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Free energy: The view from pharma...

• Pharmaceutical research would love to have a 
fast accurate and reliable free energy tool. 

• Usually the old engineering joke is fast 
accurate reliable, cheap, pick two...

• For free energy you get to pick one. If you are 
lucky. 

• They’ve heard it all before. They live in the ‘real 
world’ apparently. 



Ocker:  
Software for discovery of inhibitors of protein-protein 

ocker (slang)
noun

      1. An oafish uncultured Australian man.
            Form: Ocker (often)

adj

      1. Typical of an ocker; boorish; uncultured.

Etymology: 1970s: a form of the name Oscar, the name of a TV 
character.

Other: a name for a computational drug design program that was 
initially thought to be a clever play on DOCK, but seems less 
amusing now. 

www.simtk.org/ocker

http://www.simtk.org/ocker
http://www.simtk.org/ocker




The drug development cycle

• Identify the therapeutic target

• Find from (biopiracy, patents, screening [uHTS, virtual], academia) a lead compound. 

• Develop lead compound to have appropriate potency for the target, selectivity, and 
pharmacokinetic and metabolic profiles

• Ideally its a short synthesis with no stereo centres, and has a single crystal allomorph. 

• Formulate and hand it over to the crack team of cheerleaders and bribery experts we 
call pharmaceutical sales.... *

* except at vertex, because we are ethical..



So where would we use free energy ?

• Of the hundreds of derivatives I could make, which one should I make?  Ranking congeneric series is very hard

• Should I put a stereocenter in? will this give me selectivity?  

• Can I lock in a tautomeric state? Will this help me? Is this a bio-isostere? 

• How can I make a change to avoid a metabolic liability and not loose potency?

• What are the most stable crystal forms for this molecule?

• What is the solubility of the molecule from each crystal form? 

potency
selectivity / 

DPMK
formulation



This free energy you speak of, is it fast ? 

• No. Not currently.

• Yeah we tried that ages ago, took a long time and didn’t work

• “I’m never writing AMBER inputs again.”

• But I can just do the experiment and have the ‘right answer”.

• Takes too long. I get paid to make molecules!

In short: We need to turn around an accurate 
free energy calculation in a day. 



The aim of YANK: 
Fast, accurate binding free energies in a day. 

• At Vertex we deploy tools in two forms. “EZ” such as “EZDock” or “EZSim”

• This allows chemist to perform their own calculations. “Professional” modelers use more 
detailed tools for project specific support. 

• If we can do a compound a day on a GPU, we can easily scale this up by using more GPU’s/
compound.

• Having an actual energy function that is fast and  works would allow alot of useful 
modeling that we currently don’t do..  (Computational fragment screening, maybe making 
docking work better than ligand based methods)

• Chemists might start with the most soluble lead, rather than the most potent one if they 
were confident they could easily build in potency. ( They always use the most potent one, 
because its hard to say to your manager, “we’ve got great ADME/Tox we just need to work 
on the potency....”)
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[acetyl pepstatin] = 200 uM
19 injections @ 10 uL/injection

[HIV-1 PR] = 20 uM in 1.4 mL
(0.6 mg/cell)

∆G = −9.8 kcal/mol

∆H = 7.3 kcal/mol

Binding affinities can be (in)directly measured by experiment

T∆S = 17.2 kcal/mol

(Note that some reactions have no measurable change in heat, and are not measurable by ITC.)

“enthalpogram”

raw data

Simultaneously provides estimates of both ΔG and ΔH (and hence TΔS).

Velazquez-Campoy A, Kiso Y, and Friere E. Arch. Biochem. Biophys. 390:169, 2001.



Binding affinities can be directly computed through 
equivalent alchemical thermodynamic cycles

Absolute free energies of bindingRelative free energies of binding

∆Gbind PLP + L

PøP + ø

∆G1

∆G2

∆Gb
∆Ga

∆∆G = ∆Ga − ∆Gb
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PL2P+L2



Zn =

∫
dx e

−βU(x)

Alchemical intermediates can facilitate convergence

Z =

∫
e−βH(x)dx (1)

∆F = −β−1 ln Z (2)
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1

D. Wu and D. A. Kofke. "Phase-space overlap measures. I. Fail-safe bias detection...", J. Chem. Phys. 123: 054103 (2005).

Error increases rapidly with diminishing phase space overlap

Instead, introduce intermediate states to ensure a contiguous chain of good overlap

0 1 2 3 4 5 6
10

!2

10
!1

10
0

10
1

10
2

separation
rm

s
 e

rr
o

r
0 1 2 3 4



qi → λelec · qi

Absolute alchemical free energy calculations involve 
simulations at multiple thermodynamic states

Alchemical transformation progresses through a number of intermediates

Graphics from David Mobley

8 simulations 16 simulations

5 simulations 8 simulations 16 simulations

Free energy differences for each step are estimated from equilibrium simulations of intermediates

Each simulation must sample from equilibrium!

electrostatic annihilation (for ligand charges)

Lennard-Jones decoupling

(for ligand-environment interactions)



Restraints are used to aid convergence

Without restraining ligand in binding pocket, would need to sample
entire simulation box at each discharging/decoupling intermediate

Absolute Binding Free Energies: A Quantitative Approach for Their Calculation 
Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M.
J. Phys. Chem. B.; (Article); 2003; 107(35); 9535-9551.  DOI: 10.1021/jp0217839

Choice of atoms to restrain is arbitrary in principle,
minor practical differences among choices

http://dx.doi.org/10.1021/jp0217839
http://dx.doi.org/10.1021/jp0217839
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Free energy differences can be estimated in several ways
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TI (thermodynamic integration)

EXP (exponential reweighting)

BAR (Bennett acceptance ratio)

quadrature error difficult to quantify

suffers from large bias and variance

Bennett CH. J Comput Phys 22:245, 1976.
Shirts MR, Bair E, Hooker G, and Pande VS. PRL 91:140601, 2003.

Zwanzig RW. JCP 22:1420, 1954.
Shirts MR and Pande VS. JCP 122:144107, 2005.

only applicable to two states



Python implementation of MBAR available now at
http://simtk.org/home/pymbar

https://simtk.org/home/pymbar

[+ Michael R. Shirts]

http://simtk.org/home/pymbar
http://simtk.org/home/pymbar
https://simtk.org/home/pymbar
https://simtk.org/home/pymbar


Checklist of potential concerns in binding calculations
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Protein conformation
Which conformation is most likely?
Conformational change upon binding
Multiple conformations contributing to binding

Post-translational modifications
Phosphorylation, glycosylation, acylation, alkylation

Protein protonation state
Appropriate choice of protonation state
Change in protonation state upon binding
Mixture of protonation states relevant to binding

Ligand protonation/tautomeric state
Appropriate choice of protonation/tautomeric state
Change in protonation/tautomeric state upon binding
Mixture of protonation/tautomeric states relevant to binding

Salt environment
Salt required for function
Appropriate salt parameters
Other cosalts, cosolvents, and chelators



http://amber.scripps.edu/antechamber/

ffAMBER

http://chemistry.csulb.edu/ffamber/

http://www.pharmacy.manchester.ac.uk/bryce/amber
AMBER parameter database

Checklist of potential concerns in binding calculations

Image by Leo Reynolds

Ligand parameter assignment
Anecdotal reports of Antechamber issues

Protein forcefield choice
parm96 deprecated; parm03 unvalidated for free energies

modified amino acid parameters
Don’t have time to rederive appropriate 
Only found parameters for parm99

Simulation timescales
Can we converge estimates for even a single conformation state?

cofactors or other peptides bound?

ffamber96, ffamber99sb, ffamber03

http://amber.scripps.edu/antechamber/
http://amber.scripps.edu/antechamber/
http://chemistry.csulb.edu/ffamber/
http://chemistry.csulb.edu/ffamber/
http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber


of complementarity remains a major challenge in
molecular docking and has been subject to intense
investigation (recently reviewed by Gohlke &
Klebe1). With adequate sampling, an ideal scoring
function should correctly rank a large set of dis-
similar molecules and predict the correct modes
of binding. Unfortunately, genuinely adequate
sampling, as for instance might be available
through thermodynamic integration, free energy
perturbation and related methods,2–5 would be
much too slow to be used in docking screens
of compound databases that can include over a
quarter of a million molecules. Investigators have
thus turned to faster, less accurate scoring func-
tions for docking screens. Encouragingly, several
of these have been used to predict novel ligands.6–12

As important as these successes are, they are not
thought to represent a general solution to the
scoring problem in molecular docking, which con-
tinues to be plagued by false negatives and
false positives. There remains much interest in
developing better scoring functions.

In developing new scoring functions, the field is
confronted with the problem of testing the effect
of a new method. Typically, new scoring functions

are evaluated for their ability to reproduce known
ligand-binding patterns for well-studied receptors.
This can take the form of determining if the
known ligands are ranked favorably in a screen of
a database that contains mostly decoys, or testing
if the experimental geometries of ligand–receptor
complexes are reproduced. Recently, several
investigators have compiled databases containing
thermodynamic data of binding and, in some
cases, structural information of ligand–receptor
complexes to facilitate this effort.13,14 Such studies
are certainly useful for testing the reliability of
existing scoring functions as well as designing
and parameterizing new ones. However, because
of the entanglement of various energetic contri-
butions in ligand–receptor binding (e.g. desol-
vation of the ligand and the binding site, and
conformational accommodation on binding),
isolating the effect of particular changes in
scoring functions can be difficult on the basis of
retrospective analysis alone. It would be useful to
have model systems that allow one to experi-
mentally test prospective predictions from new
docking algorithms. Ideally, such a model system
would be simple enough to allow one to isolate
the modification introduced in the new scoring
function from other aspects of the docking
calculation.

Here we use a cavity created in the core of T4
lysozyme as a prototype model binding site to test
a modification to a docking scoring function. This
cavity site was created by substituting Leu99 with
Ala (L99A) in the core of the enzyme.15 It is com-
pletely buried from solvent, small (volume about
150 Å3), uniformly hydrophobic, and contains no
ordered water molecules; it comes close to being a
naked binding site16 (Figure 1). Binding has been
shown for 57 mostly apolar small molecules16,17

(listed in Supplementary Material); X-ray crystal
structures have been determined for nine of these
molecules in complex with this site. In contrast,
some polar isosteres of the known ligands are not
found to bind to the cavity site. For instance,
although toluene binds to L99A with a Ka value of
9.8 £ 103 M21, phenol and aniline are not observed
to bind. Thus, although the L99A site is simple, its
ligand preferences nevertheless capture the subtle-
ties found in more complicated systems. This is a
requirement for a model system. Experimentally,
L99A is very accessible. Acquiring new possible
ligands, most of which are expected to be com-
mercially available, determining their binding
energies, and determining the structures of their
complexes with L99A, are all relatively straight-
forward. These features make testing predictions
for L99A practical, which is also important for a
model system.

We use this cavity site to investigate the effect
of different ligand partial atomic charges and
solvation energies on docking calculations. The
docking scoring function we use includes electro-
static and van der Waals interaction energies,
and is corrected for ligand desolvation energies

Figure 1. (a) The molecular surface (yellow) of the
cavity in T4 lysozyme mutant L99A. Carbon atoms are
in gray, oxygen atoms in red, nitrogen atoms in
blue and sulfur atoms in yellow. For clarity, only the
protein atoms that surround the cavity are shown.
(b) A cut-away view of the cavity reveals the bound
benzene (PDB entry 181L). Residue Met102 is labeled.
All molecular graphics were rendered with NEON in
Midas-Plus;65 all molecular surfaces were calculated
with MS.66

340 A Model Binding Site for Molecular Docking

Energetics of Ligand Binding in a Nonpolar Cavity 
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FIGURE 2: Three classes of ligands used for analysis of cavity 
binding. For reference, one ligand from each class is shown with 
atom labels. Substituent atoms are labeled a, p, etc. by analogy 
with protein side chains. 
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FIGURE 3: Representative titration profile for isobutylbenzene (-0.1 
mM) titrated with L99A (4 mM) in 50 mM sodium acetate, pH 
5.5. The offset upper trace shows L99A titrated into buffer without 
ligand. Injections of 10 p L  of the protein solution were made every 
2.5 min into the 1.4 mL reaction cell. After subtraction of blank 
runs, titrations were fit as described under Experimental Procedures 
to obtain the data in Table 2. 

includes structural isomers of ethylbenzene and propylben- 

zene. These isomers have transfer free energies similar to 

their respective parents and were chosen to probe various 
regions of the cavity wall for possible differences in steric 

constraints in the presence of equivalent hydrophobic effects. 
Class 11, the "isosterics", contains four isosteric molecules 

of varying hydrophobicity. Because these molecules are 
expected to have similar steric interactions with the cavity, 

they should, in principle, allow a direct analysis of the 

hydrophobic contribution to the binding energy. Class I11 

is comprised of monosubstituted alkylbenzenes of increasing 

side-chain length. These were chosen to assess the relation 
between ligand size and binding energy in a manner similar 

to the protein mutagenesis studies of the type Gly - Ala - 
Val - Leu, etc. 

Titration calorimetry was used to determine quantitative 

association constants at 29 "C for the binding to L99A of 
the ligands described above. A representative titration is 
shown in Figure 3. The binding energetics are presented in 
Table 2.  Dissociation constants for the various ligands range 

from 14 to 500 ,uM, comparable to many enzyme-substrate 

Biochemistry, Vol. 34, No. 27,1995 8567 

Table 2: Calorimetric Analysis of Ligand BindingY 

K, x 10-3 -AH -RT In K, 
ligand (M-') (kcal/mol) (kcal/mol) 

benzene 5.7 iz 1.7 6.32 f 0.37 -5.19 f 0.16 
ethylbenzene 14.8 & 1.7 6.76 f 0.87 -5.76 f 0.07 
o-xylene 2.13 f 0.22 8.45 f 0.96 -4.6 f 0.06 
m-x ylene 2.75 f 0.8 6.04 f 0.03 -4.75 f 0.15 
p-x ylene 2.37 f 0.25 6.97 iz 0.98 -4.61 & 0.06 
propylbenzene 55.2 f 2.0 9.97 f 0.05 -6.55 f 0.02 
2-ethyltoluene 1.98 f 0.20 7.71 iz 0.74 -4.56 f 0.06 
3-ethyltoluene 5.05 f 0.15 7.84 f 0.02 -5.12 & 0.02 
4-ethyltoluene 8.33 f 0.08 8.44 0.03 -5.42 & 0.01 
benzofuran 8.9 f 0.5 8.04 f 0.44 -5.46 f 0.03 
indene 5.17 & 0.09 8.31 f 0.48 -5.13 f 0.01 
indole 3.45 f 0.38 11.23 i 0.94 -4.89 k 0.06 
thianaphthene 13.6 iz 1.2 7.03 f 0.04 -5.71 f 0.05 
toluene 9.8 f 0.6 6.53 f 0.73 -5.52 f 0.04 
isobutylbenzene 51.0 iz 4.9 7.09 f 0.35 -6.51 f 0.06 
n-butylbenzene 69.8 & 2.9 8.06 f 0.98 -6.7 f 0.02 

~ ~ ~~ ____ 

K, is the association constant and AH the molar enthalpy of binding 
of the ligand to L99A lysozyme. Errors are given as the standard 
deviation of the mean calculated from multiple runs except in the cases 
of m-xylene, 2-ethyltoluene, propylbenzene, and thianaphthene, where 
the errors given are based on the goodness of the fit to the data. 

binding constants. For all ligands, the molar enthalpy of 

binding is large and negative, unlike the enthalpy of transfer 

of liquid hydrocarbons from water to the neat organic phase, 

which is typically very close to zero at room temperature 

(Gill et al., 1976). 

The observed binding energies of the ligands are compared 

with their free energies of transfer from water to vapor in 
Figure 4 and from water to octanol in Figure 5 .  Among the 

class I molecules, the xylenes and ethyltoluenes bind much 

more poorly than ethyl- and propylbenzene, respectively, and 

their binding free energies do not correlate well with transfer 
free energies (Figures 4a, 5a). Furthermore, there is no 

agreement between the binding free energies of the different 
structural isomers of ethylbenzene and those of propylben- 

zene. This indicates that the binding energetics of the class 
I molecules are strongly influenced by steric factors. 

The class I1 molecules show only a rough correlation 

between their binding and transfer free energy, despite their 

nearly identical shapes and sizes (Figures 4b, 5b). 

Among the class I11 molecules, binding becomes tighter 

as the side-chain becomes longer, up to a maximum of four 

carbons. This is in accord with the expectation that the 

hydrophobic effect provides a large contribution to binding 

free energy. Figure 5c shows the relation between binding 

energy and free energy of solvation as reflected in water- 

octanol partition coefficients (slope = 0.56; R = 0.97). 

Entropic Consequences of Binding. To directly compare 

the observed binding free energies with solvent-transfer free 

energies, we must account for those contributions to the 

binding free energy that arise from purely statistical sources 

and which differ between the binding and solvent-transfer 
processes. One such contribution arises from the entropic 

cost of constraining a ligand to occupy a single conformation 
in the binding site, relative to its translational, rotational, 

and intemal degrees of freedom in solution. In the present 

analysis, we assume that the ligands lose all rotational and 
translational freedom in the bound state and that their 

vibrational partition function does not change upon binding. 

For each such mode the cost of constraining the ligand is 
given by AG AA = -RT In q, where q is the partition 

T4 lysozyme L99A: 
A model binding site for small hydrophobic ligands

Wei, Baase, Weaver, Matthews, and Shoichet. JMB 322:339, 2002.



of complementarity remains a major challenge in
molecular docking and has been subject to intense
investigation (recently reviewed by Gohlke &
Klebe1). With adequate sampling, an ideal scoring
function should correctly rank a large set of dis-
similar molecules and predict the correct modes
of binding. Unfortunately, genuinely adequate
sampling, as for instance might be available
through thermodynamic integration, free energy
perturbation and related methods,2–5 would be
much too slow to be used in docking screens
of compound databases that can include over a
quarter of a million molecules. Investigators have
thus turned to faster, less accurate scoring func-
tions for docking screens. Encouragingly, several
of these have been used to predict novel ligands.6–12

As important as these successes are, they are not
thought to represent a general solution to the
scoring problem in molecular docking, which con-
tinues to be plagued by false negatives and
false positives. There remains much interest in
developing better scoring functions.

In developing new scoring functions, the field is
confronted with the problem of testing the effect
of a new method. Typically, new scoring functions

are evaluated for their ability to reproduce known
ligand-binding patterns for well-studied receptors.
This can take the form of determining if the
known ligands are ranked favorably in a screen of
a database that contains mostly decoys, or testing
if the experimental geometries of ligand–receptor
complexes are reproduced. Recently, several
investigators have compiled databases containing
thermodynamic data of binding and, in some
cases, structural information of ligand–receptor
complexes to facilitate this effort.13,14 Such studies
are certainly useful for testing the reliability of
existing scoring functions as well as designing
and parameterizing new ones. However, because
of the entanglement of various energetic contri-
butions in ligand–receptor binding (e.g. desol-
vation of the ligand and the binding site, and
conformational accommodation on binding),
isolating the effect of particular changes in
scoring functions can be difficult on the basis of
retrospective analysis alone. It would be useful to
have model systems that allow one to experi-
mentally test prospective predictions from new
docking algorithms. Ideally, such a model system
would be simple enough to allow one to isolate
the modification introduced in the new scoring
function from other aspects of the docking
calculation.

Here we use a cavity created in the core of T4
lysozyme as a prototype model binding site to test
a modification to a docking scoring function. This
cavity site was created by substituting Leu99 with
Ala (L99A) in the core of the enzyme.15 It is com-
pletely buried from solvent, small (volume about
150 Å3), uniformly hydrophobic, and contains no
ordered water molecules; it comes close to being a
naked binding site16 (Figure 1). Binding has been
shown for 57 mostly apolar small molecules16,17

(listed in Supplementary Material); X-ray crystal
structures have been determined for nine of these
molecules in complex with this site. In contrast,
some polar isosteres of the known ligands are not
found to bind to the cavity site. For instance,
although toluene binds to L99A with a Ka value of
9.8 £ 103 M21, phenol and aniline are not observed
to bind. Thus, although the L99A site is simple, its
ligand preferences nevertheless capture the subtle-
ties found in more complicated systems. This is a
requirement for a model system. Experimentally,
L99A is very accessible. Acquiring new possible
ligands, most of which are expected to be com-
mercially available, determining their binding
energies, and determining the structures of their
complexes with L99A, are all relatively straight-
forward. These features make testing predictions
for L99A practical, which is also important for a
model system.

We use this cavity site to investigate the effect
of different ligand partial atomic charges and
solvation energies on docking calculations. The
docking scoring function we use includes electro-
static and van der Waals interaction energies,
and is corrected for ligand desolvation energies

Figure 1. (a) The molecular surface (yellow) of the
cavity in T4 lysozyme mutant L99A. Carbon atoms are
in gray, oxygen atoms in red, nitrogen atoms in
blue and sulfur atoms in yellow. For clarity, only the
protein atoms that surround the cavity are shown.
(b) A cut-away view of the cavity reveals the bound
benzene (PDB entry 181L). Residue Met102 is labeled.
All molecular graphics were rendered with NEON in
Midas-Plus;65 all molecular surfaces were calculated
with MS.66
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FIGURE 3: Representative titration profile for isobutylbenzene (-0.1 
mM) titrated with L99A (4 mM) in 50 mM sodium acetate, pH 
5.5. The offset upper trace shows L99A titrated into buffer without 
ligand. Injections of 10 p L  of the protein solution were made every 
2.5 min into the 1.4 mL reaction cell. After subtraction of blank 
runs, titrations were fit as described under Experimental Procedures 
to obtain the data in Table 2. 

includes structural isomers of ethylbenzene and propylben- 

zene. These isomers have transfer free energies similar to 

their respective parents and were chosen to probe various 
regions of the cavity wall for possible differences in steric 

constraints in the presence of equivalent hydrophobic effects. 
Class 11, the "isosterics", contains four isosteric molecules 

of varying hydrophobicity. Because these molecules are 
expected to have similar steric interactions with the cavity, 

they should, in principle, allow a direct analysis of the 

hydrophobic contribution to the binding energy. Class I11 

is comprised of monosubstituted alkylbenzenes of increasing 

side-chain length. These were chosen to assess the relation 
between ligand size and binding energy in a manner similar 

to the protein mutagenesis studies of the type Gly - Ala - 
Val - Leu, etc. 

Titration calorimetry was used to determine quantitative 

association constants at 29 "C for the binding to L99A of 
the ligands described above. A representative titration is 
shown in Figure 3. The binding energetics are presented in 
Table 2.  Dissociation constants for the various ligands range 

from 14 to 500 ,uM, comparable to many enzyme-substrate 
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Table 2: Calorimetric Analysis of Ligand BindingY 

K, x 10-3 -AH -RT In K, 
ligand (M-') (kcal/mol) (kcal/mol) 

benzene 5.7 iz 1.7 6.32 f 0.37 -5.19 f 0.16 
ethylbenzene 14.8 & 1.7 6.76 f 0.87 -5.76 f 0.07 
o-xylene 2.13 f 0.22 8.45 f 0.96 -4.6 f 0.06 
m-x ylene 2.75 f 0.8 6.04 f 0.03 -4.75 f 0.15 
p-x ylene 2.37 f 0.25 6.97 iz 0.98 -4.61 & 0.06 
propylbenzene 55.2 f 2.0 9.97 f 0.05 -6.55 f 0.02 
2-ethyltoluene 1.98 f 0.20 7.71 iz 0.74 -4.56 f 0.06 
3-ethyltoluene 5.05 f 0.15 7.84 f 0.02 -5.12 & 0.02 
4-ethyltoluene 8.33 f 0.08 8.44 0.03 -5.42 & 0.01 
benzofuran 8.9 f 0.5 8.04 f 0.44 -5.46 f 0.03 
indene 5.17 & 0.09 8.31 f 0.48 -5.13 f 0.01 
indole 3.45 f 0.38 11.23 i 0.94 -4.89 k 0.06 
thianaphthene 13.6 iz 1.2 7.03 f 0.04 -5.71 f 0.05 
toluene 9.8 f 0.6 6.53 f 0.73 -5.52 f 0.04 
isobutylbenzene 51.0 iz 4.9 7.09 f 0.35 -6.51 f 0.06 
n-butylbenzene 69.8 & 2.9 8.06 f 0.98 -6.7 f 0.02 

~ ~ ~~ ____ 

K, is the association constant and AH the molar enthalpy of binding 
of the ligand to L99A lysozyme. Errors are given as the standard 
deviation of the mean calculated from multiple runs except in the cases 
of m-xylene, 2-ethyltoluene, propylbenzene, and thianaphthene, where 
the errors given are based on the goodness of the fit to the data. 

binding constants. For all ligands, the molar enthalpy of 

binding is large and negative, unlike the enthalpy of transfer 

of liquid hydrocarbons from water to the neat organic phase, 

which is typically very close to zero at room temperature 

(Gill et al., 1976). 

The observed binding energies of the ligands are compared 

with their free energies of transfer from water to vapor in 
Figure 4 and from water to octanol in Figure 5 .  Among the 

class I molecules, the xylenes and ethyltoluenes bind much 

more poorly than ethyl- and propylbenzene, respectively, and 

their binding free energies do not correlate well with transfer 
free energies (Figures 4a, 5a). Furthermore, there is no 

agreement between the binding free energies of the different 
structural isomers of ethylbenzene and those of propylben- 

zene. This indicates that the binding energetics of the class 
I molecules are strongly influenced by steric factors. 

The class I1 molecules show only a rough correlation 

between their binding and transfer free energy, despite their 

nearly identical shapes and sizes (Figures 4b, 5b). 

Among the class I11 molecules, binding becomes tighter 

as the side-chain becomes longer, up to a maximum of four 

carbons. This is in accord with the expectation that the 

hydrophobic effect provides a large contribution to binding 

free energy. Figure 5c shows the relation between binding 

energy and free energy of solvation as reflected in water- 

octanol partition coefficients (slope = 0.56; R = 0.97). 

Entropic Consequences of Binding. To directly compare 

the observed binding free energies with solvent-transfer free 

energies, we must account for those contributions to the 

binding free energy that arise from purely statistical sources 

and which differ between the binding and solvent-transfer 
processes. One such contribution arises from the entropic 

cost of constraining a ligand to occupy a single conformation 
in the binding site, relative to its translational, rotational, 

and intemal degrees of freedom in solution. In the present 

analysis, we assume that the ligands lose all rotational and 
translational freedom in the bound state and that their 

vibrational partition function does not change upon binding. 

For each such mode the cost of constraining the ligand is 
given by AG AA = -RT In q, where q is the partition 

T4 lysozyme L99A: 
A model binding site for small hydrophobic ligands

Can we quantitatively predict binding affinity of known ligands?

Wei, Baase, Weaver, Matthews, and Shoichet. JMB 322:339, 2002.



Multiple protein and ligand conformations and 
conformational changes can contribute to binding

Y88. The simulations were initiated from the orientation of
Fig. 4!a", since it is most similar to the orientation in the
cocrystal structure.

The computed free energy !see Table I" is
5.95±0.09 kcal/mol with 1 ns at each ! value, and is
5.39±0.09 with 5 ns at each ! value !for every ! value, not
just for the restraining step". No conformations were dis-
carded in calculating these values. If computed transfer free

energies are converged, they should be the same whether
orientational restraints or only distance restraints are used.
This is not the case here. Even with substantially increased
sampling during the discharging and Lennard-Jones decou-
pling steps, this is an error of approximately 4 kcal/mol.
This suggests that the use of orientational restraints greatly
improves the ease of convergence of these calculations.

Interestingly, we find that, even without orientational re-

FIG. 6. Stable orientations of catechol observed from unrestrained simulations initiated from docking clusters. From the unrestrained simulations, we identify
two main stable orientations for catechol, shown in !a" and !b", between which we see no transitions, so we conduct separate simulations restraining to each
of these orientations, as for phenol. Shown are final snapshots from the 5 ns molecular dynamics trajectories run with full restraints on the ligand.

FIG. 7. Time series and histogram of in-plane rotation for weakly restrained catechol. Time series !left" and histograms !right" for "B, the degree of freedom
which describes in-plane rotation of the aromatic ring in the binding site, for simulations at the weakest restraints, !=0.01. !a" shows a 5 ns simulation
beginning from orientation 1 and !b" shows a 5 ns simulation beginning from orientation 2. Clearly, there is no interchange between the two orientations here,
as would be required for convergence.

084902-12 Mobley, Chodera, and Dill J. Chem. Phys. 125, 084902 !2006"

Do wn lo aded 2 3  F eb 2 0 0 7  to  1 6 9 .2 3 0 .2 2 8 .41 . Redis tributio n  s ubject to  A IP  licen s e o r co p yright, s ee http ://jcp .aip .o rg/jcp /co p yright.js p

Difference in affinity between different bound orientations is only ~1 kT

Mobley, Chodera, and Dill. JCP 125:084902, 2006.
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confinement free energy 4.2 kcal/mol 0.0 kcal/mol

release -0.3 kcal/mol -0.6 kcal/mol

total binding free energy -3.4+-0.3 -3.6+-0.3≈

net -3.1 kcal/mol -3.0 kcal/mol

Val111 sidechain      in apo structure

Mobley, Chodera, and Dill. JCTC 3:1231, 2007.

p-xylene vs. benzene bound to T4 lysozyme L99A

Val111



Ligand ∆Go
expt. ∆Go

single ∆Go
multiple ∆Go

calc. ∆Go
calc. −∆Go

expt.

kcal/mol kcal/mol kcal/mol kcal/mol kcal/mol

2,3-benzofuran −5.46± 0.03 −2.77± 0.08 −3.45± 0.06 −3.53± 0.06 1.93± 0.07

benzene −5.19± 0.16 −3.05± 0.20 −4.53± 0.20 −4.56± 0.20 0.63± 0.26

ethylbenzene −5.76± 0.07 −4.95± 0.10 −5.36± 0.10 −6.36± 0.18 −0.60± 0.19

indene −5.13± 0.01 −0.63± 0.11 −1.56± 0.06 −1.75± 0.07 3.38± 0.07

indole −4.89± 0.06 0.06± 0.10 −0.24± 0.07 −0.42± 0.08 4.47± 0.10

isobutylbenzene −6.51± 0.06 −0.16± 0.15 −4.14± 0.12 −5.01± 0.20 1.50± 0.21

n-butylbenzene −6.70± 0.02 −4.03± 0.11 −4.44± 0.11 −4.87± 0.14 1.83± 0.14

n-propylbenzene −6.55± 0.02 −5.29± 0.10 −5.70± 0.10 −5.88± 0.11 0.67± 0.12

o-xylene −4.60± 0.06 −0.15± 0.10 −0.56± 0.10 −1.27± 0.18 3.33± 0.19

p-xylene −4.67± 0.06 −2.13± 0.09 −2.96± 0.09 −3.54± 0.17 1.13± 0.18

toluene −5.52± 0.06 −3.76± 0.09 −4.17± 0.09 −4.58± 0.12 0.94± 0.14

phenol > −2.74 −0.86± 0.09 −1.27± 0.09 −1.26± 0.09 N/A

2-fluorobenzaldehyde > −2.74 0.99± 0.25 −2.43± 0.10 −2.92± 0.14 N/A

Statistics

RMS error: 3.51 2.55 2.24

Correlation, R: 0.51 0.72 0.72
Table 1
Calculated and experimental binding free energies for ligands of the apolar binding site considered here. Experimental values (denoted by
∆Go

expt.) are from Ref.23, except for 2-aminophenol and phenol, where no binding was observed (by ∆Tm upshift12,15), giving only a lower
bound on the binding free energy. Calculated values shown are ∆Go

single, the free energy computed using only the single best docking
orientation; ∆Go

multiple, the full computed binding free energy using all the orientations that were considered; and ∆Go
calc., the computed

binding free energy including multiple orientations and using the confine-and-release approach to account for any protein conformational
change at Val111. The final column is the difference from experiment. At the bottom is the RMS error relative to experiment across
binders for each set of free energies, and the correlation coefficient, R, between calculated and experimental values.
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How accurately can we reproduce known binding affinities?

Fig. 1. The lysozyme L99A binding site. This binding site is a simple, largely
apolar cavity (shown with a surface representation) created by mutating a leucine
(residue 99) into an alanine. It binds a variety of small, often aromatic, molecules,
including benzene, which is shown here, and has been studied extensively both
experimentally and computationally.

ods.

2 Results

2.1 Overview

We first computed binding free energies of a number of compounds with known
binding affinities to the L99A mutant binding site of T4 lysozyme to assess
accuracy of our computed binding free energies. In these retrospective studies,
we uncovered several keys for accuracy in these calculations, and tested several
approximations commonly made in docking. We also applied these methods
prospectively to predict binding affinities and binding orientations for several
molecules.

2.2 Retrospective studies: Comparison with previous experimental results.

To assess the accuracy of our binding free energy methods, we first computed
binding free energies for a test set of 13 small neutral compounds (Table 1).
Of these, binding affinities for 11 were previously measured with isothermal
titration calorimetry !, and two were previously been determined to be non-
binders, with a detection threshold of around 10 mM "  # " $.

4

Mobley, Graves, Chodera, McReynolds, Shoichet, and Dill. JMB 371:1118, 2007.

Retrospective test on known, neutral small-
molecule ligands of T4 lysozyme L99A

only apo structure was used

model binding site in T4 lysozyme L99A



Ligand DOCK Score Prediction1 ∆Go
calc

2 ∆Tm Experiment ∆Go
expt.

(kcal/mol) (kcal/mol) (oC) (kcal/mol)

1,2-dichlorobenzene -19.99 Binder −5.66± 0.15 2.90 Binder -6.37

n-methylaniline -17.29 Binder −5.37± 0.11 1.00 Binder -4.70

1-methylpyrrole -15.27 Binder −4.32± 0.08 2.20 Binder -4.44

1,2-benzenedithiol -18.51 Binder −2.79± 0.13 2.50 Binder N.D.

thieno-[2,3-c]pyridine -18.81 Nonbinder −2.56± 0.07 -0.40 Nonbinder N.D.
Table 4
Novel ligands for which predictions were made. DOCK scores, shown, suggested all five should bind. Binding free energy calculations were
initially used to predict whether or not these molecules would bind, then ∆Tm values were found experimentally to test these predictions;
results are in the Experiment column. Following this, final binding free energy predictions (∆Go

calc) were tested experimentally with
isothermal titration calorimetry; results are as shown (∆Go

expt). The RMS difference between predicted ∆Go and experiment for the
three compounds tested with ITC compounds is 0.57 kcal/mol. 1 – initial predictions were made using AM1-CM2 charges. 2 – before
doing ITC, predictions were refined using AM1-BCC charges, which testing had indicated gave higher accuracy.
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How accurately can we predict unknown binding affinities?

prediction accuracy ~ 0.5 kcal/mol

Mobley, Graves, Chodera, McReynolds, Shoichet, and Dill. JMB 371:1118, 2007.



How far are we toward targets relevant to pharma?

...
JNK3 kinasehydration free energies

of small neutral molecules
small apolar ligands 
T4 lysozyme L99A

1.23±0.01 kcal/mol [502]
(Mobley et al., 2008)

1.89±0.04 kcal/mol [13]
(Mobley and Graves et al., JMB 2007)

polar ligands 
FKBP12

1.42 kcal/mol [9]
0.94 kcal/mol [7]

(Shirts et al., in preparation)

1.33±0.05 kcal/mol [17]
(Nicholls and Mobley et al., J Med Chem)

0.6±0.2 kcal/mol [3]
(Mobley and Graves et al., JMB 2007)

retrospective RMS error [sample size]
prospective RMS error [sample size] (not to scale)



Specific goals for YANK

Accelerate free energy calculations on commodity GPUs using OpenMM
The other extreme is Anton: an expensive, special-purpose machine for MD.

Test how accurate implicit solvent models are for ligand-binding free energy calculations
Largely unknown, only ~2 papers: Essex J Med Chem 49:7427, 2006; Roux Proteins 74:996, 2009.

Determine how critical statistical mechanics is for “rescoring” docked poses
Many rescoring methods use GB models, but all focus on energies of minimized conformations

Make free energy calculations both more realistic and more “idiot-proof”
Automatic sampling of protonation states, tautomers, salt concentrations

Provide a testbed for enhanced sampling algorithms that mix Monte Carlo and MD
Mix in efficient Monte Carlo moves; exploit Markov chain Monte Carlo algorithms

Build a tool for pharma and academia that fills a special “niche” between dock/rescore and FEP
Aim to replace unreliable, deficient methods like GB rescoring, MM-PBSA, MD



Alchemical free energy calculations have stricter 
requirements than “typical” MD applications

“My simulations is fine as long as gromacs didn’t segfault [too many times]” is not sufficient. 

Free energies often exquisitely sensitive to details that seem “unimportant” in straightforward MD:
e.g. choice of PME parameters, long-range dispersion corrections, polarization convergence tol

What we need from OpenMM:

Correct equilibrium must be sampled in order for relationships used in estimating free energy 
differences (e.g. BAR) to provide a meaningful estimate:

forces must be accurate derivatives of potential
integrator and thermostats must generate correct ensemble

Potential energy differences between alchemical states must be computed precisely
e.g. early versions of gromacs used single-precision accumulators for PME energy



Milestone 1 : Feasibility
Does OpenMM provide sufficient speed and accuracy?

Implement AMBER crd/prmtop reader
Test energy conservation and timing for a “real system” where only change is GB model

T4 lysozyme L99A + 1-methylpyrrole [2616 atoms]
AMBER parm96 / GAFF + AM1-BCC charges
same system treated by Mobley et al.
except OBC GBSA instead of explicit solvent

Conditional pass

Erroneous force computation on NVIDIA GeForce 9600M GT and GeForce GT 120, 
despite passing all CUDA and OpenMM tests. Only obvious with force calculations or constant-energy 
simulations; wouldn’t notice a problem with NVT simulations until your protein started to unfold!

NVIDIA GeForce GTX 285 gives correct forces and stable NVE dynamics with ~ 32 ns/day performance
Compare to Intel Core 2 Duo 2.4 GHz with single-core performance ~ 36 ps/day!

also, test on more realistic systems:
- trypsin inhibitors [charged ligands]
- CDK2 kinase [real target]



Milestone 2 : Accuracy of GBSA models
How much additional error is introduced by use of GBSA?

Repeat same free energy calculations as Mobley at al. for T4 lysozyme and other systems 
Determine how much GBSA model degrades performance
Just need code fast enough for comparison to be feasible -- optimize later.

εi → (1− λLJ) · εi

qi → (1− λelec) · qi

σi → (1− λLJ) · σi

σGB
i → (1− λelec) · σGB

i

scale charges and GB intrinsic radii:

no soft-core support, so scale LJ radii and well depth:

  for each alchemical state k = 1:K
    for each iteration n = 1:N
      integrate T steps of dynamics with thermostat
      for each alchemical state l = 1:L
        compute potential energy of current configuration at state l and store it
  reprocess all data with MBAR

Basic algorithm for free energy calculations:



Replica-exchange can reduce correlation times and provides 
a “built-in” convergence estimate

  for each alchemical state k = 1:K
    for each iteration n = 1:N
      integrate T steps of dynamics with thermostat
      for each alchemical state l = 1:L
        compute potential energy of current configuration at state l and store it
  reprocess all data with MBAR

  for each iteration n = 1:N
    for each replica k = 1:K
      mix states among replicas (Gibbs sampling)
      integrate T steps of dynamics with thermostat
      for each alchemical state l = 1:L
        compute potential energy of current configuration at state l and store it
  reprocess all data with MBAR

Original algorithm:

New algorithm:

If each replica initialized from a different conformation (e.g. docked pose, receptor model), we have 
a “built-in” convergence check: Calculation is only converged after estimates of binding affinity 
from all replicas agree within statistical error.

p(x|k) p(k|x)
MD or MC

MC state
change attempt

X

one iteration

... (one replica)



Milestone 3 : Critical efficiency / usability improvements

Soft-core Lennard-Jones interactions critical to reducing variance in estimated free energies in 
explicit solvent calculations; likely important for implicit as well.

Steinbrecher T, Mobley DL, and Case DA. JCP 127:214108, 2007.
Pitera JW and van Gunsteren WF. Mol. Sim. 28:45, 2002.

Switch to Python codebase
Critical for programmer efficiency; sanity
Will require near-complete exposure of OpenMM API
Helping out Randy with pyOpenMM: https://simtk.org/home/pyopenmm

Could potentially be implemented with lookup tables, which also allows “fused” intermediates
[e.g. Beutler and van Gunsteren JCP 101:1417, 1994].

GPU-accelerated energy calculations to reduce bottleneck
Kai is near nearly finished with these

Automatic ligand parameterization / system setup scripts

https://simtk.org/home/pyopenmm
https://simtk.org/home/pyopenmm


Milestone 4 : Treating realistic systems, making calculations 
“idiot-proof”, enhancing sampling

Constant-pH simulations
Easily implemented in GB via simple Monte Carlo moves where proton parameters are modified.
[Mongan et al. J Comput Chem 25:2038, 2004.]

Monte Carlo sampling of tautomers
If aqueous tautomer ratios are known or can be predicted, MC moves allow switches between

Debye-Hückel screening for monovalent counterions
Already incorporated into AMBER GB models [Srinivasan et al. Theor. Chem. Acc. 101:426, 1999]

Semi-grand-canonical sampling of divalent (or all explicit) counterions?
Easily implemented in MCMC framework

Efficient torsion MC moves for sampling sidechain conformational changes
e.g. “smart-darting MC”, with move set of rotamer displacements [JCP 114:6994, 2001]

All of these methods simply are different MC moves that “plug in” to the same MCMC framework.



Milestone 5 and beyond

Integrated setup pipeline
There’s no reason we can’t incorporate the entire MODELLER + MCCE pipeline we use to 
build in missing residues and heavy atoms and select protonation states.

Markov state models
One way to overcome slow conformational dynamics of proteins: Divide-and-conquer
Related to concepts of “conformational selection”

Expanded-ensemble methods for sampling over huge libraries of compounds
Find the best binders in a combinatorially-constructed library

Enhanced sampling methods such as NML
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Ka =
[PL]

[P ][L]
=

e−β∆Ga

(1 M)

Absolute Binding Free Energies: A Quantitative Approach for Their Calculation 
Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M.
J. Phys. Chem. B.; (Article); 2003; 107(35); 9535-9551.  DOI: 10.1021/jp0217839

The standard state for binding free energies

Association constant is not unitless:

Free energy of binding is defined with respect to a reference state
Standard reference state is 1M ligand (1 ligand / 1660 A3)

Luckily, if you use Boresch’s ligand restraints to aid convergence,
he has already computed the free energy correction for you!

http://dx.doi.org/10.1021/jp0217839
http://dx.doi.org/10.1021/jp0217839


; Apply long range dispersion corrections for Energy and Pressure = 
DispCorr                 = AllEnerPres

M. R. Shirts*, D. L. Mobley*, J. D. Chodera, and V. S. Pande. "Accurate and efficient corrections for missing dispersion interactions in molecular simulations", J. Phys. Chem. B 
111:13052-13063 (2007). 

9Å

25Å

Anisotropic long-range dispersion correction

Simulations in solvent must be run with long-range dispersion correction to ensure results are 
not sensitive to choice of cutoff.

This correction assumes isotropic distribution of Lennard-Jones sites throughout system.

isotropic assumption holds isotropic assumption fails

Instead, we have to enlarge cutoff so that isotropic assumption holds

∆G
9Å

∆G∞

PLP + L

PLP + L

An explicit postprocessing step recomputes energies with large cutoff 
and estimates perturbation free energies using EXP.

isotropic assumption holds

Can make a difference of 3 kcal/mol, depending on number of ligand atoms


