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Free energy: The view from pharma...

¢ Pharmaceutical research would love to have a
fast accurate and reliable free energy tool.

e Usually the old engineering joke is fast
accurate reliable, cheap, pick two...

e For free energy you get to pick one. If you are
lucky.

e They’ve heard it all before. They live in the ‘real
world’ apparently.

OH NO! NOT THE

REAL WORLD!! \)
§V4 W, 4

& @

y
(




Ocker:
Software for discovery of inhibitors of protein-protein

ocker (slang)
noun

1. An oafish uncultured Australian man.
Form: Ocker (often)

ad|

1. Typical of an ocker; boorish; uncultured.

Etymology: 1970s: a form of the name Oscar, the name of a TV
character.

Other. a name for a computational drug design program that was

initially thought to be a clever play on DOCK, but seems less
amusing now.

iy

Wwww.Ssimtk.org/ocker
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Yank: Ligand binding free energy
calculations in implicit solvent

Description Yank isa
new code for estimating :
free energies of ligand §
binding using free i
energy perturbation and §
implicit solvent models, l
utilizing the OpenMM :
GPU-accelerated i

dynamics toolkit. While 558 SR, g ) John Chodera
not as accurate as e ' 57 Contact
explicit solvent % g

simulations, the myriad £ 8
of advantages offered
by implicit solvent
(including constant pH
treatments) and speed

advantages offered by Vijay Pande
GPU acceleration are Contact

expected to provide
significant utility for
medicinal chemists.

Purpose/Synopsis
Provide a computational
tool for rapidly estimating protein-ligand binding free energies
using implicit solvent models Kim Branson
Contact

Audience Molecular modelers interested in virtual screening
methods for identification of small molecule ligands of
biomolecules

Long Term Goals and Related Uses Provide a computational
tool for rapidly estimating protein-ligand binding free energies Imran Haque
using implicit solvent models Contact
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The drug development cycle

e |dentify the therapeutic target
e Find from (biopiracy, patents, screening [uHTS, virtual], academia) a lead compound.

e Develop lead compound to have appropriate potency for the target, selectivity, and
pharmacokinetic and metabolic profiles

e |deally its a short synthesis with no stereo centres, and has a single crystal allomorph.

e Formulate and hand it over to the crack team of cheerleaders and bribery experts we
call pharmaceutical sales.... *

* except at vertex, because we are ethical..



So where would we use free energy ?

selectivity /

DPMK formulation

potency

e (Of the hundreds of derivatives | could make, which one should | make? Ranking congeneric series is very hard

e Should | put a stereocenter in? will this give me selectivity?

e Can | lock in a tautomeric state? Will this help me? Is this a bio-isostere?

e How can | make a change to avoid a metabolic liability and not loose potency?

e What are the most stable crystal forms for this molecule?

What is the solubility of the molecule from each crystal form?



This free energy you speak of, is it fast ?

e No. Not currently.

e Yeah we tried that ages ago, took a long time and didn’t work
e “I’'m never writing AMBER inputs again.”

e But | can just do the experiment and have the ‘right answer”.

e Takes too long. | get paid to make molecules!

In short: We need to turn around an accurate
free energy calculation in a day.



The aim of YANK:
Fast, accurate binding free energies in a day.

e At Vertex we deploy tools in two forms. “EZ” such as “EZDock” or “EZSim”

e This allows chemist to perform their own calculations. “Professional” modelers use more
detailed tools for project specific support.

e |f we can do a compound a day on a GPU, we can easily scale this up by using more GPU’s/
compound.

e Having an actual energy function that is fast and works would allow alot of useful
modeling that we currently don’t do.. (Computational fragment screening, maybe making
docking work better than ligand based methods)

e Chemists might start with the most soluble lead, rather than the most potent one if they
were confident they could easily build in potency. ( They always use the most potent one,
because its hard to say to your manager, “we’ve got great ADME/Tox we just need to work
on the potency....”)



Binding affinities can be (in)directly measured by experiment
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(Note that some reactions have no measurable change in heat, and are not measurable by ITC.)
Velazquez-Campoy A, Kiso Y, and Friere E. Arch. Biochem. Biophys. 390:169, 2001.



Binding affinities can be directly computed through
equivalent alchemical thermodynamic cycles

Relative free energies of binding Absolute free energies of binding
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Alchemical intermediates can facilitate convergence

Error increases rapidly with diminishing phase space overlap

'ms error
(@)

separation

Instead, introduce intermediate states to ensure a contiguous chain of good overlap
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D. Wu and D. A. Kofke. "Phase-space overlap measures. |. Fail-safe bias detection...", J. Chem. Phys. 123: 054103 (2005).



Absolute alchemical free energy calculations involve
simulations at multiple thermodynamic states

Alchemical transformation progresses through a number of intermediates
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Free energy differences for each step are estimated from equilibrium simulations of intermediates

electrostatic annihilation qi — )\elec * (i (for ligand charges) e
; tJ . — 21"4¢.. l —_— !
Lennard-Jones decoupling Ui (r';2) =4 4"’([(!1_,(1—A)2+(r,-,/a,,)"]’ o (1=7)F (r‘}/%)é)

(for ligand-environment interactions)

Each simulation must sample from equilibrium!

Graphics from David Mobley



Restraints are used to aid convergence

Without restraining ligand in binding pocket, would need to sample
entire simulation box at each discharging/decoupling intermediate

®
/\/\/ \_‘ ’ Z s 2 %
o gt
Choice of atoms to restrain is arbitrary in principle, 0N
minor practical differences among choices O )
P(rotein) L(igand)

Absolute Binding Free Energies: A Quantitative Approach for Their Calculation
Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M.
J. Phys. Chem. B.; (Article); 2003; 107(35); 9535-9551. DOI: 10.1021/jp0217839
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Free energy differences can be estimated in several ways

Tl (thermodynamic integration)

A
2 OH AN [ /oH OH
o= [ (G, 25 (&), (o)
N ox/v 2 |[\Nox/, "\or/,,

quadrature error difficult to quantify

l

EXP (exponential reweighting)

AF = —3711n <e_B(U2_U1)>/\ = +8 'In <e_B(Ul_U2)>>\

Zwanzig RW. JCP 22:1420, 1954.
Shirts MR and Pande VS. JCP 122:144107, 2005.

suffers from large bias and variance

BAR (Bennett acceptance ratio)

(f(Uz = Uh)),,

AR =0 I e T exp =B, = Ul s,

Bennett CH. J Comput Phys 22:245, 1976.
Shirts MR, Bair E, Hooker G, and Pande VS. PRL 91:140601, 2003.

only applicable to two states
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[+ Michael R. Shirts]
Python implementation of MBAR available now at
http://simtk.org/home/pymbar

John Chodera |

CCOEEEDCD | News || iogout
B  (Create Project

:Search Simtk.org

YyMBAR: A Python implementation of the
multistate Bennett acceptance ratio

Update
Statistics
Geography of use
Team A Python Project
implementation of the Lead
Downloads multistate Bennett
acceptance ratio
Documents (MBAR) method for
X N estimation of
Publications expectations and free
energy differences
News (and their statistical M
d ed uncertainties) from Lontact
Advanc multiple equilibrium
simulations at
. different
Pro;t_zc!: thermodynamic
Administrator states.
John Chodera . - . . . :
Contact Purpose Analyze data from multiple equilibrium simulations at Michael Shirts
different thermodynamic states Contact
Michael Shirts
Contact Audience Computational chemists and statistical physicists Principal
. . , Downloads
Long Term Goals and Related Uses This project provides a MBAR
Python reference implementation of the multistate Bennett ‘S—Yma

—

https://simtk.org/home/pymbar

acceptance ratio (MBAR) method for the analysis of multiple
equilibrium simulations at different thermodynamic states

pymbar-examples
0.91 beta

See All Downloads
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Checklist of potential concerns in binding calculations

Protein conformation
Which conformation is most likely? >
Conformational change upon binding
Multiple conformations contributing to binding
//o
Post-translational modifications ——( ) )
Phosphorylation, glycosylation, acylation, alkylation <|) 0—0%

Protein protonation state

Appropriate choice of protonation state

NH NH
Change in protonation state upon binding Ha __ Ho —

Mixture of protonation states relevant to binding N N

Ligand protonation/tautomeric state

Appropriate choice of protonation/tautomeric state
Change in protonation/tautomeric state upon binding
Mixture of protonation/tautomeric states relevant to binding

Salt environment

Salt required for function N | M |
Appropriate salt parameters a > g 2

Other cosalts, cosolvents, and chelators




Checklist of potential concerns in binding calculations

Ligand parameter assignment

Anecdotal reports of Antechamber issues

Protein forcefield choice

parm96 deprecated; parm03 unvalidated for free energies

modified amino acid parameters

Don’t have time to rederive appropriate
Only found parameters for parm99

cofactors or other peptides bound?

Simulation timescales

Can we converge estimates for even a single conformation state?

ANTECHAMBER & GAFF

http://amber.scripps.edu/antechamber/

ffAMBER
ffamber96, ffamber99sh, ffamber03
http://chemistry.csulb.edu/ffamber/

AMBER parameter database
http://www.pharmacy.manchester.ac.uk/bryce/amber

Image by Leo Reynolds
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T4 lysozyme L99A:
A model binding site for small hydrophobic ligands

Class I - "Isophobic" Ligands

20T R RO0K

Ethyl p-, m-, o-Xylene

P - m-. O-
benzene rapyl  p-, m-, o-Ethyltoluene

benzene

Class II - "Isosteric" Ligands

Cl> NH PS8!
4 Jo Clo
: 0 3
Indene Indole Benzofuran Thianaphthene

Class III - Phenylalkanes

Benzene Toluene  Ethyl- Propyl-  Butyl- iso-Butylbenzene

Wei, Baase, Weaver, Matthews, and Shoichet. JMB 322:339, 2002.



T4 lysozyme L99A:
A model binding site for small hydrophobic ligands

Class 1 - "Isophobic" Ligands
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Class II - "Isosteric” Ligands
Indole phth

Class III - Phenylalkan
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Can we quantitatively predict binding affinity of known ligands?

Wei, Baase, Weaver, Matthews, and Shoichet. JMB 322:339, 2002.



Multiple protein and ligand conformations and
conformational changes can contribute to binding

Difference in affinity between different bound orientations is only ~1 kT

Mobley, Chodera, and Dill. JCP 125:084902, 2006.



Multiple protein and ligand conformations and
conformational changes can contribute to binding

V@I1 11 sidechain X1 in apo structure
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Dihedral angle (degrees ) p-xylene vs. benzene bound to T4 lysozyme L99A

Mobley, Chodera, and Dill. JCTC 3:1231, 2007.



Multiple protein and ligand conformations and
conformational changes can contribute to binding

V:aH 11 sidechain X1 in apo structure

AGconﬁne:O 01

PMF (kcal/mol)

binding free energy
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p-xylene vs. benzene bound to T4 lysozyme L99A

-3.0 kecal/mol

Mobley, Chodera, and Dill. JCTC 3:1231, 2007.



Multiple protein and ligand conformations and
conformational changes can contribute to binding

V:aH 11 sidechain X1 in apo structure
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p-xylene vs. benzene bound to T4 lysozyme L99A

binding free energy -7.3 kcal/mol -3.0 kcal/mol
confinement free energy 4.2 kcal/mol 0.0 kcal/mol
net -3.1 kcal/mol -3.0 kcal/mol
release -0.3 kcal/mol -0.6 kcal/mol

total binding free energy -3.4+-0.3 = -3.0+-0.3

Mobley, Chodera, and Dill. JCTC 3:1231, 2007.



How accurately can we reproduce known binding affinities?

Retrospective test on known, neutral small-
molecule ligands of T4 lysozyme L99A

only apo structure was used

"
4

model binding site in T4 lysozyme L99A

Ligand AGEp. AGCye., AGCye, = AGp,
kcal /mol kcal /mol kcal /mol
2,3-benzofuran —5.46 £ 0.03 | —3.53 = 0.06 1.93 £ 0.07
benzene —5.19+0.16 | —4.56 £ 0.20 0.63 £ 0.26
ethylbenzene —5.76 £0.07 | —6.36 = 0.18 —0.60 £ 0.19
indene —5.13£0.01 | —1.75£0.07 3.38 £0.07
indole —4.89 +0.06 | —0.42 +0.08 4.47+0.10
isobutylbenzene —6.51 +0.06 | —5.01 =0.20 1.50 £0.21
n-butylbenzene —6.70 £0.02 | —4.87£0.14 1.83+£0.14
n-propylbenzene —6.55+£0.02 | —5.88 £0.11 0.67 +0.12
o-xylene —4.60 £ 0.06 | —1.27 = 0.18 3.33£0.19
p-xylene —4.67+0.06 | —3.54 =0.17 1.13+0.18
toluene —5.52+0.06 | —4.58 =0.12 0.94 +£0.14
phenol > —2.74 —1.26 £ 0.09 N/A
2-fluorobenzaldehyde > —2.74 —2.92+0.14 N/A
RMS error: 2.24
Correlation, R: 0.72

Mobley, Graves, Chodera, McReynolds, Shoichet, and Dill. JMB 371:1118, 2007.




How accurately can we predict binding affinities?

Ligand DOCK Score | Prediction? AG° % | AT, | Experiment AG,
(kcal/mol) (kcal/mol) | (°C) (kcal/mol)
1,2-dichlorobenzene -19.99 Binder | —5.66 £0.15 | 2.90 Binder -6.37
n-methylaniline -17.29 Binder | —5.37 £0.11 | 1.00 Binder -4.70
1-methylpyrrole -15.27 Binder | —4.32 £0.08 | 2.20 Binder -4.44
1,2-benzenedithiol -18.51 Binder | —2.79 £0.13 | 2.50 Binder N.D.
thieno-[2,3-c|pyridine -18.81 | Nonbinder | —2.56 £ 0.07 | -0.40 | Nonbinder N.D.

prediction accuracy ~ 0.5 kcal/mol

Mobley, Graves, Chodera, McReynolds, Shoichet, and Dill. JMB 371:1118, 2007.



How far are we toward targets relevant to pharma?

hydration free energies
of small neutral molecules

1.23+0.01 kcal/mol [502]
(Mobley et al., 2008)

1.330.05 kcal/mol [17]

(Nicholls and Mobley et al., J Med Chem)

small apolar ligands
T4 lysozyme L99A

1.89+0.04 kcal/mol [13]
(Mobley and Graves et al., JMB 2007)

0.6+0.2 kcal/mol [3]
(Mobley and Graves et al., JMB 2007)

retrospective RMS error [sample size]
prospective RMS error [sample size]

polar ligands
FKBP12

1.42 kcal/mol [9]
0.94 kcal/mol [7]

(Shirts et al., in preparation)

(not to scale)

JNK3 kinase



Specific goals for YANK

Accelerate free energy calculations on commodity GPUs using OpenMM
The other extreme is Anton: an expensive, special-purpose machine for MD.

Test how accurate implicit solvent models are for ligand-binding free energy calculations
Largely unknown, only ~2 papers: Essex J Med Chem 49:7427, 2006; Roux Proteins 74:996, 2009.

Determine how critical statistical mechanics is for “rescoring” docked poses
Many rescoring methods use GB models, but all focus on energies of minimized conformations

Make free energy calculations both more realistic and more “idiot-proof”
Automatic sampling of protonation states, tautomers, salt concentrations

Provide a testbed for enhanced sampling algorithms that mix Monte Carlo and MD
Mix in efficient Monte Carlo moves; exploit Markov chain Monte Carlo algorithms

Build a tool for pharma and academia that fills a special “niche” between dock/rescore and FEP
Aim to replace unreliable, deficient methods like GB rescoring, MM-PBSA, MD



Alchemical free energy calculations have stricter
requirements than “typical” MD applications

“My simulations is fine as long as gromacs didn’t segfault [too many times]” is not sufficient.

Free energies often exquisitely sensitive to details that seem “unimportant” in straightforward MD:
e.g. choice of PME parameters, long-range dispersion corrections, polarization convergence tol

What we need from OpenMM:

Correct equilibrium must be sampled in order for relationships used in estimating free energy
differences (e.g. BAR) to provide a meaningful estimate:

forces must be accurate derivatives of potential

integrator and thermostats must generate correct ensemble

Potential energy differences between alchemical states must be computed precisely
e.g. early versions of gromacs used single-precision accumulators for PME energy



Milestone 1 : Feasibility
Does OpenMM provide sufficient speed and accuracy?

Implement AMBER crd/prmtop reader
Test energy conservation and timing for a “real system” where only change is GB model

T4 lysozyme L99A + 1-methylpyrrole [2616 atoms]
AMBER parm96 / GAFF + AM1-BCC charges

same system treated by Mobley et al.

except OBC GBSA instead of explicit solvent

also, test on more realistic systems:
- trypsin inhibitors [charged ligands]
- CDK2 kinase [real target]

Conditional pass

Erroneous force computation on NVIDIA GeForce 9600M GT and GeForce GT 120,
despite passing all CUDA and OpenMM tests. Only obvious with force calculations or constant-energy
simulations; wouldn’t notice a problem with NVT simulations until your protein started to unfold!

NVIDIA GeForce GTX 285 gives correct forces and stable NVE dynamics with ~ 32 ns/day performance
Compare to Intel Core 2 Duo 2.4 GHz with single-core performance ~ 36 ps/day!



Milestone 2 : Accuracy of GBSA models
How much additional error is introduced by use of GBSA?

Repeat same free energy calculations as Mobley at al. for T4 lysozyme and other systems

Determine how much GBSA model degrades performance
Just need code fast enough for comparison to be feasible -- optimize later.

scale charges and GB intrinsic radii:

qi — (1 — )\elec) " {;
U’GB — (1 — )\elec) ' UGB

1 1

no soft-core support, so scale LJ radii and well depth:
o, — (1= Apy) - oy

e = (1—=Apy) €

Basic algorithm for free energy calculations:

for each alchemical state k = 1:K

for each iteration n = 1:N
integrate T steps of dynamics with thermostat

for each alchemical state 1 = 1:L
compute potential energy of current configuration at state 1 and store it

reprocess all data with MBAR



Replica-exchange can reduce correlation times and provides
a “built-in” convergence estimate

A > i A
MC state :
MD or MC i |change attempt: L
> : A A .
p(x|k) | PLkx) X (one replica)

one iteration

Original algorithm:

for each alchemical state k = 1:K
for each iteration n = 1:N
integrate T steps of dynamics with thermostat
for each alchemical state 1 = 1:L
compute potential energy of current configuration at state 1 and store it
reprocess all data with MBAR

New algorithm:
for each iteration n = 1:N
for each k = 1:K

mix states among replicas (Gibbs sampling)
integrate T steps of dynamics with thermostat
for each alchemical state 1 = 1:L
compute potential energy of current configuration at state 1 and store it
reprocess all data with MBAR

If each replica initialized from a different conformation (e.g. docked pose, receptor model), we have
a “built-in” convergence check: Calculation is only converged after estimates of binding affinity
from all replicas agree within statistical error.



Milestone 3 : Critical efficiency / usability improvements

Soft-core Lennard-Jones interactions critical to reducing variance in estimated free energies in
explicit solvent calculations; likely important for implicit as well.

K4 SC

0.07 0.07
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0.05 " | | 0.0
HIE: | |
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0 | \ \
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potential energy (kJ/mol)

Steinbrecher T, Mobley DL, and Case DA. JCP 127:214108, 2007.
Pitera JW and van Gunsteren WF. Mol. Sim. 28:45, 2002.

Could potentially be implemented with lookup tables, which also allows “fused” intermediates
[e.g. Beutler and van Gunsteren JCP 101:1417, 1994].

GPU-accelerated energy calculations to reduce bottleneck
Kai is near nearly finished with these

Automatic ligand parameterization / system setup scripts
Switch to Python codebase
Critical for programmer efficiency; sanity
Will require near-complete exposure of OpenMM API
Helping out Randy with pyOpenMM: https://simtk.org/home/pyopenmm
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Milestone 4 : Treating realistic systems, making calculations
“Idiot-proof”, enhancing sampling

Constant-pH simulations
Easily implemented in GB via simple Monte Carlo moves where proton parameters are modified.
[Mongan et al. J Comput Chem 25:2038, 2004.]

Debye-Hiickel screening for monovalent counterions
Already incorporated into AMBER GB models [Srinivasan et al. Theor. Chem. Acc. 101:426, 1999]

Monte Carlo sampling of tautomers
If aqueous tautomer ratios are known or can be predicted, MC moves allow switches between

Semi-grand-canonical sampling of divalent (or all explicit) counterions?
Easily implemented in MCMC framework

Efficient torsion MC moves for sampling sidechain conformational changes
e.g. “smart-darting MC”, with move set of rotamer displacements [JCP 114:6994, 2001]

All of these methods simply are different MC moves that “plug in” to the same MCMC framework.



Milestone 5 and beyond

Integrated setup pipeline
There’s no reason we can’t incorporate the entire MODELLER + MCCE pipeline we use to
build in missing residues and heavy atoms and select protonation states.

Markov state models
One way to overcome slow conformational dynamics of proteins: Divide-and-conquer
Related to concepts of “conformational selection”

Expanded-ensemble methods for sampling over huge libraries of compounds
Find the best binders in a combinatorially-constructed library

Enhanced sampling methods such as NML
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Code and data available at http://www.choderalab.org
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The standard state for binding free energies

Association constant is not unitless:

_[PL] e FACa
Re =PI ~ (D

Free energy of binding is defined with respect to a reference state
Standard reference state is 1M ligand (1 ligand / 1660 A3)

Q

Luckily, if you use Boresch’s ligand restraints to aid convergence,
he has already computed the free energy correction for you!
AA\B\[ —

200 (KK, K, K, K, K,)'"*
—kT In - 87T V{ )4 Pn P @
“sin @, sin 6, (27kT)’

aAD

l’{mtmn)

Absolute Binding Free Energies: A Quantitative Approach for Their Calculation
Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M.
J. Phys. Chem. B.; (Article); 2003; 107(35); 9535-9551. DOI: 10.1021/jp0217839

L(igand)


http://dx.doi.org/10.1021/jp0217839
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Anisotropic long-range dispersion correction

Simulations in solvent must be run with long-range dispersion correction to ensure results are
not sensitive to choice of cutoff.

; Apply long range dispersion corrections for Energy and Pressure =
DispCorr = AllEnerPres

This correction assumes isotropic distribution of Lennard-Jones sites throughout system.

.........
3 .,

L0
isotropic assumption holds isotropic assumption fails
isotropic assumption holds
Instead, we have to enlarge cutoff so that isotropic assumption holds P+l SO, PL 254
An explicit postprocessing step recomputes energies with large cutoff I T
and estimates perturbation free energies using EXP. AG_«
P+L__—5 PL 94

Can make a difference of 3 kcal/mol, depending on number of ligand atoms

M. R. Shirts*, D. L. Mobley*, J. D. Chodera, and V. S. Pande. "Accurate and efficient corrections for missing dispersion interactions in molecular simulations", J. Phys. Chem. B
111:13052-13063 (2007).



