (or any
other name that is unique from built-in analyses). The template analysis simply
reports the center-of-mass position of selected bodies.

Run CMake. Click Configure and then OK.

Open the OsimPlugin.sin which will launch Visual Studio from the solution
file. Do a search and replace (in the entire solution) to replace
AnalysisPlugin_Template with (or the name you gave your analysis).

Build solution (from build menu) which should compile your analysis into a dll
(plugin) and follow that with a build Install (should install in
<OpenSimlInstallDir>/plugins).

Launch OpenSim and load the plugin from Tools->User Plugins, by clicking on
the osimplugin.dll.

Setup Analysis for Model. Load arm26 and perform the analysis with the
AnalyzeTool and choose your analysis from Add> list. Select states from any
previous simulation and an output directory.

Run it! .. arm26_MyAnalysis_pos.sto should appear in the output directory
containing the COM location and body rotation for each modeled body segment.

Celebrate, you just added and ran your own analysis plugin!
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15.2

/*

*

Build a Body Position, Velocity, and Acceleration Analysis

Build a Body Position, Velocity, and Acceleration

Analysis

Declaring additional output storage and internal working arrays. The
number of outputs have changed. Before we had one storage file with position data:
/** Storage for recording body positions. */

Storage _storePos;

and an,

/** Internal work array to hold the computed positions. */
Array<double> _bodypos;

Add additional storage for velocities and accelerations and provide a work array for

accelerations in the .h file.
Update the description of the Analysis in constructDescription() in the .cpp file.

Setup the storage for the velocity and acceleration results:

setupStorage()
{

// Positions

_storePos.reset(0);
_storePos.setName("'Positions™);
_storePos.setDescription(getDescription());
_storePos.setColumnLabels(getColumnLabels());

Correctly size working arrays :
setModel (Model *aModel)

{..

int numBodies = _model->getNumBodies();
_kin_setSize(6*numBodies);

An analysis’ record() method is the heart of the analysis. It collects or computes the
data necessary to perform and output the results of an analysis. It requires adding a

calculation (call to the DynamicsEngine) to get the model accelerations

Compute and record the results.
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This method, for the purpose of example, records the position and
orientation of each body in the model. You can customize it
to perform your analysis.

@param aT Current time in the simulation.
@param aX Current values of the controls.
@param aY Current values of the states.

*/record(double aT,double *aX,double *aY)

{
//

//

GET THE MODEL READY —————————— e e
Set the configuration of the model.

_model->set(aT,aX,aY);

//

Comput and apply all actuator forces.

_model->getActuatorSet()->computeActuation();

//

compute and apply all contact forces.

_model->getContactSet()->computeContact();

// After setting the state of the model and applying forces
// Compute the derivative of the multibody system (speeds and
// accelerations)

// NOTE: computeDerivatives() on the dynamicsEngine must be
// called before getting acclerations and reaction forces.

// APl (Doxygen html files) for AbstractDynamicsEngine can be
// found in <OpenSimlnstallDir>/sdk/doc/html

<add here>

// POSITION

BodySet *bodySet = model->getDynamicsEngine() .getBodySet();
int numBodies = bodySet->getSize();
for(int 1=0;i<numBodies;i++) {

AbstractBody *body = bodySet->get(i);
SImTK: :Vec3 com;
body->getMassCenter(com);

// GET POSITIONS AND EULER ANGLES
_model->getDynamicsEngine() .getPosition(*body,com,vec);
_model->getDynamicskEngine()
.getDirectionCosines(*body,dirCos);
_model->getDynamicsEngine()
-convertDirectionCosinesToAngles(dirCos,
&angVec|[0],&angVec[1],&angVec[2]);

// CONVERT TO DEGREES?

if(getlnDegrees()) {
angVec[0] *= SimTK_RADIAN_TO_ DEGREE;
angVec[1] *= SimTK_RADIAN_TO_ DEGREE;
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Build a Body Position, Velocity, and Acceleration Analysis

angVec[2] *= SimTK_RADIAN_TO DEGREE;
}

// FILL KINEMATICS ARRAY

int 1=6*i;

memcpy (& _bodypos[1],&vec[0],3*sizeof(double));
memcpy (& bodypos[1+3],&angVec[0],3*sizeof(double));

}
_storePos.append(aT,_bodypos.getSize(),& bodypos[0]);

// VELOCITY
Repeat process for velocity and accelerations. Check Doxygen for calls to the

DynamicsEngine to get velocities and accelerations.

// APl (Doxygen html files) for AbstractDynamicsEngine can be
// found iIn <OpenSiminstallDir>/sdk/doc/html

In begin() reset the storage objects at the specified time.

// RESET STORAGE
_storePos.reset(aT);

An analysis is finalized by printing results out to file:

Print results.

The file names are constructed as
abDir + /" + aBaseName + " " + ComponentName + aExtension

@param aDir Directory in which the results reside.

@param aBaseName Base fTile name.

@param aDT Desired time interval between adjacent storage vectors.
Linear interpolation is used to print the data out at the
desired interval.

@param akExtension File extension.

@return O on success, -1 on error.

*/
printResults(const string &aBaseName,const string &aDir,double aDT,

{

const string &aExtension)

// POSITIONS

_storePos.scaleTime(_model->getTimeNormConstant());

Storage: :printResult(& storePos,aBaseName+" "+getName()+" pos",aDir,
aDT,aExtension);

// VELOCITIES
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8. Compile and debug in Visual Studio.

9. Build install when satisfied (will overwrite the previous osimplugin.dll)

10. Restart OpenSim, load plugin and run your analysis with arm26.



