
pySIML Documentation
Release 1.5

Imran S. Haque

March 07, 2010

CONTENTS

1 Introduction to pySIML 3

2 Installing pySIML 5
2.1 Prerequisites . 5
2.2 Setup Procedure . 5

3 pySIML Concepts 7
3.1 Basics of LINGO . 7
3.2 pySIML Computation Model . 7

4 Preprocessing SMILES in pySIML 9
4.1 The Short Version . 9
4.2 The Long Version . 9
4.3 pysiml.compiler - Transforming SMILES strings into SIML internal representations 9

5 Similarity calculations with pySIML 11
5.1 Generic API for computing LINGOs with pySIML . 11
5.2 Example of computing similarities with pySIML . 11
5.3 pysiml.CPULingo - Computing LINGO similarities on a CPU . 12
5.4 pysiml.GPULingo - Computing LINGO similarities on a CUDA-capable GPU 14
5.5 pysiml.OCLLingo - Computing LINGO similarities on an OpenCL-capable GPU or CPU 16

6 References 19

7 Indices and tables 21

Bibliography 23

Module Index 25

Index 27

i

ii

pySIML Documentation, Release 1.5

Contents:

CONTENTS 1

pySIML Documentation, Release 1.5

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO PYSIML

pySIML gives you easy access to SIML, an extremely fast method for computing LINGO chemical similarities [Vi-
dal05]. There are existing implementations of LINGO, such as that included in OpenEye’s OEChem toolkit - so why
bother with SIML?

Speed.

For several classes of important problems, SIML is significantly faster than existing implementations of LINGOs. In
particular, for M x N similarity problems, in which one needs to compare every molecule in a set of size M against
every other molecule in a set of size N (and M and N are reasonably large, on the order of hundreds), SIML on a single-
core CPU is several times as fast as existing implementations of LINGO. SIML also supports computing LINGOs on
a CUDA-capable GPU, which allows over eightyfold speedup relative to even fast CPUs.

SIML and pySIML live at https://simtk.org/home/siml.

3

https://simtk.org/home/siml

pySIML Documentation, Release 1.5

4 Chapter 1. Introduction to pySIML

CHAPTER

TWO

INSTALLING PYSIML

2.1 Prerequisites

• pySIML requires a working Python installation, since it is a collection of Python bindings. It has been success-
fully tested on Python 2.4 and 2.5 on both Linux and Mac OS X. It also requires that the development header
files for the Python interpreter used be installed on the machine (e.g., on Ubuntu Linux, package python-dev
must be installed, not just python).

• The NumPy package, and its headers, must also be installed. pySIML makes extensive use of NumPy to store
input and output data for the SIML algorithm.

• An OpenMP-capable compiler is required to take advantage of multiple CPUs (parallel computations over mul-
tiple rows of a Tanimoto matrix in CPULingo).

• PyCUDA version 0.94 or greater is required for NVIDIA GPU support using GPULingo. Versions 0.93 and
previous will not work properly! Note that at the time of this writing, 0.93 is the most recent release version. If
this is still true, then you must retrieve a copy of the PyCUDA source code from the source repository (following
the directions given on the PyCUDA homepage).

• PyOpenCL is required for NVIDIA/AMD GPU support using OCLLingo.

2.2 Setup Procedure

pySIML is distributed as a source tarball using a mostly-standard Python distutils-based setup procedure. After untar-
ring the package, most people should be able to run:

python setup.py build
sudo python setup.py install

In some cases, the setup script will not be able to detect one or more settings properly, in which case, the configure
option can be used:

python setup.py configure <options>

The following options are available:

• --enable-openmp: Force pySIML to be built with OpenMP support.

• --disable-openmp: Force pySIML to be built without OpenMP support.

5

http://numpy.scipy.org
http://openmp.org
http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pyopencl

pySIML Documentation, Release 1.5

• --numpy-include=<dir>: Indicates that the C headers for numpy can be found in <dir>. Note that if, for
example, arrayobject.h is in /usr/include/python2.5/numpy/arrayobject.h, <dir> should
be specified as /usr/include/python2.5, NOT /usr/include/python2.5/numpy.

• --python-include=<dir>: Indicates that the C headers for Python (e.g., Python.h) can be found in
<dir>.

6 Chapter 2. Installing pySIML

CHAPTER

THREE

PYSIML CONCEPTS

3.1 Basics of LINGO

pySIML is designed to compute chemical similarities according to the LINGO method [Vidal05] [Grant06]. LINGO,
strictly speaking, is a text-similarity algorithm (similar to the d-squared algorithm for sequence comparison); it is
mapped to chemical similarites by representing molecules in some textual format. LINGO characterizes a molecule
by taking its textual representation (typically a canonical or canonical-isomeric SMILES string), and breaking it into
all its 4-character substrings. To compare two molecules, each is fragmented into its component substrings, and the
similarity between the two is defined as:

number of fragments in common
total count of distinct fragments

Or, more technically, consider each molecule A and B to be a multiset, or bag, of these fragments (known as “Lingos”).
The Tanimoto similarity between A and B is defined as

TAB ≡
|A ∩B|
|A ∪B|

Several efficient algorithms to calculate LINGO similarities exist (e.g., [Grant06]), which work especially well when
comparing a large number of molecules to only one single candidate molecule. SIML targets a slightly different appli-
cation area, in which multiple molecules will be compared against the same set of “query” or “database” molecules,
either at the same time or sometime in the future (by storing precalculated values). By precalculating part of the
computation, SIML saves a large amount of computer time for these repeated searches. Additionally, it allows fast
implementation on both standard processors (CPUs) as well as graphics cards (GPUs) and similar vector processors.
For more details on the SIML algorithm, please see the publication (pending).

All LINGO algorithms do some preprocessing on the SMILES strings they are given. Typically, ring closure digits will
be set to zero (to normalize ring assignment); in some variants (e.g. [Vidal05]), atom names will also be remapped.
SIML implements two preprocessing methods, described in Preprocessing SMILES in pySIML.

3.2 pySIML Computation Model

The motivating task for pySIML is the calculation of a Tanimoto matrix, or matrix whose entries are chemical
similarities. Each row corresponds to a molecule from a set called the reference set, and each column to a molecule
from the query set. Given a Tanimoto matrix T, the entry at Tij (row i, column j) is the similarity between reference
molecule i and query molecule j.

7

pySIML Documentation, Release 1.5

This model is adaptable to a diverse set of problems in cheminformatics. Performing a database screen (in which one
molecule is compared to many others) can be described as calculating a Tanimoto matrix of size 1 x N (one reference
molecule, and a number of query molecules equal to the size of the database). A self-similarity matrix, as might be
used for clustering a molecule set, corresponds to the creation of an N x N matrix, where the reference and query sets
are identical. Finally, a multiple-screen or cross-similarity comparison, in which two distinct sets are compared to
each other in an all-pairs manner, is an M x N matrix problem, with M and N being the size of either set.

In addition to the Tanimoto matrices SIML produces as its output, it takes matrices called SMILES sets as input.
SIML’s preprocessor/compiler code takes sets of SMILES strings, and converts them to a numerical matrix represen-
tation called a SMILES set. Each SMILES set contains 2 matrices and 2 vectors:

• One Lingo matrix contains numerical representations of the Lingos in each SMILES string. Each input
SMILES string corresponds to one row in the Lingo matrix.

• One count matrix contains the multiplicity of each Lingo in the Lingo matrix. Each input SMILES string
corresponds to one row in the count matrix.

• One length vector contains the number of distinct Lingos in each molecule.

• One magnitude vector contains the total number of Lingos (distinct or not) in each molecule.

In general, it is not important to worry about the internal details of these representations. However, what is useful
to know is that it is possible to construct unions and subsets of these SMILES sets. The following code example
demonstrates:

@# lingos, counts, lengths, and mags have been initialized as a SMILES set

lingoSub = lingos[0:10,:]
countSub = counts[0:10,:]
lengthSub = lengths[0:10]
magSub = mags[0:10]

@# lingoSub, countSub, lengthSub, and magSub together now constitute a
@# SMILES set for the first ten molecules from the original set

These SMILES sets are constructed from SMILES strings by the pySIML compiler routines (Preprocessing SMILES
in pySIML).

8 Chapter 3. pySIML Concepts

CHAPTER

FOUR

PREPROCESSING SMILES IN PYSIML

4.1 The Short Version

Just use cSMILEStoMatrices(), and don’t look back.

4.2 The Long Version

As explained in the pySIML Concepts, two things must be done to SMILES strings before they can be used for LINGO
similarity comparison:

• Certain transformations must be performed, such as changing ring closure digits and stripping names

• They must be converted to the SIML internal numerical representation.

The pysiml.compiler section provides details on how to do this conversion.

The pysiml.compiler module provides both a pure-Python converter SMILEStoMatrices() as well as one
based around a C extension, cSMILEStoMatrices(). It is important to note that these two DO NOT produce
the same output. The Python module transforms all digits in the SMILES string to zeroes; this will incorrectly affect
charge numbers, isotope indicators, and hydrogen counts. The C module performs the following changes:

• Change all digits to zero, except for numbers following a ‘+’ or ‘-‘ (charge counts), those following an ‘H’
(hydrogen counts), or a ‘[’ (isotope indicators).

• Reduce multiple-digit ring-closure indicators (e.g., ‘%13’) to one digit (‘%0’) to normalize ring formatting.
Currently only works for molecules with under 100 rings, due to ambiguities in the SMILES specification.

Both the C and Python modules handle stripping of names and newlines from SMILES strings.

In general, there is almost no reason to use the Python compiler; cSMILEStoMatrices() is nearly 100 times
faster and is more correct to the LINGO flavor outlined in [Grant06]. The Python compiler SMILEStoMatrices()
is included only as a substitute in case a pure-Python replacement is needed, or it is necessary to compute SMILES
strings that have been transformed in an identical way to the SIML compiler (e.g., to pass into a different LINGO
package for comparison).

4.3 pysiml.compiler - Transforming SMILES strings into SIML internal
representations

This module provides “compilers” to convert SMILES strings into the sparse-vector representation required for SIML.
C and pure-Python implementations are provided.

9

pySIML Documentation, Release 1.5

SMILEStoMatrices(smileslist)
Convert the sequence of SMILES strings smileslist into a SIML SMILES set and list of molecule names (if
present in the SMILES strings). Uses a pure Python implementation. See pySIML preprocessing documentation
for details on transformations performed on the SMILES strings. Note that this does NOT perform the same
transformations as the C version cSMILEStoMatrices().

Returns a tuple of 5 values: a Lingo matrix, a count matrix, a length vector, a magnitude vector, and a list of
molecule names (all but the molecule names make up the “SMILES set”).

SMILEStoMultiset(smiles)
Returns Lingo and count vectors for a single SMILES string smiles, as would correspond to a row in the Lingo or
count matrices from cSMILEStoMatrices() or SMILEStoMatrices(). Performs no transformations
on smiles prior to conversion.

Note that in general, the results of this function will not be the same as those obtained from
SMILEStoMatrices() or cSMILEStoMatrices() because this function does not preprocess the input
strings.

cSMILEStoMatrices(smileslist)
Convert the sequence of SMILES strings smileslist into a SIML SMILES set and list of molecule names (if
present in the SMILES strings). Uses the SIML compiler C extension. See pySIML preprocessing documen-
tation for details on transformations performed on the SMILES strings. Note that this does NOT perform the
same transformations as the pure-Python version SMILEStoMatrices().

Returns a tuple of 5 values: a Lingo matrix, a count matrix, a length vector, a magnitude vector, and a list of
molecule names (all but the molecule names make up the “SMILES set”).

preprocessNumbers(smi, xtable=None)
Given a SMILES string, return a copy of the string with the same translations performed on it as would be done
by the pure-Python preprocessor SMILEStoMatrices().

This method is primarily useful to compare the results of SIML Tanimoto calculation functions with those from
other LINGO calculation packages, to ensure that identical SMILES strings are given to each.

xtable is an internal parameter and should always be set to None when called from user code.

10 Chapter 4. Preprocessing SMILES in pySIML

CHAPTER

FIVE

SIMILARITY CALCULATIONS WITH
PYSIML

5.1 Generic API for computing LINGOs with pySIML

Both of the currently supported methods for LINGO computations with pySIML share the same general data flow
and methods, to make it easy to switch between CPUs and GPUs as needed. The overall structure of a Tanimoto
computation with pySIML is as follows:

• Read SMILES (from file, database, generator, etc)

• Preprocess SMILES for reference and query sets (see section Preprocessing SMILES in pySIML) into a pair of
‘SMILES sets’, each consisting of a Lingo matrix, count matrix, length vector, and magnitude vector.

• Create a LINGO comparator object (a CPULingo, GPULingo, or OCLLingo object)

• Initialize the comparator with the reference and query SMILES sets using the set_refsmiles and
set_qsmiles functions.

• Request a single row from the Tanimoto matrix using the getTanimotoRow or getTanimotoRow_async
methods, or a contiguous range of rows using getMultipleRows or getMultipleRows_async.

5.2 Example of computing similarities with pySIML

The following is a simple demonstration of how to calculate a full N x N similarity matrix on a set of compounds
read in from a file. Note that it lacks niceties such as error-checking; a more detailed example code is present in the
examples directory:

import sys
import numpy
from pysiml.compiler import cSMILEStoMatrices
from pysiml.CPULingo import CPULingo

f = open(sys.argv[1],"r")
smiles = f.readlines()
f.close()

numMols = len(smiles)

@# We use cSMILEStoMatrices because it is almost 100x as fast as
@# SMILEStoMatrices, and more correct to boot.

11

pySIML Documentation, Release 1.5

@#
@# The SMILES compiler also returns the molecule name associated
@# with each row of the output matrices
(lingos,counts,lengths,mags,names) = cSMILEStoMatrices(smiles)

@# Construct a similarity object. This could also be a GPULingo
comparator = CPULingo()

@# Initialize the comparator with our SMILES sets. Since this
@# computation is a self-similarity matrix, the reference and
@# query sets are the same
comparator.set_refsmiles(lingos,counts,lengths,mags)
comparator.set_qsmiles(lingos,counts,lengths,mags)

@# Create an empty storage place to put the result
similarityMatrix = numpy.empty((numMols,numMols))

@# CPULingo-specific: see if we can run the computation in parallel
numProcs = 1
if comparator.supportsParallel():

@# If we can do a row-parallel computation (OpenMP supported), choose the
@# number of processors here
numProcs = 4

similarityMatrix[:,:] = comparator.getMultipleRows(0,numMols,nprocs=numProcs)

print similarityMatrix

The following sections explain details of the CPULingo and GPULingo APIs and differences in their respective be-
havior.

5.3 pysiml.CPULingo - Computing LINGO similarities on a CPU

This module exposes the API for computing LINGO similarities on a CPU. Calculations of multiple rows can be
parallelized across multiple CPUs, if the library has been built with OpenMP support. There is currently no support
for parallelizing the computation of a single row across multiple CPUs.

The CPULingo object is the interface to compute LINGOs on a CPU. Creating multiple CPULingo objects will not
parallelize computations on each across multiple CPUs (as with GPULingo); the only parallelism currently exposed is
across rows, using OpenMP.

For interface consistency, CPULingo exposes asynchronous operation methods (getTanimotoRow_async() and
getMultipleRows_async()); however, these methods as currently implemented are not actually asynchronous
operations.

5.3.1 CPULingo object documentation

class CPULingo()
Object to handle computation of LINGO similarities on the CPU

asyncOperationsDone()
Return True if all asynchronous operations on this object have completed.

In current implementation, always returns True.

getMultipleRows(rowbase, rowlimit, nprocs=1)
Computes multiple Tanimoto rows rowbase:rowlimit corresponding to comparing every SMILES string in

12 Chapter 5. Similarity calculations with pySIML

pySIML Documentation, Release 1.5

the query set with the reference SMILES strings having index row, row+1, ..., rowlimit-1 in the reference
set, and returns this block of rows.

If pySIML has been built with OpenMP enabled, nprocs may be set higher than 1 to parallelize computa-
tions over multiple CPUs (each CPU will handle a disjoint set of rows). If called with nprocs larger than 1
on a non-OpenMP build of pySIML, print a warning to stderr and compute with one CPU.

getMultipleRows_async(rowbase, rowlimit, nprocs=1)
Computes multiple Tanimoto rows rowbase:rowlimit corresponding to comparing every SMILES string in
the query set with the reference SMILES strings having index row, row+1, ..., rowlimit-1 in the reference
set, and stores this block of rows internally as the last asynchronous result value.

If pySIML has been built with OpenMP enabled, nprocs may be set higher than 1 to parallelize computa-
tions over multiple CPUs (each CPU will handle a disjoint set of rows). If called with nprocs larger than 1
on a non-OpenMP build of pySIML, print a warning to stderr and compute with one CPU.

To retrieve the result block, call retrieveAsyncResult().

Note that this function is actually synchronous, due to the limitations of running on the CPU; it will not
return until the block has been completely calculated.

getTanimotoRow(row)
Returns the single Tanimoto row row corresponding to comparing every SMILES string in the query set
with the single reference SMILES string having index row in the reference set.

getTanimotoRow_async(row)
Computes the single Tanimoto row row corresponding to comparing every SMILES string in the query
set with the single reference SMILES string having index row in the reference set, and stores this row
internally as the last asynchronous result value.

To retrieve the result row, call retrieveAsyncResult().

Note that this function is actually synchronous, due to the limitations of running on the CPU; it will not
return until the row has been completely calculated.

retrieveAsyncResult()
Returns result from last asynchronous computation (getTanimotoRow_async() or
getMultipleRows_async()).

Note that this result is only guaranteed to be valid if no operations have been run on
this CPULingo object since the asynchronous call, except for asyncOperationsDone() and
retrieveAsyncResult().

If no asynchronous operations have been invoked on this object, result is undefined.

set_qsmiles(qsmilesmat, qcountsmat, querylengths, querymags=None)
Sets the query SMILES set to use Lingo matrix qsmilesmat, count matrix qcountsmat, and length vector
querylengths. If querymags is provided, it will be used as the magnitude vector; else, the magnitude vector
will be computed from the count matrix.

set_refsmiles(refsmilesmat, refcountsmat, reflengths, refmags=None)
Sets the reference SMILES set to use Lingo matrix refsmilesmat, count matrix refcountsmat, and length
vector reflengths. If refmags is provided, it will be used as the magnitude vector; else, the magnitude vector
will be computed from the count matrix.

supportsParallel()
Return True if this installation of pySIML was built with OpenMP support for parallel calculations.

Note that even if this function returns False, the getMultipleRows() and
getMultipleRows_async() methods can still be called with nprocs > 1, but only one pro-
cessor will actually be used

5.3. pysiml.CPULingo - Computing LINGO similarities on a CPU 13

pySIML Documentation, Release 1.5

5.4 pysiml.GPULingo - Computing LINGO similarities on a CUDA-
capable GPU

This module exposes the API for computing LINGO similarities on a CUDA-capable GPU. It uses the pycuda library
to interface with the GPU; in particular, due to bugs related to context management in pycuda 0.93 and before, pycuda
0.94 or greater is required.

The GPULingo object is the interface to compute LINGOs on a single GPU. To do similarity calculations on multiple
GPUs, create multiple GPULingo objects, passing a different CUDA device ID to each one’s constructor:

gpu0 = pysiml.GPULingo(0)
gpu1 = pysiml.GPULingo(1)

By using the asynchronous operations on each object (getTanimotoRow_async() and
getMultipleRows_async()), similarity calculations can be carried out simultaneously on multiple GPUs
using only one host thread:

@# gpu0 and gpu1 have been initialized with reference and query SMILES sets

@# Carry out simultaneous computation of rows 0 to 10 of each set on both GPUs
gpu0.getMultipleRows_async(0,10)
gpu1.getMultipleRows_async(0,10)

@# The busy waits could be replaced by a sleep, or any other work
while not gpu0.asyncOperationsDone():

pass
gpu0result = gpu0.retrieveAsyncResult()

while not gpu1.asyncOperationsDone():
pass

gpu1result = gpu1.retrieveAsyncResult()

After an asynchronous computation has been requested on a GPULingo object, check asyncOperationsDone()
to see when the job is complete. Once the job is done, retrieveAsyncResult() can be called to retrieve the
result. Note that the retrieved result is guaranteed to be valid only if no methods were called on the GPULingo object
after the asynchronous request, except for asyncOperationsDone() and retrieveAsyncResult().

5.4.1 GPULingo object documentation

class GPULingo(deviceID=0)
Object to handle computation of LINGO similarities on GPU with CUDA device ID deviceid

asyncOperationsDone()
Return True if all asynchronous operations on this object have completed.

getMultipleRows(rowbase, rowlimit)
Computes multiple Tanimoto rows rowbase:rowlimit corresponding to comparing every SMILES string in
the query set with the reference SMILES strings having index row, row+1, ..., rowlimit-1 in the reference
set, and returns this block of rows.

This method is synchronous (it will not return until the block has been completely computed).

getMultipleRows_async(rowbase, rowlimit)
Computes multiple Tanimoto rows rowbase:rowlimit corresponding to comparing every SMILES string in
the query set with the reference SMILES strings having index row, row+1, ..., rowlimit-1 in the reference
set, and stores this block as the most recent asynchronous result.

14 Chapter 5. Similarity calculations with pySIML

pySIML Documentation, Release 1.5

This method is asynchronous (it will return before the block has been completely computed). After call-
ing this method, check asyncOperationsDone(); once that method returns True, the result may be
retrieved by calling retrieveAsyncResult().

getTanimotoRow(row)
Returns the single Tanimoto row row corresponding to comparing every SMILES string in the query set
with the single reference SMILES string having index row in the reference set.

This method is synchronous (it will not return until the entire row has been computed and brought back
from the GPU).

getTanimotoRow_async(row)
Compute the single Tanimoto row row corresponding to comparing every SMILES string in the query set
with the single reference SMILES string having index row in the reference set, and store it as the most
recent asynchronous result.

This method is asynchronous (it will return before the row has been completely computed). After call-
ing this method, check asyncOperationsDone(); once that method returns True, the result may be
retrieved by calling retrieveAsyncResult().

getMultipleHistogrammedRows(rowbase, rowlimit)
Computes multiple Tanimoto rows rowbase:rowlimit corresponding to comparing every SMILES string in
the query set with the reference SMILES strings having index row, row+1, ..., rowlimit-1 in the reference
set. Histograms each row into its own histogram of 101 bins with boundaries 0, 0.01, 0.02, ... , 0.99, 1.0,
1.01. Returns this block of row-wise histograms.

This method is synchronous (it will not return until the histograms have been completely computed).

getMultipleHistogrammedRows_async(rowbase, rowlimit)
Computes multiple Tanimoto rows rowbase:rowlimit corresponding to comparing every SMILES string in
the query set with the reference SMILES strings having index row, row+1, ..., rowlimit-1 in the reference
set. Histograms each row into its own histogram of 101 bins with boundaries 0, 0.01, 0.02, ... , 0.99, 1.0,
1.01. Returns this block of row-wise histograms.

This method is asynchronous (it will return before the block has been completely computed). After call-
ing this method, check asyncOperationsDone(); once that method returns True, the result may be
retrieved by calling retrieveAsyncResult().

getNeighbors(rowbase, rowlimit, lowerbound, upperbound=1.1, maxneighbors=None)
For each reference SMILES string with index in rowbase:rowlimit (i.e., strings with index row, row+1,
... ,*rowlimit-1*, finds all SMILES in the query set that have LINGO similarity >= lowerbound and <
upperbound (“neighbors”), up to a maximum of maxneighbors (by default, size of query set).

Result is a tuple of (matrix,vector). The vector contains, for each reference string in rowbase:rowlimit,
the number of neighbors found. The matrix is of size (rowlimit-rowbase, maxNeighborsFound), where
maxNeighborsFound is the maximum value in the returned vector. Each row of the matrix (corresponding
to one reference SMILES string) has as its elements the query indices of neighbors. In row i, only the first
vector[i] elements are valid (that is, the values elements of the matrix beyond the number of neighbors
found for a given row are undefined).

This method is synchronous (it will not return until the neighbors have been completely computed. Returns
a tuple of (neighborMatrix,neighborCountVector).

getNeighbors_async(rowbase, rowlimit, lowerbound, upperbound=1.1, maxneighbors=None)
For each reference SMILES string with index in rowbase:rowlimit (i.e., strings with index row, row+1,
... ,*rowlimit-1*, finds all SMILES in the query set that have LINGO similarity >= lowerbound and <
upperbound (“neighbors”), up to a maximum of maxneighbors (by default, size of query set).

Result is a tuple of (matrix,vector). The vector contains, for each reference string in rowbase:rowlimit,
the number of neighbors found. The matrix is of size (rowlimit-rowbase, maxNeighborsFound), where

5.4. pysiml.GPULingo - Computing LINGO similarities on a CUDA-capable GPU 15

pySIML Documentation, Release 1.5

maxNeighborsFound is the maximum value in the returned vector. Each row of the matrix (corresponding
to one reference SMILES string) has as its elements the query indices of neighbors. In row i, only the first
vector[i] elements are valid (that is, the values elements of the matrix beyond the number of neighbors
found for a given row are undefined).

This method is asynchronous (it will return before the block has been completely computed). After calling
this method, check asyncOperationsDone(); once that method returns True, the result pair may be
retrieved by calling retrieveAsyncResult().

retrieveAsyncResult()
Returns result from last asynchronous computation (getTanimotoRow_async(),
getMultipleRows_async(), getMultipleHistogrammedRows_async(), or
getNeighbors_async()).

Note that this result is only guaranteed to be valid if no operations have been run on this object since the
asynchronous call, except for asyncOperationsDone() and retrieveAsyncResult().

If no asynchronous operations have been invoked on this object, result is undefined. If an asynchronous
operation is still pending, this method will block until completion.

set_qsmiles(qsmilesmat, qcountsmat, qlengths, [qmags])
Sets the reference SMILES set to use Lingo matrix qsmilesmat, count matrix qcountsmat, and length vector
querylengths. If querymags is provided, it will be used as the magnitude vector; else, the magnitude vector
will be computed (on the GPU) from the count matrix.

Because of hardware limitations, the query matrices (qsmilesmat and qcountsmat) must have no more than
65,536 rows (molecules) and 32,768 columns (Lingos). Larger computations must be performed in tiles.

set_refsmiles(refsmilesmat, refcountsmat, reflengths, [refmags])
Sets the reference SMILES set to use Lingo matrix refsmilesmat, count matrix refcountsmat, and length
vector reflengths. If refmags is provided, it will be used as the magnitude vector; else, the magnitude vector
will be computed (on the GPU) from the count matrix.

Because of hardware limitations, the reference matrices (refsmilesmat and refcountsmat) must have no
more than 32,768 rows (molecules) and 65,536 columns (Lingos). Larger computations must be performed
in tiles.

5.5 pysiml.OCLLingo - Computing LINGO similarities on an OpenCL-
capable GPU or CPU

Very Beta - only getMultipleRows currently supported

This module exposes the API for computing LINGO similarities on an OpenCL-capable GPU, CPU, or other acceler-
ator device. It uses the pyopencl library to interface with OpenCL.

The OCLLingo object is the interface to compute LINGOs on a single OpenCL device. Multiple OCLLingo objects
can be used (on the same device or multiple devices); in particular, similarity calculations may be parallelized across
multiple GPUs by creating multiple OCLLingo objects, one per device. To build an OCLLingo object, an OpenCL
device (obtained from an OpenCL Platform using pyopencl) must be passed to the constructor:

import pyopencl as cl
platform = cl.get_platforms()[0] @# Use first platform
dev0 = platform.get_devices()[0]
dev1 = platform.get_devices()[1]
gpu0 = pysiml.OCLLingo(dev0)
gpu1 = pysiml.OCLLingo(dev1)

16 Chapter 5. Similarity calculations with pySIML

pySIML Documentation, Release 1.5

By using the asynchronous operations on each object (getTanimotoRow_async() and
getMultipleRows_async()), similarity calculations can be carried out simultaneously on multiple GPUs
using only one host thread:

@# gpu0 and gpu1 have been initialized with reference and query SMILES sets

@# Carry out simultaneous computation of rows 0 to 10 of each set on both GPUs
gpu0.getMultipleRows_async(0,10)
gpu1.getMultipleRows_async(0,10)

@# The busy waits could be replaced by a sleep, or any other work
while not gpu0.asyncOperationsDone():

pass
gpu0result = gpu0.retrieveAsyncResult()

while not gpu1.asyncOperationsDone():
pass

gpu1result = gpu1.retrieveAsyncResult()

After an asynchronous computation has been requested on a OCLLingo object, check asyncOperationsDone()
to see when the job is complete. Once the job is done, retrieveAsyncResult() can be called to retrieve the
result. Note that the retrieved result is guaranteed to be valid only if no methods were called on the OCLLingo object
after the asynchronous request, except for asyncOperationsDone() and retrieveAsyncResult().

5.5.1 OCLLingo object documentation

class OCLLingo(device)
Object to handle computation of LINGO similarities on GPU with CUDA device ID deviceid

asyncOperationsDone()
Return True if all asynchronous operations on this object have completed.

getMultipleRows(rowbase, rowlimit)
Computes multiple Tanimoto rows rowbase:rowlimit corresponding to comparing every SMILES string in
the query set with the reference SMILES strings having index row, row+1, ..., rowlimit-1 in the reference
set, and stores this block as the most recent asynchronous result.

This method is synchronous (it will not return until the block has been completely computed).

set_qsmiles(qsmilesmat, qcountsmat, qlengths, [qmags])
Sets the reference SMILES set to use Lingo matrix qsmilesmat, count matrix qcountsmat, and length vector
querylengths. If querymags is provided, it will be used as the magnitude vector; else, the magnitude vector
will be computed (on the GPU) from the count matrix.

Because of hardware limitations, the query matrices (qsmilesmat and qcountsmat) must have no more than
65,536 rows (molecules) and 32,768 columns (Lingos). Larger computations must be performed in tiles.

set_refsmiles(refsmilesmat, refcountsmat, reflengths, [refmags])
Sets the reference SMILES set to use Lingo matrix refsmilesmat, count matrix refcountsmat, and length
vector reflengths. If refmags is provided, it will be used as the magnitude vector; else, the magnitude vector
will be computed (on the GPU) from the count matrix.

Because of hardware limitations, the reference matrices (refsmilesmat and refcountsmat) must have no
more than 32,768 rows (molecules) and 65,536 columns (Lingos). Larger computations must be performed
in tiles.

5.5. pysiml.OCLLingo - Computing LINGO similarities on an OpenCL-capable GPU or CPU 17

pySIML Documentation, Release 1.5

18 Chapter 5. Similarity calculations with pySIML

CHAPTER

SIX

REFERENCES

19

pySIML Documentation, Release 1.5

20 Chapter 6. References

CHAPTER

SEVEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

21

pySIML Documentation, Release 1.5

22 Chapter 7. Indices and tables

BIBLIOGRAPHY

[Grant06] Grant JA, Haigh JA, Pickup BT, Nicholls A, and Sayle RA. Lingos, Finite State Machines, and Fast Similar-
ity Searching. Journal of Chemical Information and Modeling, 2006, 46(5), 1912-1918. DOI:10.1021/ci6002152

[Vidal05] Vidal D, Thormann M, Pons M. LINGO, an Efficient Holographic Text Based Method to Calculate Bio-
physical Properties and Intermolecular Similarities. Journal of Chemical Information and Modeling, 2005, 45(2),
386-393. DOI:10.1021/ci0496797

23

http://dx.doi.org/10.1021/ci6002152
http://dx.doi.org/10.1021/ci0496797

pySIML Documentation, Release 1.5

24 Bibliography

MODULE INDEX

P
pysiml.compiler, 9
pysiml.CPULingo, 12
pysiml.GPULingo, 14
pysiml.OCLLingo, 17

25

pySIML Documentation, Release 1.5

26 Module Index

INDEX

A
asyncOperationsDone() (pysiml.CPULingo.CPULingo

method), 12
asyncOperationsDone() (pysiml.GPULingo.GPULingo

method), 14
asyncOperationsDone() (pysiml.OCLLingo.OCLLingo

method), 17

C
CPULingo (class in pysiml.CPULingo), 12
cSMILEStoMatrices() (in module pysiml.compiler), 10

G
getMultipleHistogrammedRows()

(pysiml.GPULingo.GPULingo method),
15

getMultipleHistogrammedRows_async()
(pysiml.GPULingo.GPULingo method),
15

getMultipleRows() (pysiml.CPULingo.CPULingo
method), 12

getMultipleRows() (pysiml.GPULingo.GPULingo
method), 14

getMultipleRows() (pysiml.OCLLingo.OCLLingo
method), 17

getMultipleRows_async() (pysiml.CPULingo.CPULingo
method), 13

getMultipleRows_async() (pysiml.GPULingo.GPULingo
method), 14

getNeighbors() (pysiml.GPULingo.GPULingo method),
15

getNeighbors_async() (pysiml.GPULingo.GPULingo
method), 15

getTanimotoRow() (pysiml.CPULingo.CPULingo
method), 13

getTanimotoRow() (pysiml.GPULingo.GPULingo
method), 15

getTanimotoRow_async() (pysiml.CPULingo.CPULingo
method), 13

getTanimotoRow_async() (pysiml.GPULingo.GPULingo
method), 15

GPULingo (class in pysiml.GPULingo), 14

O
OCLLingo (class in pysiml.OCLLingo), 17

P
preprocessNumbers() (in module pysiml.compiler), 10
pysiml.compiler (module), 9
pysiml.CPULingo (module), 12
pysiml.GPULingo (module), 14
pysiml.OCLLingo (module), 17

R
retrieveAsyncResult() (pysiml.CPULingo.CPULingo

method), 13
retrieveAsyncResult() (pysiml.GPULingo.GPULingo

method), 16

S
set_qsmiles() (pysiml.CPULingo.CPULingo method), 13
set_qsmiles() (pysiml.GPULingo.GPULingo method), 16
set_qsmiles() (pysiml.OCLLingo.OCLLingo method), 17
set_refsmiles() (pysiml.CPULingo.CPULingo method),

13
set_refsmiles() (pysiml.GPULingo.GPULingo method),

16
set_refsmiles() (pysiml.OCLLingo.OCLLingo method),

17
SMILEStoMatrices() (in module pysiml.compiler), 9
SMILEStoMultiset() (in module pysiml.compiler), 10
supportsParallel() (pysiml.CPULingo.CPULingo

method), 13

27

	Introduction to pySIML
	Installing pySIML
	Prerequisites
	Setup Procedure

	pySIML Concepts
	Basics of LINGO
	pySIML Computation Model

	Preprocessing SMILES in pySIML
	The Short Version
	The Long Version
	pysiml.compiler - Transforming SMILES strings into SIML internal representations

	Similarity calculations with pySIML
	Generic API for computing LINGOs with pySIML
	Example of computing similarities with pySIML
	pysiml.CPULingo - Computing LINGO similarities on a CPU
	pysiml.GPULingo - Computing LINGO similarities on a CUDA-capable GPU
	pysiml.OCLLingo - Computing LINGO similarities on an OpenCL-capable GPU or CPU

	References
	Indices and tables
	Bibliography
	Module Index
	Index

