
 1

SimTK 1.0 Requirements: Numerical Methods
Version 1.0

Jack Middleton
August 22, 2005

Abstract
This document discusses the requirements for incorporating numerical methods into
SimTK 1.0. SimTK 1.0 will have an initial set of numerical methods which will be ex-
panded upon in future releases of SimTK. Users will be able to download and install
this initial set and access these methods through a flexible API which allows applica-
tions to switch between different methods.

1 Purpose of this document ... 1
2 What are Numerical Methods?................................. 1
3 How are Numerical Methods Relevant to Simbios?. 1
4 Which Numerical Methods will be in SimTK? 2
5 Numerical Methods Application Interface (API) 2

5.1 Procedural Interfaces ..3
5.2 Interchangeable Abstract Interface3
5.3 High Level Interfaces..4
5.4 Bindings for High Level Languages4
5.5 Deployment of Numerical Methods..........................4

6 Cross platform Requirements 4
7 Download and Installation Requirements................. 4
8 Scalability of Numerical Libraries 5
9 Testing and validation .. 5
10 Deliverables for SimTK 1.0 6

10.1 Additional Documents for SimTK 1.06
10.2 Uncommitted Deliverables for SimTK 1.06

11 What we will not do in SimTK 1.0........................... 7
12 Acknowledgments.. 7
13 References .. 7

1 Purpose of this document
This document describes the requirements and rationale for incorporating numerical algorithms into SimTK.
Its goal is to communicate and develop a consensus regarding our plans in this area for SimTK 1.0, and to
guide the development of software which implements these plans.

2 What are Numerical Methods?
In this document numerical methods refer to software implementations of a core set numerical algorithms
which perform many of the common, computationally intensive tasks used in physics based simulation of
biological systems. The goals of numerical methods are to provide fast, accurate, approximate solutions to
problems and make effective use of the available hardware. The types of problems which are solved by these
numerical methods include nonlinear optimization, linear algebra, ordinary differential equations (ODE’s),
partial differential equations (PDE’s), multibody dynamics and finding roots of nonlinear equations.

3 How are Numerical Methods Relevant to Simbios?
Numerical methods form the foundation for many of the software tools used by the Simbios community. All
four of the current Simbios Driving Biological Problems (DBP's) heavily use numerical methods as part of
their research. For example, the neuromuscular DBP often use optimization, ODE's, multibody dynamics,

 �

 2

linear algebra and root finding numerical methods. The myosin/actin DBP uses multibody dynamics and lin-
ear algebra. The RNA DBP uses multibody dynamics, linear algebra, ODE's and optimization. The cardiovas-
cular DBP uses PDE's, and linear algebra. Often the characteristics of the numerical method in terms of accu-
racy, stability or computation time are limiting factors for these DBP. It is therefore critical that SimTK sup-
ply a solid set of numerical methods that are fast, stable, accurate and easy to use.

Numerical methods are also important for researchers doing research into new numerical algorithms. SimTK
needs to provide a framework for which allows these researchers to evaluate their new algorithms against the
current state of the art numerical methods.

4 Which Numerical Methods will be in SimTK?
Because of the diversity of the types of problems encountered in physics based simulation of biological sys-
tems, SimTK will need to support a wide range of numerical methods. Also, because some algorithms work
better on some datasets than others, SimTK will also need to offer different algorithms which solve the same
type of problems. For example, SimTK needs to provide ODE solvers that are designed to solve stiff systems
and solvers that are designed to solve non stiff systems. As a minimum, SimTK must solve linear algebra
problems, ordinary differential equations, optimization problems, find roots, partial differential equations, and
multibody dynamics. However, it not possible to support all of these directly or as SimTK core offerings in
the SimTK 1.0 time frame. Therefore, SimTK 1.0 will only support linear algebra, ordinary differential equa-
tions and multibody dynamics. Root finding would be nice to have, and will be included if time permits, but
will not be considered as a requirement for SimTK 1.0. Partial differential equations, and optimization will
be analyzed to determine if they have any requirements which need to be addressed in SimTK 1.0 so that they
can be included in a later release of SimTK.

One of the goals of SimTK is to provide easy access to proven, high quality implementations of numerical
methods for the Simbios community. Initially we will focus on including existing industrial strength software
packages that have a proven track record of high quality and performance. We believe that CVODES for
solving ODE’s, LAPACK for solving linear algebra problems and Simbody for multibody dynamics meet
these criteria. These packages will be included in SimTK 1.0 and will provide a solid platform for SimTK
users as well as a benchmark for those who are developing new software algorithms to compare against.
These will also serve as prototypical numerical methods to help solidify our general approach to including
numerical methods in SimTK.

5 Numerical Methods Application Interface (API)
SimTK will give applications the choice of accessing numerical methods through several different levels of
abstraction which are show in Figure 1 below. The lower level, more concrete interfaces are shown towards
the bottom with the higher level, more abstract interfaces towards the top. At the lowest level are conven-
tional numeric libraries such as LAPACK and CVODES which perform the actual computations. Applica-
tions can access the functionality of the numerical libraries through any of the interface levels which are ex-
plained below.

 �

 3

LAPACK BLAS SIMBODY CVODES

FORTRAN/C FORTRAN/C FORTRAN/C FORTRAN/C

Numerical
Libraries

Procedural
Interface

Interchangeable
Abstract Interface

Ports
Object Oriented C++
Interfaces

Vector/Matrix Utilities

Simbody Object
Oriented Interface

High Level Bindings Java Bindings Python Bindings

Fig.1 Numerical Methods API’s

5.1 Procedural Interfaces
Procedural interfaces use conventional function/subroutine calls to access the numerical method. It is a re-
quirement for SimTK 1.0 to provide procedural interfaces in ANSI C and FORTRAN 77 for all the numerical
libraries it supports. LAPACK, BLAS, and CVODES have existing procedural FORTRAN and C interfaces
however procedural interfaces will have to be created for Simbody.

5.2 Interchangeable Abstract Interface
The Interchangeable Abstract Interface provides standard interfaces for numerical methods which solve simi-
lar problems. This allows applications to easily switch between different numerical methods. For example, if
an application is currently using a non-stiff ODE solver and does not know if the ODE system is stiff, it can
easily switch to a stiff solver do a performance comparison.

Interchangeable interfaces are based on abstract classes called “ports”. An application can easily interchange
numerical methods which implement the same port. SimTK 1.0 will develop prototypes of port definitions for
ODE, linear algebra and multibody dynamics solvers. Because SimTK 1.0 will only have one example for
each of these types of solvers it will not be practical to finalize the port definitions without comparing them to
other solvers of the same type. Therefore, this facility will still be in a prototype form in SimTK 1.0.

 �

 4

5.3 Object Oriented C++ Interfaces
The object oriented C++ interfaces are a collection of high level, object oriented interfaces. One example is a
vector/matrix package which does basic operations on vectors and matrices similar to the functionality in
MATLAB and insulates applications from the details of data formats of the particular numerical libraries.
SimTK 1.0 will begin to prototype a vector/matrix package but it will not be a requirement. Another example
of high level interfaces are cases where a numerical library has an existing object oriented interface such as

isting object oriented interface. SimTK will
t a requirement that all numerical libraries have

r high level languages such as Java, Python, Tcl, etc. These
ce layers and allow applications written in high
es of SimTK will generate bindings using SWIG

5.5 Deployment ethods
Num ree ways:

es

ports can be easily interchanged. Since SimTK 1.0 will only provide prototypes of selected ports
ny CCA components in SimTK 1.0 will be strictly prototypes and will not be requirements. Note that we

intend to use the same port definitions in our “Interchangeable Abstract Interface” as are used in CCA com-

hese libraries natively because this will allow users to use the Microsoft Studio set of development tools
ll need to be ported to Windows.
 not be a requirement for SimTK

ndors have developed custom versions of these libraries
which are tuned for their platform. Both Intel and AMD have developed optimized versions of BLAS for

Simbody. Simbody is based on the IVM library which has an ex
make these interfaces available to the application but it is no
object oriented interfaces.

5.4 Bindings for High Level Languages
At the highest level of abstraction are bindings fo
bindings will be wrappers on top of the lower level interfa
level languages to use the numerical methods. Future releas
however; these are not required for SimTK 1.0.

of Numerical M
erical methods can be deployed in th

1. In conventional librari

2. Hard coded into the application

3. As CCA components

Conventional libraries can be either static or dynamic libraries and must be linked or loaded with the applica-
tion. Numerical methods can also be hard coded directly into the application. This is logically the same as a
statically linked conventional library. A CCA component is a dynamically linked library with additional inter-
faces to allow operations on components such as discovery. CCA components must implement the neo classic
version of the CCA spec [1]. One of the advantages of CCA components is that components which provide
the same
a

ponents.

6 Cross platform Requirements
The numerical libraries included in SimTK 1.0 and their test programs must compile and run on the following
platforms: Windows 32/64bit, Red Hat Linux 32/64bit, and Mac Tiger with G5. This will require that the
build systems for all numerical libraries be ported to cmake. An evaluation will be done to determine if it is
practical for these libraries to compile natively or if cygwin should be used. The first choice will be to com-
pile t
on these libraries. Also, the SimTK CCA component framework library wi
However, because CCA components are still in the prototype stage this will
1.0.

7 Download and Installation Requirements
Some numerical libraries are layered on top of lower level computation and communication libraries which
have been tuned for specific platforms. A good example is the BLAS (Basic Linear Algebra Subprograms)
which is used by LAPACK [3]. Most hardware ve

 �

 5

their platforms. SimTK 1.0 will be required to download and install the correct version of these platform spe-
cific libraries with little intervention from the user.

LAPACK and BLAS routines which are optimized for AMD are distributed as part of the AMD Core Math
Library (ACML) library. ACML is supported on Windows and Linux for 32 and 64 bit with both static and
dynamic versions. AMD also provides separate ACML libraries for gnu, PGI [5] (www.pgroup.com) and

for Itanium and EMT systems. The BLAS routines appear in the libmkl_i2p.so,

ly installed and
nd. We will investigate using Java Web Start

erical methods in SimTK 1.0.

threads created will be the same as the number of processors

ed systems using MPI (Message Passing Interface) will be addressed in a future release
 designed for SimTK 1.0 will need to be able to support MPI on

arks for the results of the tests to determine if any regressions have been introduced. If changes are

pathscale (www.pathscale.com) compilers. For SimTK 1.0 only the gnu version will be installed. There are
also different versions which are tuned for the SSE, SSE2, SSE3 instruction set extensions.

Intel sells optimized versions of LAPACK and BLAS for Linux, Windows, 32 and 64bit, and has different
64bit versions
libmkl_lapack*.so libraries. We will need to determine if the Intel licensing agreement allows us to include
these in SimTK.

The download and installation mechanism for SimTK 1.0 will determine what operating system, cpu vendor
and instruction set extensions the user has and decide which software needs to be installed. For SimTK 1.0,
the software will always be installed into the default directory (TBD). In future releases of SimTK the user
will be given the option of changing the install directory. After SimTK 1.0 has been installed, an executable
called “SimTK_install_check” will be launched which checks if SimTK 1.0 was successful
prints out a descriptive error message if any problems were fou
to download and install the libraries, and test programs for num

8 Scalability of Numerical Libraries
The numerical libraries in SimTK 1.0 will be able to take advantage of tightly coupled multiprocessors using
multi-threading. This will be done in two ways. In the first case, a parallel version of an ODE solver based
on CVODES [4] will be implemented. The parallel version will be thread safe so that applications can spawn
multiple threads so separate computations can be run on different cpu's. Second, LAPACK will support mul-
tiple cpu's through a multi-threaded version of BLAS (Basic Linear Algebra Subprograms) on AMD and Intel
systems. In both cases, by default the number of
on the system. The application user will be able to override the number of threads created, by setting the
OMP_NUM_THREADS environment variable.

Scalability on distribut
of SimTK. However, the interfaces that are
clusters in the future.

9 Testing and validation
Tests will be developed which measure both the quality and performance of the numerical methods. These
tests will be used to identify regressions, which are errors that are introduced, due to source code changes or
improper installation. Each numerical library will have a set of quality and performance tests that are auto-
matically run on a regular basis and report their results to a Dart server. These tests will be run on Windows
32/64bit systems, Red Hat Linux 32/64bit systems and Mac G5 Tiger systems. The purpose of the quality
tests will be to determine if the numerical library is producing the correct results. The initial set of tests will
be derived from the examples that are part of the CVODES and LAPACK distributions. New tests will need
to be developed for Simbody. Also, a set of performance benchmarks will be developed which measure the
performance of a library using different datasets and options. Baseline values for both quality and perform-
ance will need to be established for each library on each platform. These baseline values will be used as
benchm
introduced which affect the quality or performance of the library the baseline values may need to be revalu-
ated.

Tolerance values for both quality and performance will need to be established and used to determine if the
results should be reported as a regression. Once the baseline values for a platform have been established, the
tolerances for quality should be near the accuracy of the machine precision. Performance tolerances need to

 �

http://www.pgroup.com/

 6

be looser because changes in the source code can change the access patterns of instruction cache which can
noticeably affect performance on some platforms. To help alleviate this problem, the performance values will

c benchmark can be used to compare against the same ratio on other systems. Significant differ-
ences in the ratios suggest that changes in the performance were due to changes in the numerical method’s

e be part SimTK 1.0.

lems.

user's platform, install the libraries and run the
SimTK_install_check program once the libraries have been installed to ensure that the installation was suc-

umerical methods API’s in SimTK 1.0.

Vector and Matrix library. SimTK 1.0 will make a first cut at designing a set of utilities for manipulating
vectors and matrices similar to the functionality in MATLAB.

be determined by running several tests and comparing the weighted combined execution time to the baseline
values.

A generic numerical benchmark, similar to the SPECmark metrics, will be developed to determine the float-
ing point performance of a system. The generic benchmark will be used to distinguish between performance
improvements caused by changes in the numerical methods or improvements in the hardware and compilers.
In some cases when new platforms are introduced, changes need to be made to the numerical method in order
for it to compile and execute. This makes it difficult to determine if the performance changes were due to the
new system or if they were due to changes in the numerical method. The ratio of a numeric benchmark and
the generi

software.

10 Deliverables for SimTK 1.0
The following numerical libraries w

1. CVODES for solving ODE’s.

2. LAPACK and BLAS for solving linear algebra prob

3. Simbody for solving multibody dynamics problems.

Each of these libraries will have a set of automated, quality and performance tests which will be run on a
regular basis and report their results to the SimTK Dart server. These libraries will have automated download
and installation utilities which can be accessed from the SimTK.org website. The installation procedure will
determine the correct version of the numerical library for the

cessful. Each library will also have a set example programs.

10.1 Additional Documents for SimTK 1.0
The following documents will be created as part of SimTK 1.0

1. A numerical methods test plan which describes the quality and performance tests for the numerical librar-
ies which are part of SimTK 1.0.

2. A numerical methods installation design document which describes how Java Web Start will be used to
download and install the numerical methods in SimTK 1.0.

3. A numerical methods user's guide which describes how to use the n

10.2 Uncommitted Deliverables for SimTK 1.0
The following numerical methods will only be included in SimTK 1.0 if time permits but are not considered
requirements.

1. Solve for roots of nonlinear equations using KINSOL from the SUNDIALS [4] package or portions of
PETSc [5].

2.

 �

 7

11 What we will not do in SimTK 1.0
e following numerical methods features will not be implemented in SimTK 1.0 but will be implemented in Th

a future release.

2. very is the ability to search for, find, and load new

ill be in SimTK 1.0. However, these will not be

12 Acknowledgments
 the National Institutes of Health through the NIH Roadmap for Medical Research,

ation on the National Centers for Biomedical Computing can be obtained from
formatics.

1. Distributed processing, e.g. ScaLAPACK. The numerical libraries in SimTK 1.0 will be able to take ad-
vantage of multiple processors on a single computer. However, the ability to distribute a computation
across multiple computers using MPI will be addressed in a future release.

Runtime discovery of CCA components. Runtime disco
components while the application is running. For example, an application that uses an existing ODE
solver could swap in a new and improved ODE solver simply by installing the new solver in the correct
location. The SimTK component framework could find the new solver; make it available to the application
which could use the new solver without recompiling.

3. Partial Differential Equations. To adequately address the wide range of systems of partial differential
equations that SimTK users need to solve will require a suite of numerical methods tools. Some of these
tools such as ODE solvers and linear algebra utilities w
adequate for solving PDE systems.

4. Bindings for high level languages such as Java and Python will be addressed in future releases of SimTK
using SWIG [2].

This work was funded by
Grant U54 GM072970. Inform
http:/nihroadmap.nih.gov/bioin

13 References
[1] http://www.cca-forum.org

[2] http://www.swig.org

[3] http://www.netlib.org/lapack

[4] http://www.llnl.gov/CASC/sundials

[5] http://www-unix.mcs.anl.gov/petsc/petsc-as

 �

http://www.llnl.gov/CASC/sundials

	1 Purpose of this document
	2 What are Numerical Methods?
	3 How are Numerical Methods Relevant to Simbios?
	4 Which Numerical Methods will be in SimTK?
	5 Numerical Methods Application Interface (API)
	5.1 Procedural Interfaces
	5.2 Interchangeable Abstract Interface
	5.3 Object Oriented C++ Interfaces
	5.4 Bindings for High Level Languages
	5.5 Deployment of Numerical Methods
	6 Cross platform Requirements
	7 Download and Installation Requirements
	8 Scalability of Numerical Libraries
	9 Testing and validation
	10 Deliverables for SimTK 1.0
	10.1 Additional Documents for SimTK 1.0
	10.2 Uncommitted Deliverables for SimTK 1.0

	11 What we will not do in SimTK 1.0
	12 Acknowledgments
	13 References

