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We present a software module which allows one to efficiently
perform molecular dynamics and local minimization calculations
in internal coordinates when incorporated into a molecular dynam-
ics package. We have implemented a reference interface to the NIH
version of the X-PLOR structure refinement package and we show
that the module provides superior torsion-angle dynamics function-
ality relative to the native X-PLOR implementation. The module
has been designed in a portable fashion so that interfacing it with
other packages should be relatively easy. Other features of the mod-
ule include the ability to define rather general internal coordinates,
an accurate integration algorithm which can automatically adjust
the integration step size, and a modular design, which facilitates
extending and enhancing the module.
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1. INTRODUCTION

In the past ten years efficient algorithms have made com
tationally tractable the use of internal coordinates in molec
dynamics simulations of systems of biological interest (hav
more than say 100 atoms). Internal coordinates are an at
tive alternative to the Cartesian coordinates of each atom w
particular degrees of freedom are not of interest. For exam
in the process of NMR structure determination and refinem
in which one seeks molecular structures consistent with exp
mental NMR data, the bond lengths and bond angles are ge
ally taken as fixed—and no information about these feature
generally available from the NMR experiments. If these kno
coordinates are removed from the local optimizations and mo
ular dynamics simulations, the conformational search space
comes smaller and can be more rapidly sampled. For exam
typical proteins have approximatelyNa/3 torsion angles com
pared with 3Na coordinates in atomic Cartesian space, wh
Na is the number of atoms. Hence, the conformational spac
about an order of magnitude smaller if torsion angles are u
Furthermore, in torsional angle molecular dynamics (TAMD)
is typical that the timestep required to maintain a given leve
energy conservation is about 10 times larger than that requir
281090-7807/01
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atomic Cartesian space because the high frequency bond b
ing and stretching motions have been removed. Other aspec
the simulation might also be made more efficient because b
and bond-angle forces no longer need be calculated and bec
there are fewer coordinates to update in the integrator. Howe
these final two aspects have not been found to make a signifi
contribution to dynamics run times in practice.

An efficient recursive algorithm for dynamics in internal coo
dinates was originally introduced in the robotics literature (1–4).
This algorithm was then implemented for TAMD in X-ray an
NMR refinement packages (5–7) and in a more general pur
pose molecular dynamics package (8, 9). In this paper we repor
the implementation of a general internal variable dynamics m
ule (IVM) for efficient molecular dynamics. It allows gener
hinge definitions including those used in TAMD, but it als
allows more general coordinates which are appropriate w
some degrees of freedom are of interest and others are no
instance, in the refinement problem of a two protein comple
which the backbone coordinates of the isolated protein struct
are already known.

The IVM also includes local minimization routines (Powe
method conjugate gradient and steepest descent) so that
techniques can be conveniently employed in the same coord
system. Our package employs an efficient sixth-order predic
corrector integrator, which requires one force evaluation
timestep and allows for automatic timestep adjustment. We h
implemented loop constraints to maintain bond lengths in r
topologies, although as yet we have found the feature to b
limited use. Finally, the code has been developed in a hig
modular fashion to make the addition of new hinge definitio
integrators, and minimizers a relatively simple task. The IVM
not a stand-alone program as it does not have code to eva
forces and lacks support for file formats, etc. It is currently
terfaced to the NIH version of X-PLOR (10), and we intend to
integrate the IVM into other packages.

In the next section, we derive the equations of mot
in internal coordinates and outline the recursive solution.
8
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INTERNAL COORDINATE

Section 3 we document the details of the current implem
tation. In Section 4 we give two examples of using the IV
in the refinement of NMR structures. Finally, Section 5 co
tains some concluding remarks. The software can be obta
as part of the NIH version of X-PLOR (10) or by contacting the
authors.

2. FORMULATION

In Cartesian coordinates, Newton’s equations are w
known,

−5qi V = mi
d2qi

dt2
, [1]

whereqi is the position of thei th atom,mi is its mass, andV
is the total potential energy. Equation [1] reflects the fact t
the atomic coordinates are coupled only in the potential en
term. However, in internal coordinates, Newton’s equation re

−5θ V =Md2θ

dt2
+ C, [2]

where θ describes a vector of internal coordinates;C is a
vector of Coriolis forces present because these coordinate
noninertial; andM is a mass matrix which is, in general, n
diagonal and the elements of which vary as the coordin
change in time. An equation for the mass matrix is given
Section 2.4. Naively, in solving Eq. [2], one would expe
to expend computational effort proportional to the cube
the number of internal coordinates, making its solution m
expensive than the evaluation of the forces, and resulting in
acceptably poor performance for most molecules of biolog
interest. However, Jainet al.(1, 2) and Bae and Haug (3, 4) have
come up with recursive algorithms to solve Eq. [2] with effo
directly proportional to the number of internal coordinates
the molecule is decomposed into a hierarchical tree struc
as described below. We outline this recursive algorithm
Section 2.5.

Following (1) we decompose a molecule of interest into c
lections of one or more atoms which we group together in ri
bodies referred to as clusters. Within a given cluster, the
ative positions of the atoms are specified. An arbitrary c
ter is then chosen as the base and covalently bonded clu
are assigned as children. This process is repeated until a
clusters have been placed in the tree. A cluster tree decom
tion appropriate for torsion-angle-only dynamics is depicted
Fig. 1.

The clusters are connected by “hinges” which allow mot
of one cluster relative to its parent. These hinges permit th
degrees of freedom appropriate to those internal coordin
which one wishes to allow. Hence, freely rotating and transla
clusters with three or more atoms would have six degree

freedom, while torsion-angle-only motion would be represent
OLECULAR DYNAMICS 289
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FIG. 1. The tree structure of a three-residue protein fragment decomp
into clusters appropriate for torsion-angle dynamics. The numbers represe
cluster level (distance from the base), while the letters denote the branch
red bond in the ring of the phenyl group shows where a bond must be br
in order to impose the tree structure. However, in refinement calculations
relative position of the atoms in the phenyl group are known and thus are us
grouped into a single cluster.

by a hinge with a single rotational degree of freedom. A concr
example of hinge coordinates is given in Section 2.1.

In order to form the tree topology, one must disregard cova
bonds closing rings and loops such as those arising from d
fide bonds. These bonding relationships can be reasserted
one of several methods: an appropriate bonding potential en
term can be employed, the bond can be explicitly constrai
in the dynamics, or, for small rings, the ring can be treated a
flexible (nonrigid) cluster (11), with only desired ring degree
of freedom active. The IVM allows for the first solution and al
implements the second ring-closing technique, as describe
Section 2.6.

In the tree structure, each cluster is identified by a pair
indices. The first identifies the cluster level and varies betw
1 andNt . We term the level 1 cluster the base, and those clus
at the ends of the branches the tips. The second index labe
particular branch at a given level. This label is not needed
unbranched structures and is usually omitted in this paper
clarity. Further notes on notation:

• Quantities with superscripts (o), (i ), or (c) denote the ap-
propriate initial quantity, value in internal coordinates, or val
in Cartesian coordinates, respectively.

ed• R denotes a rotation matrix.
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• 1 represents a unit matrix of appropriate dimension.
• SuperscriptT denotes the transpose operation.
• A tilde over a vector denotes the tensor associated with

vector’s cross product, i.e., in matrix representation

ã =

 0 −az ay

az 0 −ax

−ay ax 0

 , [3]

such that̃ab= a× b, for vectorsa andb.

2.1. Example Hinge Coordinates

As a concrete example of the coordinates used we cons
the branchless tree segment depicted in Fig. 2 with the posi
of atomn in clusterk represented as

qk,n = qk−1,0+ Rk−1
(
q(0)

k,0− q(0)
k−1,0+ q(i )

k

)+ Rk
(
q(0)

k,n − q(0)
k,0

)
,

[4]

with the rotation matrixRk = Rk−1R(i )
k . (Note that here the

second subscriptn denotes the atom within this cluster and n
the branch.) Hingek corresponds to the bond between atom
positionsqk,0 andqk−1,b. Displacements from the parent clu
ter, such as those due to a bond stretch, are represented b
relative internal positionq(i )

k , while internal rotations relative to
the parent cluster are represented by the rotation matrixR(i )

k .
Consider the example case in which the only allowed deg

of freedom between clustersk andk−1 aresk, the displacemen
from equilibriums(0)

k of the bond between atoms at positionsqk,0

andqk−1,b, such that

q(i )
k =

(
sk + s(0)

k

)
e(0)

k , [5]

whereek is the unit vector in the directionqk,0 − qk−1,b andτk,
the torsion angle about this bond resulting in the rotation ma
about this bond,R(i )

k , whose time derivative is given by

Ṙ(i )
k = τ̇ ẽ(0)

k R(i )
k · [6]

FIG. 2. Hierarchical hinge/cluster decomposition. As there are no bran

in this example, only a single cluster index is used here.
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Then the velocity of atomn in clusterk is

q̇k,n = q̇k−1,0+ Ṙk−1
(
q(0)

k,0− q(0)
k−1,0+ q(i )

k

)
+ Rk−1q̇

(i )
k + Ṙk

(
q(0)

k,n − q(0)
k,0

)
= q̇k−1,0+ ω̃k−1

(
qk,n − qk−1,0

)+ ekṡk

+ Rk−1ẽ(0)
k R(i )

k

(
q(0)

k,n − q(0)
k,0

)
τ̇k, [7]

where we have used the relationshipd R/dt = ω̃R, whereR is
rotation matrix describing a rotation relative to a fixed referenc
frame andω is the associated angular velocity. Likewise, th
time dependence of the rotation matrix obeys the following r
cursive relation

Ṙk = ω̃k Rk = ω̃k−1Rk + Rk−1ẽ(0)R(i )
k τ̇k. [8]

If we definevk ≡ q̇k,0,, then, from Eq. [7] we have

vk = vk−1+ ω̃k−1(qk,0− qk−1,0)+ ekṡk, [9]

and from Eq. [8] we can also write

ω̃k − ω̃k−1 = Rk−1ẽ(0)
k R(i )

k RT
k τ̇k

= Rk−1ẽ(0)
k RT

k−1τ̇k

= ẽkτ̇k, [10]

rewritten as

ω̃k = ω̃k−1+ ẽkτ̇k. [11]

Equations [9] and [11] allow one to determine the linear an
angular velocities of clusterk recursively from the internal ve-
locitiesṡandτ̇ and from its parent’s linear and angular velocities
The general recursive equations for angular and linear velocit
are given in the next section.

2.2. General Recursive Expression for Spatial Velocity

The spatial velocity of clusterk is defined (12) as the block
vector

Vk =
(
ωk

vk

)
. [12]

Equations [9] and [11] can be generalized in the following re
cursive expression for the spatial velocity of thekth cluster

V =
(
ωk
)
= φT V + H T θ̇ . [13]
k

vk
k,k−1 k−1 k k
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INTERNAL COORDINATE

Here

φk,k−1 =
(

1 q̃k − q̃k−1

0 1

)
,

[14]

Hk =
(

h(a)
k 0

0 h(t)
k

)
,

whereh(a)
k andh(t)

k are matrices, the rows of which respective
denote the angular and translational degrees of internal free
of hinge k. These directions should be normalized, such t
Hk H T

k = 1. Typically, the base cluster (k = 1) will be allowed
all degrees of rotational and translational freedom (H = 1). The
vectorθk contains all of the allowed internal degrees of freedo
of hingek.

In practice, the coordinates used for integration can be
ferent from those in which the angular velocity is express
For instance, it is convenient to use the four Euler parame
(quaternion representation) to describe the orientation of a r
body, while only three angular velocities are expressed in
equations of motion. For simplicity, we ignore this subtlety
our current notation.

Time differentiation of Eq. [13] leads to the recursive equat
for the spatial acceleration

αk ≡ V̇k = φ̇T
k,k−1Vk−1+ φT

k,k−1αk−1+ Ḣ T
k θ̇k + H T

k θ̈k

= φT
k,k−1αk−1+ H T

k θ̈k + ak, [15]

whereak is thekth cluster’s Coriolis acceleration

ak =
(

0
ω̃k(vk − vk−1)

)
+
(
ω̃k 0

0 ω̃k

)
H T

k θ̇k. [16]

2.3. Forces and the Equations of Motion

The force on atomn in clusterk is

f (c)
k,n = −∇qk,nV, [17]

whereV is the total potential energy. Recall that, within a clust
atomic velocities are given by

q̇k,n = vk + ω̃k(qk,n − qk,0). [18]

Time differentiation gives the rigid-body atomic acceleratio
which are substituted into Newton’s equation of motion for clu
terk to give the equations of motion

f (c)
k ≡

∑
n

f (c)
k,n =

∑
n

mk,nq̈k,n
= mkv̇k +mkω̃kω̃k(qk,c − qk,0), [19]
OLECULAR DYNAMICS 291
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whereqk,c is the position of the cluster’s center of mass andmk

is the cluster mass. The moment about pointqk,0 is denotedN(c)
k ,

N(c)
k ≡

∑
n

(q̃k,n − q̃k,0) f (c)
k,n. [20]

Again replacing the forces usingf (c)
k,n = mk,nq̈k,n, and using

accelerations appropriate for a rigid body yields the equat
for moment in terms of rigid body velocities and acceleration

N(c)
k = mk(q̃k,c − q̃k,0)v̇ + Ikω̇k + ω̃k Ikωk, [21]

whereIk is the inertia tensor aboutqk,0:

Ik =
∑

n

mk,n[|qk,n − qk,0|21− (qk,n − qk,0)(qk,n − qk,0)T ].

[22]

Thus, the spatial equations of motion in the absence of hin
can then be written as

F (c)
k = Mkαk + bk, [23]

where

F (c)
k =

(
N(c)

k

f (c)
k

)
[24]

bk =
(

ω̃k Ikωk

mkω̃kω̃k(qk,c − qk,0)

)
[25]

Mk =
(

Ik mk(q̃k,c − q̃k,0)

−mk(q̃k,c − q̃k,0) mk1

)
. [26]

Equation [23] is a form of the Newton–Euler equation (12).
Now, a hinge couples adjacent clusters by means of eq

and opposite force on the two clusters. At the position ofqk,0

we write the spatial force which parent clusterk − 1 exerts on
clusterk asFk, and the spatial force from daughter clusterk+1
as−φk+1,k Fk+1. If a cluster has more than one daughter, t
force is the sum of such terms.

We can then write the total force on clusterk as the sum of
hinge forces and external forces, and thus the spatial equa
of motion for clusterk within a tree is written as

Fk − φk+1,k Fk+1+ F (c)
k = Mkαk + bk. [27]

Now, the atom-based forces can be expressed in term
internal coordinates as

T (c)
k = −∇θk V

(c)

= H
∑

φ ′F (c)
, [28]
k

k′
k,k k′
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where

φk,k′ =


φk′+1,k′ . . . φk,k−1 k > k′

1 k = k′.
0 k < k′

[29]

Equation [28] is obtained from the definitions of the inter
coordinates and the definition ofF (c)

k . But we can write the
potential energy as a sum of terms expressed in internal
atomic Cartesian coordinates,V(i ) andV(c), respectively:

V = V(i )(θ1, . . . , θNt )+ V(c). [30]

Fk can be decomposed into a component acting in the
strained degrees of freedom to enforce constraints, and a co
nent in the allowed degrees of freedom arising from energy te
which depend explicitly on the appropriate internal coordin
This later force component is projected out as

T (i )
k ≡ Hk Fk. [31]

It is seen that the projection of the hinge force in the allow
degrees of freedom is precisely the force in those degree
freedom due to potential terms which explicitly depend on th
coordinates:

T (i )
k = −∇θk V

(i ). [32]

Thus, we have the option of expressing individual potential (
force) function terms in either internal or atomic coordinat
whichever are most convenient.

Finally, Eq. [27] can be regarded as a recursion relation
is complimentary to that for acceleration

Fk = φk+1,k Fk+1− F (c)
k + Mkαk + bk, [33]

where one determines the hinge forces starting from the tip
working toward the base.

2.4. Spatial Operator Notation and the Internal
Coordinate, Mass Matrix

If clusterk = 0 is chosen to be at rest, Eq. [13] yields

V0 = 0

V1 = H T
1 θ̇1

V2 = φT
21V1+ H T

2 θ̇2 = φT
21H T

1 θ̇1+ H T
2 θ̇2
V3 = φT
32V2+ H T

3 θ̇3 = φT
31H T

1 θ̇1+ φT
32H T

2 θ̇2+ H T
3 θ̇3, [34]
AND CLORE
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and so on. These equations are rewritten in spatial oper
notation (1, 2) as

V ≡


V1

V2

V3
...

 = φT H T θ̇ , [35]

where

φ =


1 φ21 φ31 · · ·
0 1 φ32 · · ·
0 0 1 · · ·
...

...
...

...

 [36]

H =


H1 0 0 · · ·
0 H2 0 · · ·
0 0 H3 · · ·
...

...
...

...

 [37]

θ =


θ1

θ2

θ3
...

. [38]

Likewise,

α =


α1

α2

α3
...

 = φT H T θ̈ + a, [39]

with

a =


a1

a2

a3
...

. [40]

The representation of the Cartesian force in internal coordin
becomes
T (c) = HφF (c). [41]
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The recursion relation Eq. [33] for the hinge force is rewritt
as

F =


F1

F2

F3
...

 = φ[Mα + b− F (c)
]
, [42]

with the block-diagonal spatial operator mass matrix define

M =


M1 0 0 · · ·
0 M2 0 · · ·
0 0 M3 · · ·
...

...
...

...

. [43]

Finally, we use the operator counterpart of Eq. [31] combin
with Eqs. [39] and [42] to obtain the equations of motion
internal coordinates as

H F = T (i ) =Mθ̈ + C [44]

with the internal variable mass matrix and Coriolis terms defi
respectively as

M = HφMφT H T , [45]

and

C = Hφ
[
Ma+ b− F (c)

]
. [46]

Note thatM is a nondiagonal matrix whose elements chan
with time (φ andH depend on cluster position). From this poin
one then can use the recursive algorithm described below to s
for θ̈ with computational effort proportional to the number
clusters.

For a branched molecule, the spatial equations take ex
the same form as Eqs. [35]–[46], where now all clusters w
the same level have the same indexk. The components of th
spatial operator quantities themselves become block vector
matrices. For example, if there are two branches at thekth level,
the internal velocity vector and theφk,k−1 matrix respectively
become

(
Vka

)

Vk →

Vkb
[47]
MOLECULAR DYNAMICS 293

n

as

ed
in

ed

ge
t,
olve
f

ctly
ith

and

and

φk,k−1→




1 l̃ ka 0 0

0 1 0 0

0 0 1 l̃ kb

0 0 0 1

 if clusterskaandkbhave
distinct parents


1 l̃ ka

0 1

1 l̃ kb

0 1

 if clusterskaandkbhave a
common parent,

[48]

wherelka = qka,0−qk−1,0. Thus, the generalization of the formu
lae from unbranched to branched structures is straightforwa

2.5. Recursive Solution of the Equations of Motion

Jain et al. (1, 2) have formulated a recursive methodolog
for solving Eq. [2] for the internal coordinate accelerations. F
completeness, we include the algorithm here. For proof of
correctness, see (1, 2).

Introduce these ancillary quantities for each clusterk

Pk = φk+1,k P+k φ
T
k+1,k + Mk [49a]

Dk = Hk Pk H T
k [49b]

Gk = Pk H T
k D−1

k [49c]

P+k = (1− Gk Hk)Pk [49d]

zk = φk+1,kz+k+1+ Pkαk + bk − F (c)
k [49e]

εk = Tk − Hkzk [49f]

νk = D−1
k εk [49g]

z+k = zk + Gkεk, [49h]

where the recursion sweeps from the tip to the base with
boundary conditions at the tip

P+Nt
= 0, z+Nt

= 0. [50]

Then, the updated accelerations are calculated by swee
from base to tip with the recursion relations

α+k = φT
k,k−1αk−1 [51a]

θ̈k = νk − GT
k α
+
k [51b]

αk = α+k + H T
k θ̈k + ak, [51c]

with α+0 = 0.
Calculation of the equations of motion entails three swe
over each molecule. In the first sweep from base to tip Eq. [13]
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is used to compute spatial velocities. Second is a sweep
tip to base in which the quantities in Eq. [49] are comput
Finally, accelerations are computed using Eqs. [51]. The m
computationally expensive step is the second sweep due t
computation of matrix quantities. Typically, Eq. [49a] is t
cycle-limiting step resulting in compute time scaling linea
with the number of atom clusters.

2.6. Loop Constraints

Loop topologies such as those caused by disulfide bond
proteins and by sugar rings in nucleic acids are broken in
tree decomposition of the molecules into rigid clusters. O
approach to reimpose the broken bonds is to apply correc
forces such that the cluster accelerations are consistent wit
bond constraints.

To address the problem of applying bond-length constra
we consider the situation of two independent trees with the c
straint of a single bond between them. This artificial syst
contains no loop topologies, but allows a simple formulation
the bond-constraint problem and is sufficiently general for
current discussion.

Following (13), we write the constraint the bond constraintC
as

C : |q1t − q2t | − c = 0, [52]

whereq1t andq2t are the positions of atoms in two tip cluste
in trees 1 and 2, respectively, andc is the associated nomina
bond length. Differentiating constraintC twice with respect to
time results in the following relation between atomic positio
velocities, and accelerations:

(q̈1t − q̈2t ) · (q1t − q2t )+ |q̇1t − q̇2t |2 = 0. [53]

We enforce the constraint by means of an equal and opp
force between the two atoms

f1t = − f2t = λ(q1t − q2t ), [54]

whereλ remains to be determined. For simplicity, we consid
the case of two independent trees, of which one contains th
atom at positionq1t and the other contains an atom at positi
q2t . The internal coordinates of the two trees are described
θ1 andθ2, respectively. In analogy to Eq. [41], the force on t
tip atoms can be represented in internal coordinates as

−JT
1 f1t , JT

2 f2t , [55]

respectively, where

JT
1 = H1φ1B1, [56]
andB1 projects out the Cartesian velocity of the constraint ato
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on tip 1; i.e.,

v1t = BT
1 V1 = J1θ̇1. [57]

Then the equations of motion for the chains become

M1θ̈1+ C1 = T (i )
1 − JT

1 λ(q1t − q2t ) [58a]

M2θ̈2+ C2 = T (i )
2 − JT

2 λ(q1t − q2t ). [58b]

The internal coordinate acceleration of each chain is bro
into two parts

θ̈1 = θ̈1 f +1θ̈1, [59]

whereθ̈1 f is the acceleration in the absence of the constrain

θ̈1 f =M−1
1

(
T (i )

1 − C1
)
, [60]

and1θ̈1 is the correction so thatC is obeyed:

1θ̈1 = −M−1
1 JT

1 λ(q1t − q2t ). [61]

Likewise, the atomic accelerations become

q̈1t = q̈1t f +1q̈1t , [62]

with

1q̈1t = J11θ̈1. [63]

Therefore,

q̈1t = q̈1t f + J11θ̈1 [64a]

= q̈1t f − J1M−1
1 JT

1 λ(q1t − q2t ), [64b]

and

q̈2t = q̈2t f + J2M−1
2 JT

2 λ(q1t − q2t ). [65]

Combining these expressions for tip atom accelerations w
Eq. [53] results in an equation in whichλ is the only unknown.
This equation can be solved forλ:

λ = [(q1t − q2t )
T
(
J1M−1

1 JT
1 + J2M−1

2 JT
2

)
(q1t − q2t )]

−1

× [(q̈1t f − q̈2t f )
T (q1t − q2t )+ |q̇1t − q̇2t |2

]
. [66]

In this equation the free accelerations have been calculated u
the recursive algorithm, while the quantitiesJ1M−1

1 JT
1 are also

calculable by a recursive algorithm (2, 13).
During integration with finite timestep size, there will be dr

in the positions and velocities such that they violate the constr

mconditionC. Thus, it is desirable to periodically reenforceC with
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an approach which minimizes the violation of conservation
energy. Such a procedure has been implemented in an effi
fashion.

Unfortunately, this procedure becomes expensive when t
are multiple constrained loop closures, as in nucleic acids:
λl ’s for each loop are coupled together and computation beco
dominated by the computation of the cross termsJlM−1JT

l ′ .
This problem might be alleviated to some extent by the Lagra
multiplier approach of (14). Yet another approach would be
choose the coefficientsλl such that the associated constra
equations [52] are exactly obeyed at each timestep, as in SH
(15, 16).

More serious, however, is that in TAMD, the above appro
employs the incorrect coordinates for the sugar rings. The
propriate coordinates for the rings are ring pucker coordin
(17). However, pucker motion involves a combination of torsi
angles and bond angles, the latter not being available in TAM
One possible solution to this problem within the IVM is to fr
the bond angles to allow them to change in concert with
torsion angles in dynamics calculations.

3. IMPLEMENTATION

3.1. Integrator

Traditionally, molecular dynamics codes would use the ve
ity Verlet algorithm (18) for reasons of computational simplicit
low memory storage requirements, and its efficiency and sta
ity. In internal coordinates, the acceleration depends on the
locity, requiring that the velocity Verlet algorithm be modifie
This fact and the extra computational effort required to so
the internal variable equations of motion lead one to rethink
choice of integration algorithm. The original TAMD impleme
tation in X-PLOR (5, 6) utilized the Runge–Kutta algorithm, bu
this has the distinct disadvantage of requiring three force e
uations at each timestep. The program Dyana (7) employed a
modified Verlet algorithm to account for the velocity-depend
forces. Our code is built in a modular fashion, so that it h
been straightforward to implement a fourth-order Runge–K
algorithm (19) and a modified Verlet algorithm in addition to
sixth-order predictor-corrector integrator (PC6) (20), which also
requires only one force evaluation per timestep.

In the sixth-order predictor corrector used here, the vecto
internal coordinates and its first five scaled time derivative
time t are denoted

θ (n)(t) = 1tn

n!

dnθ (t)

dtn
, n = 0 . . .5. [67]

If qT = (θ (0)T , . . . , θ (5)T ), then the prediction step becomes
q(p)(t +1t) = Wq(t), [68]
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where

W =



1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1


. [69]

Using the updated positions and velocities, the scaled acc
ation a = 1t2θ̈/2 is then calculated using the recursive alg
rithm, and the state vector is then corrected

q(t +1t) = q(p)(t +1t)+U1a , [70]

where1a = a− a(p) and

U =



3/161

251/3601

1

11/181

1/61

1/601


. [71]

In our experience the PC6 integrator was found to be
most efficient: it allowed larger timesteps than those in
Verlet algorithm and required but one force evaluation
timestep. Figure 3 displays the energy error per timestep for t

FIG. 3. The error in energy as a function of step size for three IVM integ
tors and the TAMD routine native to X-PLOR. Note that the IVM Runge–Ku
the number of force evaluations at each timestep.
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integration schemes for the torsion-angle dynamics of the
residue B1 domain of protein G (21). Also shown in the figure
is the result for the TAMD routine native to X-PLOR versio
3.851, which employs a Runge–Kutta integrator. The erro
defined as

δE = 〈(Ei − 〈E〉)2〉/〈E〉, [72]

whereEi is the energy at timestepi and the angle brackets de
note average over timesteps. In the figure, the timestep siz
the Runge–Kutta results was divided by 4 and the IVM and
tive TAMD results were divided by 3 to reflect the fact that th
take that many force evaluations each timestep. Using the1E
metric, one sees that the two Runge–Kutta algorithms perf
approximately equivalently and slightly better than the Ve
algorithm. Figure 3 clearly shows the performance advan
for the PC6 approach. The PC6 protocol requires more sto
and computation than the Verlet algorithm, but this is mitiga
by the overhead of the recursive algorithm. Example timings
our platforms suggest that the CPU overhead of the PC6 ve
the Verlet is a few percent of run time. This efficiency pena
is readily offset by a factor of 3 or so increase in step size
lowed by the PC6 algorithm. However, for a given set of inter
coordinates (i.e., not torsion angles), a different integrator m
be more appropriate. The Verlet and Runge–Kutta routines
available in the IVM package, and new algorithms can be
plemented in a straightforward fashion.

3.1.1. Self-Adjusting Timestep

The native integrators in the X-PLOR program require t
one specify the size of the timestep. As an alternative, one
specify an error tolerance in the total energy and the timeste
then appropriately adjusted to meet this tolerance. We emplo
the approach used in Dyana (7) in which the timestep is scale
by the ad hoc factor

√
1+ 1E0−1E

τ1E
, [73]

where1E0 and1E are the target and observed energy erro
respectively, andτ is the response time in units of the molecu
dynamics timestep size. In addition, a step is thrown out and
step size halved if the energy error is greater than a thres
(typically 10% of the total energy).

We implemented both fixed and implicit timestep approac
and found that the latter is more flexible and convenient, part
larly when using the same simulated annealing protocol with
ferent hinge definitions; for instance, the same protocol ma
used for torsion angle and Cartesian space dynamics. The
tolerance is made a set fraction of the bath temperature and
the annealing protocols can be identical, with a larger time

automatically chosen for the torsion-angle-only dynamics.
AND CLORE
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3.1.2. Constant Temperature Dynamics

Constant temperature dynamics is desirable for the simul
annealing optimization used in structure refinement. We h
implemented coupling of the simulated system to a tempera
bath using two rudimentary approaches appropriate for st
ture determination dynamics: using velocity rescaling and us
a velocity-dependent force (22). Here we describe the velocity
scaling approach as it is the more convenient when using a
matic timestep selection. At each step, all of the internal vel
ities are scaled by

√
1+ T0− T

τT
, [74]

whereT andT0 are the system and bath temperatures, resp
tively, and τ is the response time in units of the molecul
dynamics timestep size.

Some care must be taken in determining the total energ
the presence of a bath, since the timestep depends upon i
used the approach employed in Dyana (7) in which temperature
coupling was achieved by velocity rescalingafter the step was
taken to evaluate the error in the system energy.

More appropriate for molecular dynamics simulations
tempting to reproduce a canonical ensemble would be a ther
stat using Nos´e–Hoover chains (23, 24). Use of the Nos´e–Hoover
approach would yield more accurate dynamics and would
allow the current automatic timestep adjustment algorithm
to the fact that there is a conserved total energy. Howe
this thermostat has not yet been implemented in the cur
framework.

3.1.3. Startup

The issue of dynamics initialization becomes important p
ticularly when many short dynamics runs are required, as is u
ally the case in simulated annealing protocols for NMR struct
determination and refinement. There are a number of tasks
must be accomplished upon startup. These tasks are item
along with the solutions we employed to achieve accepta
performance:

• The internal coordinates must be defined. For torsion-an
dynamics, we have automated the generation of the approp
hinge definitions.
• The internal coordinates must be determined such that

are consistent with a given set of Cartesian coordinates. Giv
defined tree topology, this mapping is unique and scales line
with the number of atoms.
• Internal velocities must be generated that are as consis

as possible with the given atomic velocities. Because the ato
velocities are free to display nonallowed motion within a fix
cluster and other motion not allowed by the hinge definitio

this mapping is not one-to-one. We pose the process as an
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optimization problem with the objective functional

1

2

(
V (c)

0 − V (c)
)T

M (c)
(
V (c)

0 − V (c)
)
, [75]

whereV (c)
0 is a vector of the given atomic velocities andV (c) are

the atom velocities determined from a given set of internal c
dinate velocitiesθ . We have chosen to scale the objective fu
tion by the atomic masses, represented in the diagonal at
mass matrixM (c).

The atomic velocities are linearly related to the internal co
dinate velocities by

V (c) = Jθ̇ , [76]

with

JT = HφB, [77]

and withBT the rectangular matrix which converts cluster s
tial velocities to atomic velocities. The internal velocities th
minimize Eq. [75] are then

θ̇ = (JT M (c) J
)−1

JT M (c)V (c)
0 . [78]

Now, the effort for solving this equation scales as the cube o
number of internal coordinates if we use a brute-force appro
Clearly, we would like to avoid this cost if possible. Fortunate
this equation has the same form as that for the cluster equa
of motion, Eq. [2], with the matrix

JT M (c) J = HφBM(c) BTφT H T [79]

having the same form as the mass matrix in internal coordin
Eq. [45], so that we can reuse the algorithm from Section 2
these substitutions are made

M → BM(c) BT [80a]

θ̈ → θ̇ [80b]

T → JT M (c)V (c)
0 , [80c]

and we seta = b = f (c) = 0. This allows the velocities of th
internal coordinates to be determined with effort proportiona
the number of atom clusters.
• The integrator must be initialized. The PC6 integrator

quires no extra steps at initialization if one is willing to settle
decreased accuracy during the first few steps: the initial valu
dnθ/dtn are set to zero forn = 3 . . .5. This approximation wa
found to be adequate in the current applications of the IVM,

a different approach may be desirable in other circumstance
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3.2. Local Minimization

In local minimization, the mass matrix is not involved, so th
the algorithm of Section 2.5 is not necessary. However, it
deemed convenient to provide a local minimization facility
augment the integrator. For one, this approach allows for lo
minimization after a dynamics run using the same coordina
Also, this addition removes the need for any separate rigid-b
minimization routine.

Again, the minimizer was implemented using a modular
sign so that multiple algorithms can be implemented with e
Currently, the most efficient algorithm implemented is a Pow
method derived from the same IMSL code which was use
X-PLOR (25).

To obtain the gradient in internal coordinates,T = T (c)+T (i ),
Eq. [41] must be solved. This can be accomplished using
recursive formula

zk = F (c)
k + φk+1,kzk+1 [81a]

T (c)
k = Hkzk, [81b]

solved from tip to base, withzk = F (c)
k for the tip clusters.

3.3. Hinge Types Implemented Thus Far

As of this writing, hinges have been implemented which all
the following categories of motion:

• Rotations appropriate for rigid bodies consisting of o
two, or three-plus atoms. Euler parameters (26) are used for
acceleration calculations, whileXY ZEuler angles (27) are used
to calculate gradients with respect to the internal coordinate
• Rotations plus translations appropriate for rigid bodies

one or more atoms.
• Torsion-angle-only motion.
• Translation-only motion. Rigid body motion without rot

tions.

It is also simple to fix atoms in space by placing them in a fix
inertial cluster. We note that adding new hinge definitions
straightforward process.

3.4. Programming Considerations

This IVM was written in the C++ programming language
an appropriate compromise between performance and ea
development and maintenance. Since we wish this module
included in multiple software packages, careful attention w
paid to both modularity and to performance. For example
that new hinge definitions would be easy to implement, runt
polymorphism was used in the description of the cluster-p
parent hinge object. The Hinge Node virtual base class enca
lates the behavior of a generic hinge-plus-cluster object, w
it is specialized for each specific type of hinge motion, be
torsion angle, full translation, translation-plus-rotation, etc.

s.tention was paid so that virtual class methods were not used



S

t

r
d
h
h

e

c
u

a

s
n

f
a

t

a
s
a

t

tr
d

o

t

of
321
us-
ns of
ere

rs at

m-
hree
ires
e of
na-
ted
the
and
ive

we
ula-

in
was

was
teps
me
ion,
m–
e in
es

two
xed-
ics
e

via-
10

cols.
with

xed
oes
o

res.
step

the

step
o-
ro-
ol,
e-
of

ari-
298 SCHWIETER

on too fine a granularity because of performance considera
(the calls are indirect and cannot be inlined). Another exam
of the balance between performance and convenience ca
found in the two-vector template classes employed in the IV
One class was used for arrays, whose size can vary from
invocation to the next, such as those that contain the inte
coordinate positions and velocities, and another was use
vectors of a size (generally small) fixed at compile time. T
latter class was deemed desirable to obviate the need for
storage and size information for many small vectors and it fa
itates added compile-time optimization opportunity becaus
the fixed loop sizes.

Despite the attention paid to coding detail here, the code
tainly suffers a runtime performance deficit relative to the eq
alent code written in Fortran because of the relative comp
maturity and language-level features such as Fortran’s no-
guarantee. However, we are pleased with our choice of C++ as
it allows rapid development, ease of code readability, and ea
upkeep/modification. Finally, we find the current performa
quite adequate.

4. EXAMPLES OF USE FOR NMR STRUCTURE
DETERMINATION AND REFINEMENT

We are actively using the IVM presented in this paper
refining NMR structures within the NIH X-PLOR implement
tion. We present two examples of use below.

4.1. Protein G: Torsion-Angle Dynamics

Here we present an example of NMR structure determina
of the B1 domain of protein G (21) to compare the IVM with the
TAMD functionality native to X-PLOR version 3.851 (5, 6) and
to demonstrate the power of the variable timestep function
in the IVM. In the calculation, experimental nuclear Overhau
effect (NOE) derived interproton distance restraint terms
dihedral restraint terms were employed in addition to poten
terms used to enforce reasonable covalent geometry and a
atom separation. All atomic masses were set to 100 AMU.

The starting coordinates consisted of an extended s
ture, and the annealing protocol employed is summarize
follows:

• Initial all-atom Cartesian coordinate Powell minimizati
using only bond, angle, and improper energy terms.
• High temperature torsional angle dynamics at 2000 K

1000 steps with all potential terms included except atom–a
repulsion.
• A dynamics loop in which atom–atom repulsion is add

in 10 increments of 100 steps each.
• A cooling loop in which the temperature is reduced fro

2000 to 100 K in increments of 25 K—with 39 dynamics ste
taken at each temperature.

• Final all-atom Powell minimization.
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All dynamics calculations were performed with a timestep
10 fs in the internal variable coordinate space consisting of
torsion angles, with all aromatic rings grouped into rigid cl
ters. Coupling to a temperature bath was achieved by mea
the velocity-dependent force method. Numerical results w
obtained from an executable generated by SGI Irix compile
full optimization.

As mentioned previously, the native TAMD procedure e
ploys a Runge–Kutta integration scheme which requires t
force evaluations per timestep, while the PC6 algorithm requ
but one force evaluation per timestep. The resulting run tim
the IVM-based protocol was approximately half that of the
tive TAMD routine, which is somewhat larger than that expec
purely on the number of force evaluations. We believe that
extra overhead is due to the greater generality of the IVM,
its use of C++ as opposed to the Fortran in which the nat
TAMD routine was written.

We then made the following change to the protocol:
replaced the fixed length timesteps in the dynamics calc
tions with timesteps that varied in the fashion described
Section 3.1.1. The scale factor of Eq. [73] for the timestep
chosen using the target energy error1E0 set to 0.001 kcal/K
times the bath temperature, and the system-bath coupling
changed to the velocity scaling method. The number of times
was allowed to vary in order to complete fixed-length-in-ti
dynamics runs: 3 ps for the high temperature equilibrat
0.3 ps for each of the 10 dynamics simulations in the ato
atom repulsion loop, and 0.78 ps for each temperature valu
the cooling loop. These values for the total integration tim
in the variable-time protocol were chosen so that the first
dynamics components had the same values as for the fi
time protocols, while the integration time of each dynam
run within the cooling loop was twice that of the fixed-tim
protocols.

In Fig. 4 the refinement energy and root-mean-square de
tion (RMSD) from the lowest energy structure are shown for
structures calculated by each of the three refinement proto
The fixed timestep, PC6 method resulted in one structure
high energy and an RMSD value larger than 4Å. Hence, this
structure is not visible in the figure. One can see that the fi
timestep IVM protocol produces fewer good structures than d
the native TAMD routine, with the former producing only tw
structures in the cluster of low energy and low RMSD structu
This is as we would expect due to the fact that for equal
size, the Runge–Kutta algorithm has better accuracy than
predictor-corrector algorithm.

On the other hand Fig. 4 shows that the variable time
protocol obtains results of quality equal to the TAMD pr
tocol. Moreover, the run time for the variable timestep p
tocol is about half that of the fixed timestep IVM protoc
and it is four times faster than the TAMD protocol. This r
duction in run time is manifest even though the total time
integration was significantly larger (about 80 ps for the v

able timestep protocol versus approximately 50 ps for the fixed
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FIG. 4. Refinement energy vs RMS deviation from the minimum ene
structure for refinement using three integration methods: the native TAMD
grator, PC6 integrator with fixed step size, and PC6 integrator with the var
timestep feature enabled. The fixed timestep PC6 methods resulted in one
ture with high energy and RMSD values larger than 4Å.

timestep protocols). This integration time was adjusted to g
results equivalent to those of the TAMD protocol. Significan
better results were obtained when a longer integration t
was used. For instance, if the total integration time is app
priately doubled (resulting in a run time approximately that
the fixed time IVM protocol), we found that all 10 structur
converged.

The integration step size1t and system temperature for on
of the PC6 structures are shown as a function of step numb
Fig. 5. Downward spikes in1t occur at the beginnings of dynam
ics simulations when potential parameters have been cha
discontinuously and also when there are atom–atom collisi
At these steps the integrator detects a large error in energy
servation and halves the step size. Note that despite this fac1t
stays relatively constant as the temperature decreases due
fact that1E0, the energy-conservation tolerance, decrease
the temperature is lowered.

Note that when using a fixed step size it is appropriate
tune the step size for each protocol. It is thus clear that
auto-adjusting timestep feature provides much in the way
convenience. In fact, the exact same (variable step size) pro
could be used in all-degrees-of-freedom dynamics; the cor
step size would be chosen by the IVM.

4.2. Two Protein Complex

Here we present an example of using the IVM module to

termine the structure of the complex of enzyme IIAGlc with the
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histidine phosphocarrier protein HPr, the crystal structures
which are reported in (28, 29), respectively. For this example
we reexamine the protocol used in (30, 31) for determining the
structure of the complex from NMR data given the X-ray stru
tures of the two proteins in isolation. Experimental NMR NO
derived interproton distance, dipolar coupling, andJ-coupling
restraints were used, as in (30). In addition to terms correspond
ing to these data, the refinement energy included bond, angle
proper, dihedral, atom–atom repulsion, radius of gyration (32),
and knowledge-based dihedral (33) potential terms. The X-ray
structures at various separations and orientations were us
starting structures.

In the original protocol, two copies each of HPr and IIAGlc

were utilized in the dynamics calculations, with the extra cop
kept fixed in space. In the primary set of coordinates, all ato
not belonging to a sidechain at the interface between the
proteins are bound to their corresponding copies using the
PLOR noncrystallographic symmetry (NCS) potential. We re
to this original protocol as NCS.

We implemented a new protocol in which all dynamics a
minimizations were carried out within the IVM. In the IVM
protocol the interfacial sidechain atoms were allowed their
sional degrees of freedom during the dynamics calculatio
The remaining atoms in IIA were fixed in space, while t

FIG. 5. Timestep size and system temperature during a structure dete
nation run of protein G. The three regions of the dynamics protocol are ident
as (a) high temperature equilibration, (b) addition of the atom–atom repul

potential, and (c) the cooling loop.



l

n

0
te

o
a
a
t

d
h

l
o

d
f
t

t

a
u

e

d
o
M

i
n
d
m
o

tarting
, the
Pr and
eated

dule
er-
full-
tion,
ies
r de-
300 SCHWIETERS

noninterfacial atoms in HPR were allowed to rotate and trans
as a rigid body.

In both cases, the protocol is summarized as follows:

• Rigid-body minimization, with atom–atom repulsio
slowly added.
• High temperature, equilibration dynamics at 3000 K (30

steps with the NCS protocol and 10 ps, approximately 600 s
with the IVM).
• A molecular dynamics simulated annealing cooling lo

in which the force constants and atom–atom repulsion radii
increased. The NCS protocol utilized 103 steps of 2 fs at e
temperature, while at each step, the IVM used a time dura
of 350 fs resulting in approximately 20 integration steps.
• All atom minimization for the NCS protocol, and rigi

body plus flexible sidechain torsion minimization using t
IVM.
• Rigid body minimizations first with the atom–atom repu

sion and radius of gyration terms turned off and then with th
terms turned back on again.

All atomic masses were set to 100 AMU. Four additional pseu
atoms were used to define the dipolar-coupling frame of re
ence (34). Both protocols treated these as a rigid body restric
to rotation motion only. Before and after depictions of IIAGlc

and HPr are shown in Fig. 6.
With the above two protocols on the SGI Irix platform, th

IVM performed the calculations about five times faster than
NCS protocol. For reference, the IVM protocol was modified
allow all internal degrees of freedom for the interfacial sidech
atoms during the dynamics portion of refinement and the res
ing time was approximately the same as that using the N
protocol.

All of the resulting structures from both protocols agre
to within 0.5 Å RMS deviation of all nonhydrogen atoms
The NCS structures had somewhat lower refinement energ
this was apparently due to the fact that there was some
tortion of the covalent geometry in the noninterfacial porti
of the proteins; this distortion was not possible in the IV
protocol, as those portions were rigid. In particular, the dip
lar coupling energy term is rather sensitive to tiny chang
in bond orientation. Further, there is no experimental just
cation for distorting the covalent geometry. The bottom li
is that the differences between structures calculated with
ferent initial velocities using the same protocol were the sa
size as differences between structures calculated using the
protocol.

This example indicates two strengths of the IVM. It allow
us to simply consider just those degrees of freedom which
probed in the experiment. As a result of this feature we were a
to obtain results equivalent to those obtained by a much m
complicated and costly procedure. Secondly, the IVM provid
convenience in that all minimizations and dynamics simulatio

can be carried out within the same framework.
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FIG. 6. Hierarchical refinement of the HPr/IIAGlc complex. Flexible inter-
facial side chains and backbone atoms are displayed. Panel (a) depicts a s
point configuration while panel (b) shows the final structure. In the figure
backbone atoms are represented by gray tubes. The flexible regions of H
IIA Glc are represented by blue and red lines, respectively. This figure was cr
with the VMD–XPLOR visualization program (35, 36).

5. CONCLUSION

In this paper we have presented the internal variable mo
for molecular dynamics and minimization calculations in int
nal coordinates. The IVM has been shown to be an efficient
featured implementation of the recursive tree decomposi
acceleration evaluation algorithm which allows loop topolog
to be treated correctly. Furthermore, the extensible, modula

sign allows new features to be easily incorporated. The IVM
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is currently actively used by our group in the determination
protein and nucleic acid structures by NMR.

It should be noted that constraining arbitrary internal coo
nates can result in unphysical dynamical behavior. For exam
it has been shown that constraining, bond angle motion raise
effective barrier for torsion motion (37). In simulated annealing
molecular dynamics calculations used in structure determ
tion, such barriers are mitigated by strong experiment-ba
potential energy terms and by employing a suitably high ini
temperature in the annealing protocol. Moreover, the deta
dynamical trajectory is of no interest. However, when perfor
ing molecular dynamics in nonstructure determination conte
the implications of freezing degrees of freedom must be gi
careful consideration.

Possible future enhancements include the addition of on
more Monte Carlo minimization algorithms, adding a more m
ern local minimization methodology, such as TNPACK (38, 39),
and better treatment of loop constraints. Finally, most of the
gorithms which the IVM employs are amenable to efficient p
allelization. For NMR structure determination and refineme
parallelization efforts are usually better focused on proces
multiple structures simultaneously. However, other applicati
have different parallelization specifications, which could ben
from a parallelized version of this IVM.
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5. L. M. Rice and A. T. Brünger, Torsion angle dynamics: Reduced varia
conformational sampling enhances crystallographic structure refinem
Proteins19,277 (1994).

6. E. G. Stein, L. M. Rice, and A. T. Br¨unger, Torsion-angle molecular dynam
ics as a new efficient tool for NMR structure calculation.J. Magn. Reson.
124,154–164 (1997), doi: 10.1006/jmre.1996.1027.

7. P. Güntert, C. Mumenthaler, and K. W¨uthrich, Torsion angle dynamics fo
NMR structure calculation with the new program Dyana,J. Mol. Biol.273,
283 (1997).

8. A. M. Mathiowetz, A. Jain, N. Karasawa, and W. A. Goddard, I
Protein simulation using techniques suitable for very large systems:
cell multipole method for nonbond interactions and the Newton–Euler

verse mass operator method for internal coordinate dynamics,Proteins20,
227 (1994).
MOLECULAR DYNAMICS 301

of

di-
ple,
the

na-
ed,
ial
iled
m-
ts,
en

or
d-

al-
r-

nt,
ing
ns
fit

or

for

ed

ed

le
ent,

-

I,
The
in-

9. N. Vaidehi, A. Jain, and W. A. Goddard, III, Constant temperature co
strained molecular dynamics: The Newton–Euler inverse mass ope
method,J. Phys. Chem.100,10,508 (1996).

10. G. M. Clore and A. M. Gronenborn, New methods of structure refinem
for macromolecular structure determination by NMR,Proc. Nat. Acad. Sci.
U.S.A.95,5891–5898 (1998);available athttp://nmr.cit.nih.gov/xplor.nih/.
[Review]

11. A. Jain and G. Rodriguez, Recursive flexible multibody system dynam
using spatial operators,J. Guid. Control Dynam.15,1453 (1992).

12. H. Goldstein, “Classical Mechanics,” Chap. 5, Addison–Wesley, Read
MA (1980).

13. G. Rodriguez, A. Jain, and K. Kreutz-Delgado, A spatial operator alge
for manipulator modeling and control,Int. J. Rob. Res.10,371 (1991).

14. A. K. Mazur, Symplectic integration of closed chain rigid body dynami
with internal coordinate equations of motion,J. Chem. Phys.111, 1407
(1999).

15. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, Numerical integratio
the Cartesian equations of motion of a system with constraints: Molec
dynamics ofn-alkanes,J. Comput. Phys.23,327 (1977).

16. W. F. van Gunsteren and H. J. C. Berendsen, Algorithms for macromolec
dynamics and constraint dynamics,Mol. Phys.34,1311 (1977).

17. D. Cremer and J. A. Pople, A general definition of ring puckeri
coordinates,J. Am. Chem. Soc.76,1354 (1975).

18. L. Verlet, Computer “experiments” on classical fluids. I. Thermodynami
Properties of Lennard–Jones molecules,Phys. Rev.159,98 (1967).

19. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Num
ical Recipes in C,” p. 569, Cambridge Univ. Press, Cambridge, UK (198

20. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquid,” p. 340
Clarendon Press, Oxford (1987).

21. A. M. Gronenborn, D. R. Filpula, N. Z. Essig, A. Achari, M. Whitlow, P. T
Wingfield, and G. M. Clore, A novel, highly stable fold of the immunoglob
ulin binding domain of streptococcal protein-G,Science253,657 (1991).

22. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,
J. R. Haak, Molecular dynamics with coupling to an external bath,J. Chem.
Phys.81,3684 (1984).

23. S. Nosé, A unified formulation of the constant temperature molecu
dynamics methods,J. Chem. Phys.81,511 (1984).

24. G. J. Martyna, M. L. Klein, and M. Tuckerman, Nos´e–Hoover chains: The
canonical ensemble via continuous dynamics,J. Chem. Phys.97, 2635
(1992).

25. M. J. D. Powell, Restart procedures for the conjugate gradient meth
Math. Program.12,241–254 (1977).

26. D. J. Evans and S. Murad, Singularity free algorithm for molecu
dynamics simulation of rigid polyatomics,Mol. Phys.34,327 (1977).

27. H. Goldstein, “Classical Mechanics,” p. 608, Addison–Wesley, Readi
MA (1980).

28. M. D. Feese, L. Comolli, N. D. Meadow, S. Roseman, and S.
Remington, Structural studies of the Escherichia coli signal transduc
protein IIA(Glc): Implications for target recognition,Biochem.36, 16,087
(1997).

29. Z. C. Jia, J. W. Quail, E. B. Waygood, and L. T. J. Delbaere, T
2.0-angstrom resolution structure of escherichia-coli histidine-contain
phosphocarrier protein HPr—A redetermination,J. Biol. Chem.268,22,490
(1993).

30. G. S. Wang, J. M. Louis, M. Sondej, Y. J. Seok, A. Peterkofsky, a
G. M. Clore, Solution structure of the phosphoryl transfer complex betw
the signal transducing proteins HPr and IIA(Glucose) of the Escheric

coli phosphoenolpyruvate: Sugar phosphotransferase system,EMBO J.19,
5635 (2000).



e

n
s

io

n
w

n

r

m.

ics

ed
s,

n

302 SCHWIETERS

31. G. M. Clore, Accurate and rapid docking of protein–protein complex
on the basis of intermolecular nuclear Overhauser enhancement data
dipolar couplings by rigid body minimization,P. Nat. Acad. Sci. USA97,
9021 (2000).

32. J. Kuszewski, A. M. Gronenborn, and G. M. Clore, Improving the packi
and accuracy of NMR structures with a pseudopotential for the radiu
gyration,J. Am. Chem. Soc.121,2337 (1999).

33. J. Kuszewski and G. M. Clore, Source of and solutions to pro
lems in the refinement of protein NMR structures against tors
angle potentials of mean force,J. Magn. Reson.146, 249–254
(2000).

34. G. M. Clore, A. M. Gronenborn, and N. Tjandra, Direct refinement agai
residual dipolar couplings in the presence of rhombicity of unkno

magnitude,J. Magn. Reson.131,159–162 (1998).
AND CLORE

s
and

g
of

b-
n

st
n

35. C. D. Schwieters and G. M. Clore, The VMD–XPLOR visualizatio
package for NMR structure refinement,J. Magn. Reson.149,239 (2001);
available athttp://vmd-xplor.cit.nih.gov/.

36. W. Humphrey, A. Dalke, and K. Schulten, VMD—Visual molecula
dynamics,J. Mol. Graph. 14, 33–38 (1996):available at http://www.
ks.uiuc.edu/Research/vmd/. VMD–XPLOR is based on the VMD progra

37. W. F. van Gunsteren and M. Karplus, Effect of constraints on the dynam
of macromolecules,Macromolecules15,1528 (1982).

38. P. Derreumaux, G. Zhang, T. Schlick, and B. Brooks, A truncat
Newton minimizer adapted for CHARMM and biomolecular application
J. Comput. Chem.15,532 (1994).

39. D. X. Xie and T. Schlick, Efficient implementation of the truncated-Newto
algorithm for large-scale chemistry applications.SIAM J. Optimiz.10,132

(1999).


	1. INTRODUCTION
	2. FORMULATION
	FIG. 1.
	FIG. 2.

	3. IMPLEMENTATION
	FIG. 3.

	4. EXAMPLES OF USE FOR NMR STRUCTURE DETERMINATION AND REFINEMENT
	FIG. 4.
	FIG. 5.
	FIG. 6.

	5. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

