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1 Elements of a Model 
1.1 What is a musculoskeletal model in OpenSim? 

In OpenSim a skeleton is comprised of rigid bodies, which are interconnected by joints. 

Joints define how a body can move with respect to its parent body. All bodies have a parent 

and are connected to a parent via a joint, except for ground. Constraints limit the motion of 

bodies. 

 

Muscles are specialized actuators that act at muscle points connected to rigid bodies. The 

force of a muscle is typically dependent on the path (length) through muscle points and the 

rate of change of that length (velocity). OpenSim also has a variety of other actuators, which 

represent externally controlled forces, torques and generalized forces. 

 

1.2 Organization of the OpenSim model file 

In formulating the equations-of-motion (the system dynamics), OpenSim employs Simbody 

via the SimbodyEngine, where the body is the primary element, and all bodies in a model 

live in a BodySet.  Each body in turn owns a joint and that joint defines the coordinates and 

kinematic transforms that govern the motion of that body. The ConstraintsSet contains all 

the kinematic constraints that act on bodies (and/or their coordinates) in the model. User 

forces acting on the model are all included in an ActuatorSet 
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Figure 1: High level OpenSim Model organization. 

1.3 Specifying a Body and its Joint 

 
Figure 2: A joint (in red) defines the kinematic relationship between frames on two 

rigid-bodies (a parent (P) and child body (B)) paramterized by joint coordinates.   

A body is a moving reference frame (Bo) in which its center-of-mass and inertia are defined, 

and the location of a joint fame (B) fixed to the body can be specified. 
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Figure 3: Sample Body and Joint Definitions in OpenSim. The right knee joint is 

governed by one coordinate, the knee_angle_r. 

1.3.1 The CustomJoint Transform 

Most joints in an OpenSim model are custom joints since they can be used to model 

conventional (pins, slider, universal, etc…) as well as biomechanical joints.  The user must 

define the transform (rotation and translation) of the child in the parent as a function of the 

generalized coordinates listed in the Joint’s CoordinateSet (Fig. 3).  Consider the transform: 
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and q are the coordinates of the joint and x determine the individual rotations and 

translation along user-defined axes according to functions f. A CustomJoint can have up to 6 

user-defined TransformAxes (in a single TransformAxisSet) to enable a maximum of 6 

degrees-of-freedom. Each transform axis specifies a joint coordinate to operate along or 

about an axis. If a function is provided then f(q) is used as the value for that axis, and the 
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user must specify if it is a rotation or not. Therefore, coupled motion, such as tibial 

translation with knee flexion is easily handled, as in the gait2354.osim model.  

 

Figure 4: Transform definition for the implementation of a knee joint.  

1.3.2 Kinematic Constraints in OpenSim 

OpenSim currently supports two types of constraints: the CoordinateCouplerConstraint and 

the WeldConstraint. A coordinate coupler relates the generalized coordinate of a given joint 

(the dependent coordinate) to any other coordinates in the model (independent 

coordinates). The user must supply a function that returns a dependent value based on 

independent values. A weld constraint fixes the relative location and orientation of two 

bodies throughout a simulation. The following example implements the motion of the patella 

as a function of the knee ankle and welds the foot to ground. 
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Figure 5: Example of constraints in OpenSim 
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1.4 Actuator (Forces) in OpenSim 

Sources of force in OpenSim are referred to as actuators because they are (in general) under 

active control and their force output must be determined.  

1.4.1 The Muscle Actuator 

There are several muscle models in OpenSim. All muscles include a set of muscle points 

where the muscle is connected to bones (bodies) and provide utilities for calculating muscle-

actuator lengths and velocities.  Internally muscle models may differ in the number and type 

of parameters. Muscles typically include muscle activation and contraction dynamics and 

their own states. The control values are typically bounded (0,1) excitations which lead to a 

change in activation and then force.   

 

Figure 6: Sample muscle actuator from an ActuatorSet
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1.4.2 Other Common Forces 

OpenSim also includes “ideal” actuators which apply pure forces or torques that are directly 

proportional to the input control (excitation) via its optimal force. Forces and torques are 

applied between bodies and generalized forces are applied along the axis of a generalized 

coordinate.  

 

Figure 7: Sample of ideal forces and torques as they appear in the ActuatorSet of an 

OpenSim model
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2 Example: Model Editing 
 

2.1 Connecting an Additional Segment to the Model 

 

1. Save Model File for Editing. To save the model, select Save Model As… from 

the File menu. Specify a File name (e.g., arm26_editable.osim) and click the Save 

button. 

2. Open Model File for Editing. Use an XML editor (e.g., Notepad++) to open the 

OpenSim model file (e.g., arm26_editable.osim). When collapsed to the 3rd level 

(e.g., Alt+3 in Notepad++), you should see the following (Note: the 

DynamicsEngine tag has been highlighted): 
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3. Explore DynamicsEngine Children. The DynamicsEngine tag has four 

children named gravity, BodySet, ConstraintSet, and MarkerSet. Note: the 

BodySet tag has been highlighted. 

 

 

4. Explore BodySet Children. The BodySet tag has three grandchildren Body 

objects named ground, r_humerus, and r_ulna_radius_hand. Note: the 

Body tag named r_ulna_radius_hand has been highlighted. 

 

 

5. Add New Body. Highlight the Body named r_ulna_radius_hand along with all 

of its children and copy (Ctrl+C) to the Clipboard. Paste the Clipboard contents 

immediately below the Body named r_ulna_radius_hand. Rename the new 

Body to bucket. Note: the new Body tag named bucket has been highlighted. 
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6. Specify Mass Properties. Enter values for the mass, mass_center, 

inertia_xx, inertia_yy, and inertia_zz of the bucket as seen below: 

 

 

7. Specify Joint. Enter names for the CustomJoint and parent_body, and enter 

values for location_in_parent as seen below: 

 

 

8. Specify Generalized Coordinate. Enter name for the Coordinate, and enter 

values for range as seen below: 
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9. Specify Joint Axis. Enter name for coordinate, and enter values for axis as seen 

below: 

 

 

10. Specify Geometry File. Enter name for geometry_files as seen below: 

 

 

11. Save Model File. From the XML editor, save the OpenSim model file (e.g., 

arm26_with_bucket.osim). 

 



   Adding an Additional Actuator 23 

2.2 Adding an Additional Actuator 

 

1. Explore ActuatorSet Children. The ActuatorSet tag has six grandchildren 

Thelen2003Muscle objects named TRIlong, TRIlat, TRImed, BIClong, 

BICshort, and BRA.  

 

 

2. Add New Actuator. Add a GeneralizedForce object named 

r_handle_rot_force immediately below the Thelen2003Muscle named BRA. 

Associate this GeneralizedForce with the r_handle_rot coordinate and specify 

an optimal_force of 1000. Note: the new Actuator tag named 

r_handle_rot_force has been highlighted. 
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3 Computed Muscle Control 
 

3.1 Overview: Computed Muscle Control (Residual Reduction): 

What are CMC and RRA? 

Both computed muscle control (CMC) and the residual reduction algorithm (RRA) are 

feedback-control based methods of estimating actuator controls such that actuator forces 

generate motion that tracks a desired trajectory (i.e. from experiment). Their similarity 

results in the algorithms sharing the same implementation (cmc.exe in OpenSim). They 

differ from standard feedback control methods in that the controls (forces) are solved via 

static optimization which enables redundant actuation and some deviation from “desired” 

kinematics. CMC also accounts for the delay in the generation of forces. 

In RRA, static optimization is exploited to allow small deviations in kinematics (joint angles) that 
effect accelerations and further reduce the magnitude of residuals from inverse dynamics. In a 
separate step the total model mass of the model and location of the COM of a targeted segment 
(typically the most massive, e.g. torso) are adjusted to eliminate offsets in residual forces and 
moments. 

3.2 Theoretical background: 

1. We cast the inverse dynamics problem (joint torques from kinematics and external 
forces) as a tracking problem: 

a.  Unlike IVD, tracking requires a dynamical system 
• fqqDq += ),( &&&M , joint angles and velocities determined by integrating 

accelerations  
b. Solve inverse system: f is computed based on accelerations and states, but  

• accelerations are difficult to measure but positions are easy 
• Double differentiation provides acceleration but also amplifies noise 
• Instantaneous forces and continuity over time not ensured  
• What if we use feedback to get better estimates of accelerations? 

 
2. Feedback control: 

1. (1)  )ˆ()ˆ(ˆ~ qqkqqkqq pv −−−−= &&&&&&   estimate acceleration using feedback 

(2)  ),(~ qqDqf &&& −= M       compute controls (gen. forces, f) 

(3) integrate fqqDq += ),( &&&M  

When actuator forces are torques, τ=f , this is the method of computed torques. 
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2. For CMC, the production of torque is not instantaneous. The required torque at a 
given instant must be generated (in the case of muscles) over some prior time. To 
account for this, CMC changes the feedback law slightly, such that: 

)ˆ()ˆ()(ˆ)(~ qqkqqkTtqTtq pv −−−−+=+ &&&&&&  

where the desired acceleration at small time in the future (T) is based on the 
experimental acceleration at the future time and the current position and velocity 
errors.  

 
3. In the general case, “controls” (gen. forces, f)  are computed from static optimization: 

Min: ∑∑
==

+−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nq

j
jjq

nx

i
opt

i

ii TtqTtqw
f

xfxJ
j

1

2

1

2

))()(~()()( &&&&  

 
Subject to: )(),( xfqqDq += &&&M  

 
RRA: Compute torques and residuals (τ,R) that track the desired kinematics. 

xFxfR opt=∈ )(,τ  
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subject to: RqqFq ++= τ),( &&&M  

Enables us to vary tracking behavior between minimizing the residuals and 

tracking the kinematics and is solved as a bounded (limits on torques) nonlinear 

optimization. Since torques have no dynamics, T, can be small (e.g. T = 0.001s) 

CMC: Controls (x) are now excitations and torque production now has muscle 

dynamics: 

rqqlxafq m += ),,),(()]([ &Aτ  

Joint torques, τ, are now replaced by the product of a muscle moment arm 

matrix, A , and muscle forces, mf , which is a function of muscle activation, a, 

which in turn is a function of excitation, x, the controls.   (NOTE: “reserve” 

torques (actuators), r, remain in case muscle forces alone are unable to achieve 

the necessary accelerations.  
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Subject to:  )(~)( TtqTtq +=+ &&&&  (using constraint is “fast target” in optimization) 
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Algorithm: 
1. Set states: },,,{ qqla & at current time, t 

2. Estimate future acceleration: 

)ˆ()ˆ()(ˆ)(~ qqkqqkTtqTtq pv −−−−+=+ &&&&&&    T = 0.01s  provides 

sufficient time for a muscle to reach a target force. 

3. Integrate muscle dynamics only with ( qq ˆ,ˆ & ) from t to t + T, with 

]1,0[=ix to get bounds on muscle forces 
Ttii ff
+

),( maxmin  

4. Solve static optimization to get the desired muscle forces, m
if

~
, at t + T.  

5. Root solve for x from desired muscle forces, given:  

Tt

m
i

m fqqlxaf
+

=
~),,),(( &   

6. Integrate muscle and skeletal (multibody) dynamics for states at t + T 
and loop. 

Adjusting Mass Distribution: 
1. residual force offsets can be reduced by adjusting total body mass 
2. residual moment offsets can be reduced by adjusting moment due to gravity by 

moving COM location 

3.3 Performing RRA in OpenSim: Key Elements 

1. Actuators: specify the actuators (torques, for CMC they are muscles) 
a. Forces and moments acting on the pelvis from ground are residual 

actuators 
b. Internal joints are actuated by torques 
c. Optimal forces are the maximum output of ideal actuators (torques, linear 

forces). 
1. Torque (force) applied is optimal_force x control_value 
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2. ControlConstraints: specify the bounds on the controls 
a. Joint torques (and muscles) have a maximum magnitude of 1. 
b. Residuals have bounds exceeding their anticipated force requirement. 

1. Weightings are implicit in this description. A high optimal_force 
means that large output force (torque) does not require a large 
control value (i.e. low cost).  Conversely, residuals with low 
optimal force require high control values that incur higher costs.  
 

3. Tasks: specify kp, kv, and 
jqw for each kinematic coordinate being tracked. 

a. Selection of kp and kv are not arbitrary. They define the behavior of the 
error dynamics for each q as a second order linear system. We can write 
the kp and kv for the desired system behavior in terms of system poles, λ.  

For a (stable) critically damped system (real negative poles) kp = λ2 and kv 
= -2λ. 

b. 
jqw enables kinematics of joints (coordinates) for which we have high 

confidence (e.g. knee flexion, hip flexion) to be weighted more heavily 
compared to those of less confidence (e.g. hip internal rotation and ankle 
inversion).  
 

4. RRA Setup File: 
a. Model (lock subtalar and mtp joints, why?) 
b. Actuators (NOTE: residual at pelvis should be applied at scaled location of 

COM) 
c. Tasks (how strongly/loosely to track individual joint kinematics) 
d. Adjust COM flags 
e. Desired Kinematics 
f. Control Constraints (bounds on the 
g. External loads 

• Specify bodies that external loads are applied to.  
 

5. Run RRA/CMC with slow walking IK and GRF data, and previously scaled model.  
 

6. Trouble-shooting: 
a. 4 important things to do in any case 

1. Check the pelvis COM location in Actuator files 
2. “Lock” the subtalar and mtp joints in *.osim file 
3. Make sure “use_fast_optimization_target” is 

• false (unchecked) for RRA 
• true (checked) for CMC 

4. Make sure “cmc_time_window” is 

• <cmc_time_window> = T 
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• 0.001 s for RRA 
• ~0.01 s for CMC 

b. Are the residual actuators (FX, FY, FZ, MX, MY, MZ) saturating?  
1. Try increasing their min/max ranges in the ControlConstraints 

file. 
2. Check that the GRF are being applied. 

c. Is a dof tracking poorly? 
• Consider increasing its weight in the Task file 

d. Does an actuator seem too weak? 
• Consider increasing its optimal force in the Actuator file (torque 

actuators) or *.osim file (muscle actuators), but provide good 
justification for this. How does the optimal force influence the 
objective function? 

e. Post your question on the ME/BIOE 485 discussion forum. The teaching 
staff is notified when questions are posted. 
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4 Example: Computed Muscle 

Control 
 

4.1 Using Computed Muscle Control 

 

1. Open Computed Muscle Control Tool. To open the tool (Error! Reference 

source not found.), select Compute Muscle Control… from the Tools menu. 

2. Specify Filtered Input Motion. Browse to the inverse kinematics directory and 

select the Desired kinematics file (e.g., 

..\InverseKinematics\arm26_InverseKinematics.mot), check the Filter 

kinematics option, and enter a cutoff frequency of 6 Hz.  

3. Specify Tracking Tasks. Browse to select the tasks file (e.g., 

arm26_ComputedMuscleControl_Tasks.xml) specifying the joint coordinates for 

CMC to track and their relative weightings as well as the Kp and Kv gains on the 

errors.  

4. Specify Actuator Constraints. Browse to select the constraints file (e.g., 

arm26_ControlConstraints.xml) specifying the maximum (or minimum) value used 

to constrain the allowed values of the actuator controls.  

5. Uncheck Adjust Model and Adjust Kinematics. These options are used when 

performing residual reduction to obtain more dynamically consistent simulations. 

For our Arm26 example, residual reduction is not necessary. 

6. Specify Time Range. The time range for the forward simulation is specified and 

these should be set from 0 to 1 sec to correspond to the interval upon which the 

motion was found from inverse kinematics. 

7. Set CMC look-ahead window. A time window of 0.01 is generally sufficient for 

muscle activations to change enough to produce the desired accelerations. 

8. Specify Output Directory. Set the output Directory (e.g., 

..\ComputedMuscleControl\Results), so that you are able to compare the results of a 

CMC simulation with Forward Dynamics simulations using Nonphysiological and 

Physiological controls generated earlier by Static Optimization.  
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9. Specify Additional Model Actuators. Set the actuator settings to Append 

(rather than replace) and edit the Additional actuator set files field by adding an 

actuator set file (e.g., arm26_Reserve_Actuators.xml) containing reserve torques. 

10. Save Settings. Use the Settings > button to save your settings to a setup file (e.g., 

arm26_Setup_ComputedMuscleControl.xml). 

11. Run CMC Tool. You will see the model begin to move as muscles contract and 

accelerate the model. When the simulation has completed by reaching the end of the 

specified time range, the specified output directory will be populated by states files 

(e.g., arm26_states_degrees.mot) and the corresponding motion file (e.g., 

arm26_states) will be associated with the model in the GUI. 

 

4.2 Changing the Desired Kinematics 

 

1. Create New Desired Kinematics. Edit the original Desired kinematics file 

(e.g., ..\InverseKinematics\arm26_InverseKinematics.mot) by specifying different 

shoulder elevation angle versus time (e.g., copy and paste elbow flexion values to 

should elevation). Save the new file (e.g., arm26_SpecifiedShoulder.mot) 

2. Specify New Input Motion. Browse and select the newly created Desired 

kinematics file (e.g., arm26_SpecifiedShoulder.mot), check the Filter 

kinematics option, and enter a cutoff frequency of 6 Hz.  

3. Run CMC Tool. You will see the model begin to move to match the new kinematics. 

 

4.3 Changing the Tracking Tasks 

 

1. Change Tracking Weight. Edit the tasks file (e.g., 

arm26_ComputedMuscleControl_Tasks.xml) or use the Property Editor to reduce 

the r_shoulder_elev weight from 1.0 to 0.0.  

2. Specify New Tracking Tasks. Browse and select the new tasks file (e.g., 

arm26_ComputedMuscleControl_Tasks.xml) or save new task from the Property 

Editor.  

3. Run CMC Tool. You will see the model begin to move while tracking the elbow 

flexion well but not the shoulder elevation. 
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4.4 Changing the Actuator Constraints 

 

1. Change Actuator Constraint. Edit the constraints file (e.g., 

arm26_ControlConstraints.xml) or use the Excitation Editor to limit BIClong 

control to a maximum of 0.05.  

2. Specify Actuator Constraints. Browse and select the new constraints file (e.g., 

arm26_ControlConstraints.xml) or save new constraint from the Excitation Editor.  

3. Run CMC Tool. You will see the model begin to move by using other actuators in 

lieu of BIClong. 

 

4.5 Changing the CMC Look-Ahead Window 

 

1. Change CMC Look-Ahead Window. Set the look-ahead time to 0.5 rather than 

0.01.  

2. Run CMC Tool. You will see the model begin to move, but the control will be too 

coarse to allow for good tracking. 

 


