
Documents

 OpenSim
Developer’s Jamboree

 January 14-16, 2009,
Stanford University

 Website: SimTK.org/home/opensim

OpenSim Jamboree Agenda (Day 1)
Clark Center Room S282 (below Peet’s)

DAY 1 – Wednesday, January 14, 2009

8:30am – 9:00am OpenSim 1.8 installation and setup
– Arrive early if you need to install software

9:00am – 9:15am Welcome and goals of workshop
– Scott

9:15am – 10:15am Participant information and goals
– You

10:15am – 10:25am BREAK & Intoduction to SimTK Team

10:25am – 10:40am OpenSim as a research tool (e.g., strengths, limitations, best practice)
– Scott

10:40am – 11:10am Elements of an OpenSim model (e.g., organization, joints, constraints)
– Ajay

11:10pm – 11:50pm Model editing and adding components (e.g., body, actuator)
– Jeff & You

11:50am – 1:00pm LUNCH

1:00pm – 1:20pm Behind computed muscle control (e.g., theory, implementation)
– Ajay

1:20pm – 1:50pm Using computed muscle control (e.g., choosing settings)
– Jeff & You

1:50pm – 2:15pm Available analyses and what they do (e.g., perturbation)
– Sam & Chand

2:15pm – 2:45pm Questions and Discussion
– Everyone

2:45pm – 3:30pm Form groups and create project plans
– Scott

3:30pm – 4:20pm BREAK, work on project plan, or Simbios Talk (S360)

4:20pm – 5:00pm Presentations of group project plans for Jamboree
– You

6:00pm Social Dinner (TBD)

OpenSim Jamboree Agenda (Days 2 & 3)

DAY 2 – Thursday, January 15, 2009

8:30am – 9:00am Individual group feedback
– OpenSim Team

9:00am – 11:45am Work on projects
– You & OpenSim Team

11:45am – 12:45pm LUNCH

12:45pm – 1:00pm Open discussion of common issues
– Scott & You

1:00pm – 4:45pm Work on projects
– You & OpenSim Team

4:45pm – 5:00pm Open discussion of common issues
– Scott & You

DAY 3 – Friday, January 16, 2009

8:30am – 8:45am Open discussion of tips and comments
– Scott & You

8:45am – 11:45am Work on projects
– You & OpenSim Team

11:45am – 12:45pm LUNCH

12:45pm – 2:45pm Presentations of progress, hurdles, feedback, and future plans
– You

2:45pm – 3:00pm Closing remarks
– Scott

3:00pm – 4:30pm RECEPTION

vii

Trademarks and Copyright and Permission Notice

SimTK and Simbios are trademarks of Stanford University. The documentation for OpenSim is freely available and
distributable under the MIT License.

Copyright (c) 2008 Stanford University

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

viii

Acknowledgments

OpenSim was developed as a part of SimTK and funded by the Simbios National Center for

Biomedical Computing through the National Institutes of Health and the NIH Roadmap for

Medical Research, Grant U54 GM072970. Information on the National Centers can be found at

http://nihroadmap.nih.gov/bioinformatics.

9

Table of Contents

1 ELEMENTS OF A MODEL ... 9

1.1 What is a musculoskeletal model in OpenSim? ... 10

1.2 Organization of the OpenSim model file .. 10

1.3 Specifying a Body and its Joint ... 10
1.3.1 The CustomJoint Transform...12
1.3.2 Kinematic Constraints in OpenSim ..13

1.4 Actuator (Forces) in OpenSim .. 14
1.4.1 The Muscle Actuator ..14
1.4.2 Other Common Forces..15

2 EXAMPLE: MODEL EDITING... 17

2.1 Connecting an Additional Segment to the Model .. 17

2.2 Adding an Additional Actuator... 21

3 COMPUTED MUSCLE CONTROL.. 23

3.1 Overview: Computed Muscle Control (Residual Reduction):.. 23

3.2 Theoretical background:.. 23

3.3 Performing RRA in OpenSim: Key Elements ... 25

4 EXAMPLE: COMPUTED MUSCLE CONTROL ... 29

4.1 Using Computed Muscle Control.. 29

4.2 Changing the Desired Kinematics... 30

4.3 Changing the Tracking Tasks ... 30

4.4 Changing the Actuator Constraints.. 31

4.5 Changing the CMC Look-Ahead Window... 31

10

11

1 Elements of a Model
1.1 What is a musculoskeletal model in OpenSim?

In OpenSim a skeleton is comprised of rigid bodies, which are interconnected by joints.

Joints define how a body can move with respect to its parent body. All bodies have a parent

and are connected to a parent via a joint, except for ground. Constraints limit the motion of

bodies.

Muscles are specialized actuators that act at muscle points connected to rigid bodies. The

force of a muscle is typically dependent on the path (length) through muscle points and the

rate of change of that length (velocity). OpenSim also has a variety of other actuators, which

represent externally controlled forces, torques and generalized forces.

1.2 Organization of the OpenSim model file

In formulating the equations-of-motion (the system dynamics), OpenSim employs Simbody

via the SimbodyEngine, where the body is the primary element, and all bodies in a model

live in a BodySet. Each body in turn owns a joint and that joint defines the coordinates and

kinematic transforms that govern the motion of that body. The ConstraintsSet contains all

the kinematic constraints that act on bodies (and/or their coordinates) in the model. User

forces acting on the model are all included in an ActuatorSet

 Specifying a Body and its Joint 12

Figure 1: High level OpenSim Model organization.

1.3 Specifying a Body and its Joint

Figure 2: A joint (in red) defines the kinematic relationship between frames on two

rigid-bodies (a parent (P) and child body (B)) paramterized by joint coordinates.

A body is a moving reference frame (Bo) in which its center-of-mass and inertia are defined,

and the location of a joint fame (B) fixed to the body can be specified.

 Specifying a Body and its Joint 13

Figure 3: Sample Body and Joint Definitions in OpenSim. The right knee joint is

governed by one coordinate, the knee_angle_r.

1.3.1 The CustomJoint Transform

Most joints in an OpenSim model are custom joints since they can be used to model

conventional (pins, slider, universal, etc…) as well as biomechanical joints. The user must

define the transform (rotation and translation) of the child in the parent as a function of the

generalized coordinates listed in the Joint’s CoordinateSet (Fig. 3). Consider the transform:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

6

5

4

321),,()(
x
x
x

xxxq BPBP RX , where

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

),,,(

),,,(
),,,(

)(

216

212

211

m

m

m

qqqf

qqqf
qqqf

qx

K

M

K

K

and q are the coordinates of the joint and x determine the individual rotations and

translation along user-defined axes according to functions f. A CustomJoint can have up to 6

user-defined TransformAxes (in a single TransformAxisSet) to enable a maximum of 6

degrees-of-freedom. Each transform axis specifies a joint coordinate to operate along or

about an axis. If a function is provided then f(q) is used as the value for that axis, and the

 Specifying a Body and its Joint 14

user must specify if it is a rotation or not. Therefore, coupled motion, such as tibial

translation with knee flexion is easily handled, as in the gait2354.osim model.

Figure 4: Transform definition for the implementation of a knee joint.

1.3.2 Kinematic Constraints in OpenSim

OpenSim currently supports two types of constraints: the CoordinateCouplerConstraint and

the WeldConstraint. A coordinate coupler relates the generalized coordinate of a given joint

(the dependent coordinate) to any other coordinates in the model (independent

coordinates). The user must supply a function that returns a dependent value based on

independent values. A weld constraint fixes the relative location and orientation of two

bodies throughout a simulation. The following example implements the motion of the patella

as a function of the knee ankle and welds the foot to ground.

 Specifying a Body and its Joint 15

Figure 5: Example of constraints in OpenSim

 Actuator (Forces) in OpenSim 16

1.4 Actuator (Forces) in OpenSim

Sources of force in OpenSim are referred to as actuators because they are (in general) under

active control and their force output must be determined.

1.4.1 The Muscle Actuator

There are several muscle models in OpenSim. All muscles include a set of muscle points

where the muscle is connected to bones (bodies) and provide utilities for calculating muscle-

actuator lengths and velocities. Internally muscle models may differ in the number and type

of parameters. Muscles typically include muscle activation and contraction dynamics and

their own states. The control values are typically bounded (0,1) excitations which lead to a

change in activation and then force.

Figure 6: Sample muscle actuator from an ActuatorSet

 Actuator (Forces) in OpenSim 17

1.4.2 Other Common Forces

OpenSim also includes “ideal” actuators which apply pure forces or torques that are directly

proportional to the input control (excitation) via its optimal force. Forces and torques are

applied between bodies and generalized forces are applied along the axis of a generalized

coordinate.

Figure 7: Sample of ideal forces and torques as they appear in the ActuatorSet of an

OpenSim model

18

.

19

2 Example: Model Editing

2.1 Connecting an Additional Segment to the Model

1. Save Model File for Editing. To save the model, select Save Model As… from

the File menu. Specify a File name (e.g., arm26_editable.osim) and click the Save

button.

2. Open Model File for Editing. Use an XML editor (e.g., Notepad++) to open the

OpenSim model file (e.g., arm26_editable.osim). When collapsed to the 3rd level

(e.g., Alt+3 in Notepad++), you should see the following (Note: the

DynamicsEngine tag has been highlighted):

 Connecting an Additional Segment to the Model 20

3. Explore DynamicsEngine Children. The DynamicsEngine tag has four

children named gravity, BodySet, ConstraintSet, and MarkerSet. Note: the

BodySet tag has been highlighted.

4. Explore BodySet Children. The BodySet tag has three grandchildren Body

objects named ground, r_humerus, and r_ulna_radius_hand. Note: the

Body tag named r_ulna_radius_hand has been highlighted.

5. Add New Body. Highlight the Body named r_ulna_radius_hand along with all

of its children and copy (Ctrl+C) to the Clipboard. Paste the Clipboard contents

immediately below the Body named r_ulna_radius_hand. Rename the new

Body to bucket. Note: the new Body tag named bucket has been highlighted.

 Connecting an Additional Segment to the Model 21

6. Specify Mass Properties. Enter values for the mass, mass_center,

inertia_xx, inertia_yy, and inertia_zz of the bucket as seen below:

7. Specify Joint. Enter names for the CustomJoint and parent_body, and enter

values for location_in_parent as seen below:

8. Specify Generalized Coordinate. Enter name for the Coordinate, and enter

values for range as seen below:

 Connecting an Additional Segment to the Model 22

9. Specify Joint Axis. Enter name for coordinate, and enter values for axis as seen

below:

10. Specify Geometry File. Enter name for geometry_files as seen below:

11. Save Model File. From the XML editor, save the OpenSim model file (e.g.,

arm26_with_bucket.osim).

 Adding an Additional Actuator 23

2.2 Adding an Additional Actuator

1. Explore ActuatorSet Children. The ActuatorSet tag has six grandchildren

Thelen2003Muscle objects named TRIlong, TRIlat, TRImed, BIClong,

BICshort, and BRA.

2. Add New Actuator. Add a GeneralizedForce object named

r_handle_rot_force immediately below the Thelen2003Muscle named BRA.

Associate this GeneralizedForce with the r_handle_rot coordinate and specify

an optimal_force of 1000. Note: the new Actuator tag named

r_handle_rot_force has been highlighted.

24

25

3 Computed Muscle Control

3.1 Overview: Computed Muscle Control (Residual Reduction):

What are CMC and RRA?

Both computed muscle control (CMC) and the residual reduction algorithm (RRA) are

feedback-control based methods of estimating actuator controls such that actuator forces

generate motion that tracks a desired trajectory (i.e. from experiment). Their similarity

results in the algorithms sharing the same implementation (cmc.exe in OpenSim). They

differ from standard feedback control methods in that the controls (forces) are solved via

static optimization which enables redundant actuation and some deviation from “desired”

kinematics. CMC also accounts for the delay in the generation of forces.

In RRA, static optimization is exploited to allow small deviations in kinematics (joint angles) that
effect accelerations and further reduce the magnitude of residuals from inverse dynamics. In a
separate step the total model mass of the model and location of the COM of a targeted segment
(typically the most massive, e.g. torso) are adjusted to eliminate offsets in residual forces and
moments.

3.2 Theoretical background:

1. We cast the inverse dynamics problem (joint torques from kinematics and external
forces) as a tracking problem:

a. Unlike IVD, tracking requires a dynamical system
• fqqDq +=),(&&&M , joint angles and velocities determined by integrating

accelerations
b. Solve inverse system: f is computed based on accelerations and states, but

• accelerations are difficult to measure but positions are easy
• Double differentiation provides acceleration but also amplifies noise
• Instantaneous forces and continuity over time not ensured
• What if we use feedback to get better estimates of accelerations?

2. Feedback control:

1. (1))ˆ()ˆ(ˆ~ qqkqqkqq pv −−−−= &&&&&& estimate acceleration using feedback

(2)),(~ qqDqf &&& −= M compute controls (gen. forces, f)

(3) integrate fqqDq +=),(&&&M

When actuator forces are torques, τ=f , this is the method of computed torques.

 Theoretical background: 26

2. For CMC, the production of torque is not instantaneous. The required torque at a
given instant must be generated (in the case of muscles) over some prior time. To
account for this, CMC changes the feedback law slightly, such that:

)ˆ()ˆ()(ˆ)(~ qqkqqkTtqTtq pv −−−−+=+ &&&&&&

where the desired acceleration at small time in the future (T) is based on the
experimental acceleration at the future time and the current position and velocity
errors.

3. In the general case, “controls” (gen. forces, f) are computed from static optimization:

Min: ∑∑
==

+−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nq

j
jjq

nx

i
opt

i

ii TtqTtqw
f

xfxJ
j

1

2

1

2

))()(~()()(&&&&

Subject to:)(),(xfqqDq += &&&M

RRA: Compute torques and residuals (τ,R) that track the desired kinematics.

xFxfR opt=∈)(,τ

Min:

∑∑∑
===

+−++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

nq

j
jjq

k
opt

k

k
opt

k
R

n

i
opt

i

i
opt

i TtqTtqw
R

xRwxRJ
jk

1

2
6

1

2

1

2

))()(~(),(&&&&
τ

τ
ττ

subject to: RqqFq ++= τ),(&&&M

Enables us to vary tracking behavior between minimizing the residuals and

tracking the kinematics and is solved as a bounded (limits on torques) nonlinear

optimization. Since torques have no dynamics, T, can be small (e.g. T = 0.001s)

CMC: Controls (x) are now excitations and torque production now has muscle

dynamics:

rqqlxafq m +=),,),(()]([&Aτ

Joint torques, τ, are now replaced by the product of a muscle moment arm

matrix, A , and muscle forces, mf , which is a function of muscle activation, a,

which in turn is a function of excitation, x, the controls. (NOTE: “reserve”

torques (actuators), r, remain in case muscle forces alone are unable to achieve

the necessary accelerations.

 Performing RRA in OpenSim: Key Elements 27

Min:

Tt
k

opt
k

k
opt

k
n

j
opt

j

j
opt

j
nm

i
opt

i

m
i

Rr
m

R
xR

r
xr

qqf
fxfJ

+
===
∑∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

6

1

2

1

2

1

2

,)ˆ,ˆ(

~
),~(

τ

&

Subject to:)(~)(TtqTtq +=+ &&&& (using constraint is “fast target” in optimization)

Tt

m RrfqqFq
+

+++= AM),(&&&

Tt

m fff
+

≤≤ maxmin ~

Algorithm:
1. Set states: },,,{ qqla & at current time, t

2. Estimate future acceleration:

)ˆ()ˆ()(ˆ)(~ qqkqqkTtqTtq pv −−−−+=+ &&&&&& T = 0.01s provides

sufficient time for a muscle to reach a target force.

3. Integrate muscle dynamics only with (qq ˆ,ˆ &) from t to t + T, with

]1,0[=ix to get bounds on muscle forces
Ttii ff
+

),(maxmin

4. Solve static optimization to get the desired muscle forces, m
if

~
, at t + T.

5. Root solve for x from desired muscle forces, given:

Tt

m
i

m fqqlxaf
+

=
~),,),((&

6. Integrate muscle and skeletal (multibody) dynamics for states at t + T
and loop.

Adjusting Mass Distribution:
1. residual force offsets can be reduced by adjusting total body mass
2. residual moment offsets can be reduced by adjusting moment due to gravity by

moving COM location

3.3 Performing RRA in OpenSim: Key Elements

1. Actuators: specify the actuators (torques, for CMC they are muscles)
a. Forces and moments acting on the pelvis from ground are residual

actuators
b. Internal joints are actuated by torques
c. Optimal forces are the maximum output of ideal actuators (torques, linear

forces).
1. Torque (force) applied is optimal_force x control_value

 Performing RRA in OpenSim: Key Elements 28

2. ControlConstraints: specify the bounds on the controls
a. Joint torques (and muscles) have a maximum magnitude of 1.
b. Residuals have bounds exceeding their anticipated force requirement.

1. Weightings are implicit in this description. A high optimal_force
means that large output force (torque) does not require a large
control value (i.e. low cost). Conversely, residuals with low
optimal force require high control values that incur higher costs.

3. Tasks: specify kp, kv, and
jqw for each kinematic coordinate being tracked.

a. Selection of kp and kv are not arbitrary. They define the behavior of the
error dynamics for each q as a second order linear system. We can write
the kp and kv for the desired system behavior in terms of system poles, λ.

For a (stable) critically damped system (real negative poles) kp = λ2 and kv
= -2λ.

b.
jqw enables kinematics of joints (coordinates) for which we have high

confidence (e.g. knee flexion, hip flexion) to be weighted more heavily
compared to those of less confidence (e.g. hip internal rotation and ankle
inversion).

4. RRA Setup File:
a. Model (lock subtalar and mtp joints, why?)
b. Actuators (NOTE: residual at pelvis should be applied at scaled location of

COM)
c. Tasks (how strongly/loosely to track individual joint kinematics)
d. Adjust COM flags
e. Desired Kinematics
f. Control Constraints (bounds on the
g. External loads

• Specify bodies that external loads are applied to.

5. Run RRA/CMC with slow walking IK and GRF data, and previously scaled model.

6. Trouble-shooting:
a. 4 important things to do in any case

1. Check the pelvis COM location in Actuator files
2. “Lock” the subtalar and mtp joints in *.osim file
3. Make sure “use_fast_optimization_target” is

• false (unchecked) for RRA
• true (checked) for CMC

4. Make sure “cmc_time_window” is

• <cmc_time_window> = T

 Performing RRA in OpenSim: Key Elements 29

• 0.001 s for RRA
• ~0.01 s for CMC

b. Are the residual actuators (FX, FY, FZ, MX, MY, MZ) saturating?
1. Try increasing their min/max ranges in the ControlConstraints

file.
2. Check that the GRF are being applied.

c. Is a dof tracking poorly?
• Consider increasing its weight in the Task file

d. Does an actuator seem too weak?
• Consider increasing its optimal force in the Actuator file (torque

actuators) or *.osim file (muscle actuators), but provide good
justification for this. How does the optimal force influence the
objective function?

e. Post your question on the ME/BIOE 485 discussion forum. The teaching
staff is notified when questions are posted.

30

31

4 Example: Computed Muscle

Control

4.1 Using Computed Muscle Control

1. Open Computed Muscle Control Tool. To open the tool (Error! Reference

source not found.), select Compute Muscle Control… from the Tools menu.

2. Specify Filtered Input Motion. Browse to the inverse kinematics directory and

select the Desired kinematics file (e.g.,

..\InverseKinematics\arm26_InverseKinematics.mot), check the Filter

kinematics option, and enter a cutoff frequency of 6 Hz.

3. Specify Tracking Tasks. Browse to select the tasks file (e.g.,

arm26_ComputedMuscleControl_Tasks.xml) specifying the joint coordinates for

CMC to track and their relative weightings as well as the Kp and Kv gains on the

errors.

4. Specify Actuator Constraints. Browse to select the constraints file (e.g.,

arm26_ControlConstraints.xml) specifying the maximum (or minimum) value used

to constrain the allowed values of the actuator controls.

5. Uncheck Adjust Model and Adjust Kinematics. These options are used when

performing residual reduction to obtain more dynamically consistent simulations.

For our Arm26 example, residual reduction is not necessary.

6. Specify Time Range. The time range for the forward simulation is specified and

these should be set from 0 to 1 sec to correspond to the interval upon which the

motion was found from inverse kinematics.

7. Set CMC look-ahead window. A time window of 0.01 is generally sufficient for

muscle activations to change enough to produce the desired accelerations.

8. Specify Output Directory. Set the output Directory (e.g.,

..\ComputedMuscleControl\Results), so that you are able to compare the results of a

CMC simulation with Forward Dynamics simulations using Nonphysiological and

Physiological controls generated earlier by Static Optimization.

 Changing the Desired Kinematics 32

9. Specify Additional Model Actuators. Set the actuator settings to Append

(rather than replace) and edit the Additional actuator set files field by adding an

actuator set file (e.g., arm26_Reserve_Actuators.xml) containing reserve torques.

10. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,

arm26_Setup_ComputedMuscleControl.xml).

11. Run CMC Tool. You will see the model begin to move as muscles contract and

accelerate the model. When the simulation has completed by reaching the end of the

specified time range, the specified output directory will be populated by states files

(e.g., arm26_states_degrees.mot) and the corresponding motion file (e.g.,

arm26_states) will be associated with the model in the GUI.

4.2 Changing the Desired Kinematics

1. Create New Desired Kinematics. Edit the original Desired kinematics file

(e.g., ..\InverseKinematics\arm26_InverseKinematics.mot) by specifying different

shoulder elevation angle versus time (e.g., copy and paste elbow flexion values to

should elevation). Save the new file (e.g., arm26_SpecifiedShoulder.mot)

2. Specify New Input Motion. Browse and select the newly created Desired

kinematics file (e.g., arm26_SpecifiedShoulder.mot), check the Filter

kinematics option, and enter a cutoff frequency of 6 Hz.

3. Run CMC Tool. You will see the model begin to move to match the new kinematics.

4.3 Changing the Tracking Tasks

1. Change Tracking Weight. Edit the tasks file (e.g.,

arm26_ComputedMuscleControl_Tasks.xml) or use the Property Editor to reduce

the r_shoulder_elev weight from 1.0 to 0.0.

2. Specify New Tracking Tasks. Browse and select the new tasks file (e.g.,

arm26_ComputedMuscleControl_Tasks.xml) or save new task from the Property

Editor.

3. Run CMC Tool. You will see the model begin to move while tracking the elbow

flexion well but not the shoulder elevation.

 Changing the Actuator Constraints 33

4.4 Changing the Actuator Constraints

1. Change Actuator Constraint. Edit the constraints file (e.g.,

arm26_ControlConstraints.xml) or use the Excitation Editor to limit BIClong

control to a maximum of 0.05.

2. Specify Actuator Constraints. Browse and select the new constraints file (e.g.,

arm26_ControlConstraints.xml) or save new constraint from the Excitation Editor.

3. Run CMC Tool. You will see the model begin to move by using other actuators in

lieu of BIClong.

4.5 Changing the CMC Look-Ahead Window

1. Change CMC Look-Ahead Window. Set the look-ahead time to 0.5 rather than

0.01.

2. Run CMC Tool. You will see the model begin to move, but the control will be too

coarse to allow for good tracking.

