Journal of Magnetic Resonant62,288-302 (2001)

doi:10.1006/jmre.2001.2413, available onlatehttp://www.idealibrary.com o

@®
IDEAL

Internal Coordinates for Molecular Dynamics and Minimization
in Structure Determination and Refinement

Charles D. Schwietefsand G. Marius Clorg

*Computational Bioscience and Engineering Laboratory, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda,
Maryland 20892-5624; an¢lLaboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health, Building 5, Bethesda, Maryland 20892-0510

E-mail: Charles.Schwieters@nih.gov, clore@speck.niddk.nih.gov

Received April 23, 2001; revised July 10, 2001; published online September 6, 2001

We present a software module which allows one to efficiently
perform molecular dynamics and local minimization calculations
in internal coordinates when incorporated into a molecular dynam-
ics package. We have implemented a reference interface to the NIH
version of the X-PLOR structure refinement package and we show
that the module provides superior torsion-angle dynamics function-
ality relative to the native X-PLOR implementation. The module
has been designed in a portable fashion so that interfacing it with
other packages should be relatively easy. Other features of the mod-
ule include the ability to define rather general internal coordinates,
an accurate integration algorithm which can automatically adjust
the integration step size, and a modular design, which facilitates
extending and enhancing the module.

atomic Cartesian space because the high frequency bond ber
ing and stretching motions have been removed. Other aspects
the simulation might also be made more efficient because bor
and bond-angle forces no longer need be calculated and becal
there are fewer coordinates to update in the integrator. Howeve
these final two aspects have not been found to make a significa
contribution to dynamics run times in practice.

An efficient recursive algorithm for dynamics in internal coor-
dinates was originally introduced in the robotics literatdred).
This algorithm was then implemented for TAMD in X-ray and
NMR refinement package$<£7) and in a more general pur-
pose molecular dynamics package9). In this paper we report

the implementation of a general internal variable dynamics mod
ule (IVM) for efficient molecular dynamics. It allows general
hinge definitions including those used in TAMD, but it also
allows more general coordinates which are appropriate whe
In the past ten years efficient algorithms have made commome degrees of freedom are of interest and others are not; f
tationally tractable the use of internal coordinates in moleculenstance, in the refinement problem of a two protein complex ir
dynamics simulations of systems of biological interest (havinghich the backbone coordinates of the isolated protein structure
more than say 100 atoms). Internal coordinates are an attrae already known.
tive alternative to the Cartesian coordinates of each atom whermrhe IVM also includes local minimization routines (Powell
particular degrees of freedom are not of interest. For exampteethod conjugate gradient and steepest descent) so that the
in the process of NMR structure determination and refinemeethniques can be conveniently employed in the same coordina
in which one seeks molecular structures consistent with expesystem. Our package employs an efficient sixth-order predicto
mental NMR data, the bond lengths and bond angles are germ@rrector integrator, which requires one force evaluation pe
ally taken as fixed—and no information about these featuredimestep and allows for automatic timestep adjustment. We hay
generally available from the NMR experiments. If these knowimplemented loop constraints to maintain bond lengths in ring
coordinates are removed from the local optimizations and moldéopologies, although as yet we have found the feature to be
ular dynamics simulations, the conformational search space biited use. Finally, the code has been developed in a highl
comes smaller and can be more rapidly sampled. For exampiedular fashion to make the addition of new hinge definitions
typical proteins have approximately, /3 torsion angles com- integrators, and minimizers a relatively simple task. The IVM is
pared with 3\, coordinates in atomic Cartesian space, wheret a stand-alone program as it does not have code to evalue
N4 is the number of atoms. Hence, the conformational spacdasces and lacks support for file formats, etc. It is currently in-
about an order of magnitude smaller if torsion angles are usgetfaced to the NIH version of X-PLORLQ), and we intend to
Furthermore, in torsional angle molecular dynamics (TAMD), integrate the IVM into other packages.
is typical that the timestep required to maintain a given level of In the next section, we derive the equations of motion
energy conservation is about 10 times larger than that requiredrininternal coordinates and outline the recursive solution. Ir

1. INTRODUCTION
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Section 3 we document the details of the current impleme
tation. In Section 4 we give two examples of using the IV
in the refinement of NMR structures. Finally, Section 5 con
tains some concluding remarks. The software can be obtair
as part of the NIH version of X-PLORLQ) or by contacting the
authors.

2. FORMULATION

In Cartesian coordinates, Newton's equations are we
known,

d?q;
— 1
s [a]

whereq; is the position of theth atom,my; is its mass, an®/ - .

is the total potential energy. Equation [1] reflects the fact th
the atomic coordinates are coupled only in the potential ener
term. However, in internal coordinates, Newton’s equation rea

—VgV=m;
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d2o
_VGVZMW +C, [2]

where 6 describes a vector of internal coordinaté€s;is a _ FIG.1. Thetree _structure of_athree—residue protein fragment decompose
vector of Coriolis forces present because these Coordinatesl%lusters appropriate for torsion-angle dynamics. The numbers represent t
noninertial: andM is a mass matrix which is. in general nofluster level (distance from the base), while the letters denote the branch. Tl

) ! . ed bond in the ring of the phenyl group shows where a bond must be broke
diagonal and the elements of which vary as the coordinaig$rder to impose the tree structure. However, in refinement calculations th

change in time. An equation for the mass matrix is given iglative position of the atoms in the phenyl group are known and thus are usual
Section 2.4. Naively, in solving Eqg. [2], one would expecgrouped into asingle cluster.
to expend computational effort proportional to the cube of

the number of internal coordinates, making its solution moge _, . . . .
. . o a hinge with a single rotational degree of freedom. A concret
expensive than the evaluation of the forces, and resulting in ur- : . o . )
. : e1<ample of hinge coordinates is given in Section 2.1.
acceptably poor performance for most molecules of biologica

interest. However, Jaiet al. (1, 2) and Bae and Haug(4) have In order to form the tree topology, one must disregard covaler

: . . : onds closing rings and loops such as those arising from disu
come up with recursive algorithms to solve Eq. [2] with efforf . : .
) : : : de bonds. These bonding relationships can be reasserted us
directly proportional to the number of internal coordinates |

. . . : one of several methods: an appropriate bonding potential ener
the molecule is decomposed into a hierarchical tree structure 2 .

; . . . . efm can be employed, the bond can be explicitly constraine
as described below. We outline this recursive algorithm in ; : ;
Section 2.5 in the dynamics, or, for small rings, the ring can be treated as

. : . lexible (nonrigid) clusterX1), with only desired ring degrees
Following (1) we decompose a molecule of interest into col- ; . .
. . . =~ of freedom active. The IVM allows for the first solution and also
lections of one or more atoms which we group together in rigi . . ; :
. - ) implements the second ring-closing technique, as described
bodies referred to as clusters. Within a given cluster, the r action 2.6

ative positions of the atoms are specified. An arbitrary clus—In the tree structure, each cluster is identified by a pair o

ter is then chosen as the base and covalently bonded clusteés S - :
. : ; . : ndices. The first identifies the cluster level and varies betwee
are assigned as children. This process is repeated until all the

. andN;. We term the level 1 cluster the base, and those cluste

clusters have been placed in the tree. A cluster tree decompo%.l- . .
. ) : S . al the ends of the branches the tips. The second index labels t
tion appropriate for torsion-angle-only dynamics is depicted In_ . . . .
Fig 1 particular branch at a given level. This label is not needed fo

9.~ _ . ._unbranched structures and is usually omitted in this paper fc
The clusters are connected by “hinges” which allow motiof _ . L

. - . . clarity. Further notes on notation:

of one cluster relative to its parent. These hinges permit those
degrees of freedom appropriate to those internal coordinates Quantities with superscript®), (i), or (c) denote the ap-
which one wishes to allow. Hence, freely rotating and translatimpgopriate initial quantity, value in internal coordinates, or value
clusters with three or more atoms would have six degreesinfCartesian coordinates, respectively.

freedom, while torsion-angle-only motion would be representede R denotes a rotation matrix.
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e 1 represents a unit matrix of appropriate dimension. Then the velocity of atom in clusterk is
e Superscripil denotes the transpose operation.
! . . _ _ , 0 0 :
o A’tllde over a vector del_"notes the tensor assqmated with the Gkn = k10 + Rk_l(qlﬁ,é _ Chg_)l,o + qlg))
vector’s cross product, i.e., in matrix representation Y o o
n(
+ Re16” + Re(Gicn — o)
0 -a a = Ok-1,0 + Pk—1(Tn — G-1,0) + &
a=| a 0 —a |, 3 %(0) (1) [ (O 0)\ -
; : = +Read® RO (6 — 4 y
—ay a8y 0

where we have used the relationsHiR/dt = @R, whereR is

rotation matrix describing a rotation relative to a fixed reference

frame andw is the associated angular velocity. Likewise, the

time dependence of the rotation matrix obeys the following re:
As a concrete example of the coordinates used we considersive relation

the branchless tree segment depicted in Fig. 2 with the positions

of atomn in clusterk represented as Re = @R = 1R + Rk_lé(O)RS)i_k. 8]

such thaib = a x b, for vectorsa andb.

2.1. Example Hinge Coordinates

Gkn = Gk-1.0 + Ree1(a — 9% o +a) + Re(a% — ).
[4]

If we definevy = Gk o,, then, from Eqg. [7] we have

. Uk = Uk-1 + @k-1(0k 0 — Gk-1,0) + &Sk, [°]
with the rotation matrixR, = Rk_lRf('). (Note that here the
second subscript denotes the atom within this cluster and not 4 from Eq. [8] we can also write
the branch.) Hingé& corresponds to the bond between atoms at
positionsgy o andgk—1 b Displacements from the parent clus-

. — 2O R RT:
ter, such as those due to a bond stretch, are represented by the Ok — 01 = R18TRER T
relative internal positioqlﬁ'), while internal rotati(_)ns relative to — kalé|(<o) R 7
the parent cluster are represented by the rotation maﬁﬁx .
Consider the example case in which the only allowed degrees = &k, [10]

of freedom between clusteksandk — 1 ares;, the displacement
from equilibriums'” of the bond between atoms at positiops ~ rewritten as
anddgk-1.p, Such that
Dk = k-1 + &Tk. [11]

e, [5]

o = (a4

Equations [9] and [11] allow one to determine the linear anc
whereey is the unit vector in the directiotk o — Gk-1,0 andz, angular velocities of clustds recursively from the internal ve-
the torsion angle about this bond resulting in the rotation matncitiess andr and from its parent’s linear and angular velocities.
about this bondR{’, whose time derivative is given by The general recursive equations for angular and linear velocitie

_ _ are given in the next section.
R0 - 40 R g
2.2. General Recursive Expression for Spatial Velocity

The spatial velocity of cluster is defined 12) as the block

vector
w:(”) [12]
Uk

Equations [9] and [11] can be generalized in the following re-
cursive expression for the spatial velocity of #th cluster

cluster k
k0 Ax.b

hinge k+1

Q1,6

cluster k-1
uster cluster k+1

) .
FIG.2. Hierarchical hinge/cluster decomposition. As there are no branches Vg = ( k) = ¢|Ik71Vk—l + HkTek, [13]
in this example, only a single cluster index is used here. Uk '
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Here whereg ¢ is the position of the cluster’s center of mass and
is the cluster mass. The moment about pqjintis denotedN?,
# <1 Gk — Gk 1>
k.k—1 = P ~ ~
| o 1 N =3 @n — o) - [20]
[14] n
h&® o
Hic = (0 h(t))’ Again replacing the forces usmg((c) = My nbk.n, @and using
k

accelerations appropriate for a rigid body yields the equatiol

. for moment in terms of rigid body velocities and accelerations
Whereh(a) and h( ) are matrices, the rows of which respectively

denote the angular and translational degrees of internal freedom N|£C) = Mi(Gic.c — Go)d + ok + axlkax, [21]
of hingek These directions should be normalized, such that

HkH,. = 1. Typically, the base clustek (= 1) will be allowed wherel is the inertia tensor abogt o:

all degrees of rotational and translational freedéin=€ 1). The

vectorg) contains all of the allowed internal degrees of freedom, _ Z MicnllGkn — Gk ol2L — (Gkn — Gc0)(Ckn — Gko)']-
of hingek. i ’ ’ ’ ’ ’ ’

In practice, the coordinates used for integration can be dif- [22]
ferent from those in which the angular velocity is expressed.
For instance, it is convenient to use the four Euler parametersl.
(quaternion representation) to describe the orientation of a rl%Jg
body, while only three angular velocities are expressed in t
equations of motion. For simplicity, we ignore this subtlety in FO — Mear + b [23]
our current notation. K KT Mo

Time differentiation of Eq. [13] leads to the recursive equation

hus, the spatial equations of motion in the absence of hinge
n then be written as

for the spatial acceleration where
(c)
. . R .. Kk
ak = Vi = ¢p 1 Vier + Pkt + Hi Ok + H b FO = ( f(c)> [24]
. k
= P11+ Hy O+ & [15] |
by — < ) ~wk KK ) [25]
whereay is thekth cluster’s Coriolis acceleration My ok k (Ok,c — Gk.0)
- | MGk ¢ — 6
ak_( 0 >+<a)k O)HTé [16] Mk=< (@ k - k(QKr,T<;1|Qk,O)>. [26]
“ \an(vk — vke1) 0 &) K¢ k(Gk.c — k.0 k

Equation [23] is a form of the Newton—Euler equation (12).
2.3. Forces and the Equations of Motion Now, a hinge couples adjacent clusters by means of equ
and opposite force on the two clusters. At the positiomQf
we write the spatial force which parent clusker 1 exerts on
clusterk asF, and the spatial force from daughter cluster 1
as —¢k+1.kFrs1. If @ cluster has more than one daughter, the
force is the sum of such terms.
whereV is the total potential energy. Recall that, within a cluster, \ye can then write the total force on clusteas the sum of
atomic velocities are given by hinge forces and external forces, and thus the spatial equati

of motion for clustek within a tree is written as

The force on atomm in clusterk is

£ = V.V, [17]

Ok.n = vk + @k(Ok.n — Ok.0)- (18]
— rericFies + RO = My + b [27]
Time differentiation gives the rigid-body atomic accelerations
which are substituted into Newton’s equation of motion for clus- Now, the atom-based forces can be expressed in terms

terk to give the equations of motion internal coordinates as
© — © TO — _y, y©
fi :Zf kanQKn k Ok
n
. = H Y o R, (28]
= Mk + M@k (Ok.c — Tk 0), [19] Zk:
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where and so on. These equations are rewritten in spatial operatt
notation (, 2) as

drsik - -Prk-1 K>K

Pt = {1 k=K. [29] v,
0 k <k Vs
V= =¢"HTo [35]
Vs ’

Equation [28] is obtained from the definitions of the internal
coordinates and the definition (ﬁk(c). But we can write the
potential energy as a sum of terms expressed in internal and
atomic Cartesian coordinates) andVv(©, respectively:

where
V=V, ..., 60n)+VO. [30]
1 ¢ ¢a1
F« can be decomposed into a component acting in the con- ¢ = 0 1 da - [36]
strained degrees of freedom to enforce constraints, and a compo- 0 0 % o
nentin the allowed degrees of freedom arising from energy terms
which depend explicitly on the appropriate internal coordinate.
This later force component is projected out as Hi 0 O
) |2 M O 37
T9 = HeF. [31] =lo 0 H, .. [37]
It is seen that the projection of the hinge force in the allowed
degrees of freedom is precisely the force in those degrees of 0
freedom due to potential terms which explicitly depend on these 91
. . 2
coordinates: 6 — . [38]
03
TV = —v, v, [32]
Thus, we have the option of expressing individual potential (amgkewise,
force) function terms in either internal or atomic coordinates,
whichever are most convenient.
Finally, Eq. [27] can be regarded as a recursion relation that ay
is complimentary to that for acceleration a2 TLTa
a=|g, | =9 H'6 + a, [39]
Fx = dre1kFirs — B + Myanc + by, (33]
where one determines the hinge forces starting from the tip agfp,
working toward the base.
. . a
2.4. Spatial Operator Notation and the Internal al
Coordinate, Mass Matrix a— az [40]

If clusterk = 0 is chosen to be at rest, Eq. [13] yields

Vo=0
The representation of the Cartesian force in internal coordinate

V1= Hj6, becomes
V, = (ﬁ;—lvl + HZTOQ = (ﬁ;lH]-_r@]_ + ngz
Vz = ¢a,Vo + H 03 = ¢p1 HY 01 + paH, 02 + H] 63, [34] TO = HeFO. [41]
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The recursion relation Eq. [33] for the hinge force is rewritteand

as .
= 0 1 0 O ,
1 00 117 if clusterska andkb have
F> kb distinct parents
F=| g | =¢[Ma+b-FO] [42] 00 01
. Pk k-1 — -
1 lka
01 .
with the block-diagonal spatial operator mass matrix defined as 1 Tep if clusterskaandkb have a
common parent,
0 1
M, O O -- [48]
M — 0 Mz 0O -- [43] wheréya = Oka0—0k_1.0- Thus, the generalization of the formu-
1 0 0 Mz ...} lae from unbranched to branched structures is straightforwarc

2.5. Recursive Solution of the Equations of Motion

Finall th i i t of Eq. [31 bi Jainet al. (1, 2) have formulated a recursive methodology

'.?r? é we ;ge g o4p2er:[31 org:toyntirpar 0 i a- [ f] co;n mﬁgr solving Eq. [2] for the internal coordinate accelerations. Fol
w gs. [ ] and [42] to obtain the equations of motion Ir&ompleteness, we include the algorithm here. For proof of it
internal coordinates as correctness, sed (2)

Introduce these ancillary quantities for each clukter

HF =TO =Mb+C [44]

Pl = dir 1k P g + Mi [49a]
with the internal variable mass matrix and Coriolis terms defined Dk = HkPcH( [49b]
respectively as Gy = PHJ Dt [49c]

M= HoMgTHT 5] Pk+ = (1L — GkHW) P« [49d]
’ Ze = Prr1kZi g + Peo + b — RO [49e]
and ek = Tk — Hiz [49f]

v = Dk’lek [499]

C=Hg[Ma+b—FO]. [46] 7 = Z + Gex, [49h]

where the recursion sweeps from the tip to the base with th
Note thatM is a nondiagonal matrix whose elements changgundary conditions at the tip
with time (¢ andH depend on cluster position). From this point,

onethen can use the recursive algorithm described belowto solve Pt —0 z& =0 [50]
PR . . I\ ’ \ :

for 6 with computational effort proportional to the number of

clusters. Then, the updated accelerations are calculated by sweepi

For a branched molecule, the spatial equations take exagtlym pase to tip with the recursion relations
the same form as Egs. [35]-[46], where now all clusters with

the same level have the same indexThe components of the af = o7 [51a]

spatial operator quantities themselves become block vectors and K ok—1%k—1

matrices. For example, if there are two branches aktihéevel, 6k = v — Gy oyt [51b]

the internal velocity vector and th& k—1 matrix respectively T

become ax = oy + H/ b+ a. [51c]
with otar =0.

Via Calculation of the equations of motion entails three sweep
Vi — [47] . :
over each molecule. In the first sweep from base to tip Eq. [13
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is used to compute spatial velocities. Second is a sweep fromtip 1; i.e.,

tip to base in which the quantities in Eqg. [49] are computed.

Finally, accelerations are computed using Egs. [51]. The most vy = BJ Vi = 0161 [57]
computationally expensive step is the second sweep due to the

computation of matrix quantities. Typically, Eq. [49a] is th&hen the equations of motion for the chains become
cycle-limiting step resulting in compute time scaling linearly _

with the number of atom clusters. Maby+C =T — 3T a0 — Gar) [584a]

2.6. Loop Constraints Mafy +Co = TV — 3 A(du — Gat). [58b]

Loop topologies such as those caused by disulfide bonds inrhe internal coordinate acceleration of each chain is broke
proteins and by sugar rings in nucleic acids are broken in thfo two parts

tree decomposition of the molecules into rigid clusters. One

approach to reimpose the broken bonds is to apply correction 0 = G5 + Aby, [59]

forces such that the cluster accelerations are consistent with the

bond constraints. _ _ wheredy 1 is the acceleration in the absence of the constraint,
To address the problem of applying bond-length constraints,

we consider the situation of two independent trees with the con- b = le(-l-l(l) —a). [60]

straint of a single bond between them. This artificial system
contains no loop topologies, but allows a simple formulation %fn
the bond-constraint problem and is sufficiently general for the
current discussion. 5 —147
: . . AOy = — M7 AQue — O2)- 61
Following (13), we write the constraint the bond constraint ! 191 A0 — G2) [61]
as

dAd; is the correction so that is obeyed:

Likewise, the atomic accelerations become

C il = x| —c=0, [52] Gut = Guer + A, [62]
whereq; andqy are the positions of atoms in two tip clustersyiip,

in trees 1 and 2, respectively, ands the associated nominal

bond length. Differentiating constraifit twice with respect to Ay = 1Ay [63]
time results in the following relation between atomic positions,

velocities, and accelerations:

Therefore,
(Gt — G21) - (Gae — Gat) + [62e — G| = O. (53] Gt = Gur + J1AOy [64a]
We enforce the constraint by means of an equal and opposite = Qur — WM l~]1T Az — 0n) [64b]
force between the two atoms d
an

fir = — far = A(Qat — Oat), [54] . ; _
u 2 o Gt = Garr + M5 I) A(Qre — Gar)- [65]

whereA remains to be determined. For simplicity, we consider . . . . .
the case of two independent trees, of which one contains the'd mbining the;e expresspns.for tip atom accelerations wit
atom at positiorgy; and the other contains an atom at positioﬁ : [53] re§ults In in equJatl(;)? in whighis the only unknown.
gzt- The internal coordinates of the two trees are described ED'S equation can be solved 1br

01 and@,, respectively. In analogy to Eq. [41], the force on the

_ T —14T —14T -1
tip atoms can be represented in internal coordinates as %= [(G = G2)" (WM + HM; ", ) (@ — Ga1)]
T . x [(Gaer — Goer) " (Gae — G2t) + e — 2 1%]- (66]
=3 fu, Iy fa, [55]
. In this equation the free accelerations have been calculated usi
respectively, where the recursive algorithm, while the quantitigs\;*J] are also
calculable by a recursive algorithrg, (13).
J = Hi By, [56] During integration with finite timestep size, there will be drift

inthe positions and velocities such that they violate the constrair
andB; projects out the Cartesian velocity of the constraint atononditionC. Thus, itis desirable to periodically reenforCevith
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an approach which minimizes the violation of conservation efhere
energy. Such a procedure has been implemented in an efficient

fashion. 111111

Unfortunately, this procedure becomes expensive when there 0123435

are multiple constrained loop closures, as in nucleic acids: the _|0 0136 10
, W = . [69]

A’sforeach loop are coupled together and computation becomes 0001410

dominated by the computation of the cross terdns1=—1J. 00001 S5

This problem might be alleviated to some extent by the Lagrange 0 00O0O0 1

multiplier approach of14). Yet another approach would be to - -
choose the coefficients, such that the associated constrair/Sing the updated positions and velocities, the scaled accele
equations [52] are exactly obeyed at each timestep, as in SHAREONa = At?9/2 is then calculated using the recursive algo-
(15, 16. rithm, and the state vector is then corrected

More serious, however, is that in TAMD, the above approach ®)
employs the incorrect coordinates for the sugar rings. The ap- qt + At) =q'P(t + At) + UAa, [70]
propriate coordinates for t_he rings are ring pgckgr Coord'n_"’“ﬁﬁereAa —a—a® and
(17). However, pucker motion involves a combination of torsion

angles and bond angles, the latter not being available in TAMD. 3/161
One possible solution to this problem within the IVM is to free 251/3601
the bond angles to allow them to change in concert with the
torsion angles in dynamics calculations. U= 1 . [71]
11/181
1/61

3. IMPLEMENTATION
1/601
3.1. Integrator ) )
In our experience the PC6 integrator was found to be th

_ Traditionally, molecular dynamics codes would use the velog;ost efficient: it allowed larger timesteps than those in the
ity Verlet algorithm (8) for reasons of computational simplicity,\/er|et algorithm and required but one force evaluation pe

low memory storage requirements, and its efficiency and stahjinestep. Figure 3 displays the energy error pertimestep for thre
ity. In internal coordinates, the acceleration depends on the ve-

locity, requiring that the velocity Verlet algorithm be modified.
This fact and the extra computational effort required to solve
the internal variable equations of motion lead one to rethink the
choice of integration algorithm. The original TAMD implemen-
tation in X-PLOR 6, 6) utilized the Runge—Kutta algorithm, but
this has the distinct disadvantage of requiring three force eval
uations at each timestep. The program DyafaeMmployed a
modified Verlet algorithm to account for the velocity-dependent o
forces. Our code is built in a modular fashion, so that it has™.
been straightforward to implement a fourth-order Runge—Kuttarﬁ
algorithm (9) and a modified Verlet algorithm in addition to a
sixth-order predictor-corrector integrator (PCBQ), which also
requires only one force evaluation per timestep. -10
In the sixth-order predictor corrector used here, the vector ol
internal coordinates and its first five scaled time derivatives al
timet are denoted

loglo

*#—* Verlet
Runge Kutta B
+—— PC6

&—>o TAMD

15 | | | |

At dr(t - - - -
6)(n)(t) = dtr(‘ ), n=0...5 [67] 3.5 3.0 2.5 2.0
. log, At
ifq" = (Q(O)T, R 9(5)T), then the prediction step becomes FIG.3. The errorin energy as a function of step size for three IVM integra-

tors and the TAMD routine native to X-PLOR. Note that the IVM Runge—Kutta
and native TAMD step sizes have been divided by 4 and 3, respectively, to refle
Pt + At) = Wa(t), [68] the number of force evaluations at each timestep.
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integration schemes for the torsion-angle dynamics of the 871..2. Constant Temperature Dynamics

residue B1 domain of protein @{). Also shown in the figure Constant temperature dynamics is desirable for the simulate
is the result for the TAMD routine native to X-PLOR version P y

3.851, which employs a Runge—Kutta integrator. The error ?snnealmg opt|m|zaF|on used n structure refinement. We hav
; implemented coupling of the simulated system to a temperatur
defined as . . )
bath using two rudimentary approaches appropriate for struc
) ture determination dynamics: using velocity rescaling and usin
SE = ((& — (E)))/(E), [72] avelocity-dependent forc@?). Here we describe the velocity-

scaling approach as it is the more convenient when using aut

whereE; is the energy at timestdpand the angle brackets de-matic timestep selection. At each step, all of the internal veloc
note average over timesteps. In the figure, the timestep sizéti§s are scaled by

the Runge—Kutta results was divided by 4 and the IVM and na-

tive TAMD results were divided by 3 to reflect the fact that they To—T
take that many force evaluations each timestep. Using\tBe 1+ ;
metric, one sees that the two Runge—Kutta algorithms perform il

approximately equivalently and slightly better than the Verlet

algorithm. Figure 3 clearly shows the performance advanta\g@ereT a”dTO are the system ?‘”d path temperatures, respe
for the PC6 approach. The PC6 protocol requires more storjg/@'y’ and z is the response time in units of the molecular
and computation than the Verlet algorithm, but this is mitigaté®yNamics timestep size. _ . _
by the overhead of the recursive algorithm. Example timings onSOMe care must be taken in determining the total energy i
our platforms suggest that the CPU overhead of the PC6 ver§ig Presence of a bath, since the timestep depends upon it. \
the Verlet is a few percent of run time. This efficiency penaltySed the approach employed in Dyai( which temperature

is readily offset by a factor of 3 or so increase in step size 40UPling was achieved by velocity rescaliager the step was
lowed by the PC6 algorithm. However, for a given set of internfiken to evaluate the error in the system energy. _
coordinates (i.e., not torsion angles), a different integrator mayMore appropriate for molecular dynamics simulations at-
be more appropriate. The Verlet and Runge—Kutta routines 4#8'Pting to reproduce a canonical ensemble would be a therm

available in the IVM package, and new algorithms can be inftatusing Nos—Hoover chain3, 24. Use ofthe Nos-Hoover
plemented in a straightforward fashion. approach would yield more accurate dynamics and would stil

allow the current automatic timestep adjustment algorithm dut
to the fact that there is a conserved total energy. Howeve
this thermostat has not yet been implemented in the currer
The native integrators in the X-PLOR program require thétamework.

one specify the size of the timestep. As an alternative, one can

specify an error tolerance in the total energy and the timestepig 5 Startup

then appropriately adjusted to meet this tolerance. We employed

the approach used in Dyanﬁ)(in which the timestep is scaled The issue of dynamics initialization becomes important par:

[74]

3.1.1. Self-Adjusting Timestep

by the ad hoc factor ticularly when many short dynamics runs are required, as is ust
ally the case in simulated annealing protocols for NMR structure
determination and refinement. There are a number of tasks th
/1 + M, [73] must be accomplished upon startup. These tasks are itemiz:
TAE along with the solutions we employed to achieve acceptabl
performance:

whereAEy and AE are the target and observed energy errors,

respectively, and is the response time in units of the molecular e Theinternal coordinates mustbe defined. For torsion-angl

dynamics timestep size. In addition, a step is thrown out and ttignamics, we have automated the generation of the appropria

step size halved if the energy error is greater than a threshbidge definitions.

(typically 10% of the total energy). e Theinternal coordinates must be determined such that the
We implemented both fixed and implicit timestep approachase consistent with a given set of Cartesian coordinates. Given

and found that the latter is more flexible and convenient, particdefined tree topology, this mapping is unique and scales linear

larly when using the same simulated annealing protocol with difsith the number of atoms.

ferent hinge definitions; for instance, the same protocol may be e Internal velocities must be generated that are as consiste

used for torsion angle and Cartesian space dynamics. The ea®possible with the given atomic velocities. Because the atom

tolerance is made a set fraction of the bath temperature and thelocities are free to display nonallowed motion within a fixed

the annealing protocols can be identical, with a larger timestefuster and other motion not allowed by the hinge definitions

automatically chosen for the torsion-angle-only dynamics. this mapping is not one-to-one. We pose the process as
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optimization problem with the objective functional 3.2. Local Minimization
1 In local minimization, the mass matrix is not involved, so that
—(VO(C) _ V(C))T M© (VO(C) _ V(C)), [75] the algorithm of Section 2.5 is not necessary. However, it wa
2 deemed convenient to provide a local minimization facility to

augment the integrator. For one, this approach allows for locs
whereV,? is a vector of the given atomic velocities awié? are  minimization after a dynamics run using the same coordinate:
the atom velocities determined from a given set of internal cogitso, this addition removes the need for any separate rigid-bod
dinate velocitie®. We have chosen to scale the objective fungninimization routine.

tion by the atomic masses, represented in the diagonal atomi@gain, the minimizer was implemented using a modular de

mass matrixM ©, N _ . sign so that multiple algorithms can be implemented with east
. The atoml'c'velocmes are linearly related to the internal cooCurrently, the most efficient algorithm implemented is a Powel
dinate velocities by method derived from the same IMSL code which was used i
X-PLOR (25). ‘
VO = 30, [76] To obtain the gradient in internal coordinat&s= T© +T®,
Eq. [41] must be solved. This can be accomplished using th
with recursive formula
z = F9 y4 8la
3T = HeB. [77] k k.t Okt1kZkt1 [81a]
T9 = Hez., [81b]

and withBT the rectangular matrix which converts cluster spa-
tial velocities to atomic velocities. The internal velocities thegolved from tip to base, with, = Fk(c) for the tip clusters.
minimize Eq. [75] are then

3.3. Hinge Types Implemented Thus Far

6 =(ITMOJ)TITMOVS, [78]  Asofthiswriting, hinges have beenimplemented which allow
the following categories of motion:
Now, the effort for solving this equation scales as the cube of the ¢ Rotations appropriate for rigid bodies consisting of one
number of internal coordinates if we use a brute-force approagijo, or three-plus atoms. Euler paramete2s)(are used for

Cl-early, We would like to avoid this cost if possible. Fortunat6|>acce|erati0n calculations, whi¥yY ZEuler ang|esz7) are used
this equation has the same form as that for the cluster equatighgalculate gradients with respect to the internal coordinates.

of motion, Eq. [2], with the matrix e Rotations plus translations appropriate for rigid bodies o
one or more atoms.
JTMOJ = HHBMOBT ¢ THT [79] e Torsion-angle-only motion.

e Translation-only motion. Rigid body motion without rota-

having the same form as the mass matrix in internal coordinafi¥s:
Eq. [45], so that we can reuse the algorithm from Section 2.5fis also simple to fix atoms in space by placing them in a fixec
these substitutions are made inertial cluster. We note that adding new hinge definitions is :
straightforward process.
M — BMOBT [80a]
. ) 3.4. Programming Considerations
0 — 06 [80Db] ) ) ) )
- This IVM was written in the G-+ programming language,
T —J MPVG7, [80c]  an appropriate compromise between performance and ease
development and maintenance. Since we wish this module to
and we sed = b = f© = 0. This allows the velocities of the included in multiple software packages, careful attention wa
internal coordinates to be determined with effort proportional fwaid to both modularity and to performance. For example, s
the number of atom clusters. that new hinge definitions would be easy to implement, runtime
e The integrator must be initialized. The PC6 integrator rggolymorphism was used in the description of the cluster-plus
quires no extra steps at initialization if one is willing to settle foparent hinge object. The Hinge Node virtual base class encaps
decreased accuracy during the first few steps: the initial valuedaies the behavior of a generic hinge-plus-cluster object, whil
d"e/dt" are setto zero fan = 3...5. This approximation was it is specialized for each specific type of hinge motion, be i
found to be adequate in the current applications of the IVM, btdrsion angle, full translation, translation-plus-rotation, etc. At-
a different approach may be desirable in other circumstancesention was paid so that virtual class methods were not use
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on too fine a granularity because of performance consideratigkisdynamics calculations were performed with a timestep of
(the calls are indirect and cannot be inlined). Another examplé® fs in the internal variable coordinate space consisting of 32
of the balance between performance and convenience cartdysion angles, with all aromatic rings grouped into rigid clus-
found in the two-vector template classes employed in the IVNErs. Coupling to a temperature bath was achieved by means
One class was used for arrays, whose size can vary from @he velocity-dependent force method. Numerical results wer
invocation to the next, such as those that contain the interméditained from an executable generated by SGI Irix compilers ¢
coordinate positions and velocities, and another was used flt optimization.
vectors of a size (generally small) fixed at compile time. This As mentioned previously, the native TAMD procedure em-
latter class was deemed desirable to obviate the need for hphlgys a Runge—Kutta integration scheme which requires thre
storage and size information for many small vectors and it facfbrce evaluations per timestep, while the PC6 algorithm require
itates added compile-time optimization opportunity because lofit one force evaluation per timestep. The resulting run time o
the fixed loop sizes. the IVM-based protocol was approximately half that of the na-
Despite the attention paid to coding detail here, the code ctive TAMD routine, which is somewhat larger than that expectec
tainly suffers a runtime performance deficit relative to the equiypurely on the number of force evaluations. We believe that the
alent code written in Fortran because of the relative compilextra overhead is due to the greater generality of the IVM, an
maturity and language-level features such as Fortran’s no-alissuse of G-+ as opposed to the Fortran in which the native
guarantee. However, we are pleased with our choicetof@s TAMD routine was written.
it allows rapid development, ease of code readability, and ease ofVe then made the following change to the protocol: we
upkeep/modification. Finally, we find the current performanaeplaced the fixed length timesteps in the dynamics calcule
quite adequate. tions with timesteps that varied in the fashion described ir
Section 3.1.1. The scale factor of Eq. [73] for the timestep wa!
chosen using the target energy erroE, set to 0.001 kcal/K
times the bath temperature, and the system-bath coupling w:
changed to the velocity scaling method. The number of timester:
Jyas allowed to vary in order to complete fixed-length-in-time
dynamics runs: 3 ps for the high temperature equilibration
0.3 ps for each of the 10 dynamics simulations in the atom-
atom repulsion loop, and 0.78 ps for each temperature value |
the cooling loop. These values for the total integration times
4.1. Protein G: Torsion-Angle Dynamics in the variable-time protocol were chosen so that the first twc
xnamics components had the same values as for the fixe

X ; . me protocols, while the integration time of each dynamics
of the B1 domain of protein G to compare the IVM with the run within the cooling loop was twice that of the fixed-time

TAMD functionality native to X-PLOR version 3.855(6) and
rotocols.

to demonstrate the power of the variable timestep functionalﬁy : ' .
. : . In Fig. 4 the refinement energy and root-mean-square devig
inthe IVM. In the calculation, experimental nuclear Overhauscﬁr

effect (NOE) derived interproton distance restraint terms anin (RMSD) from the lowest energy structure are shown for 1C

4. EXAMPLES OF USE FOR NMR STRUCTURE
DETERMINATION AND REFINEMENT

We are actively using the IVM presented in this paper f
refining NMR structures within the NIH X-PLOR implementa
tion. We present two examples of use below.

Here we present an example of NMR structure determinatiﬁ

structures calculated by each of the three refinement protocol

ih I i I i iti : . . X
dihedral restraint terms were employed in addition to potentt? e fixed timestep, PC6 method resulted in one structure wit
terms used to enforce reasonable covalent geometry and at%m—

atom separation. All atomic masses were set to 100 AMU. igh energy and an RMSD V?"”e larger tham4Hence, th'S.
. : ; structure is not visible in the figure. One can see that the fixe
The starting coordinates consisted of an extended struc-
. . . imestep IVM protocol produces fewer good structures than doe
ture, and the annealing protocol employed is summarized 8 ati : . .
follows: the native TAMD routine, with the former producing only two
' structures in the cluster of low energy and low RMSD structures
« Initial all-atom Cartesian coordinate Powell minimizatiorThis is as we would expect due to the fact that for equal ste
using only bond, angle, and improper energy terms. size, the Runge—Kutta algorithm has better accuracy than tf
o High temperature torsional angle dynamics at 2000 K faredictor-corrector algorithm.

1000 steps with all potential terms included except atom—atomOn the other hand Fig. 4 shows that the variable timeste|

repulsion. protocol obtains results of quality equal to the TAMD pro-
e A dynamics loop in which atom—atom repulsion is addetbcol. Moreover, the run time for the variable timestep pro-
in 10 increments of 100 steps each. tocol is about half that of the fixed timestep IVM protocol,

e A cooling loop in which the temperature is reduced fromand it is four times faster than the TAMD protocol. This re-
2000 to 100 K in increments of 25 K—with 39 dynamics stepduction in run time is manifest even though the total time of
taken at each temperature. integration was significantly larger (about 80 ps for the vari-

o Final all-atom Powell minimization. able timestep protocol versus approximately 50 ps for the fixet
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| | \ histidine phosphocarrier protein HPr, the crystal structures c
which are reported in2B8, 29, respectively. For this example,
we reexamine the protocol used BO( 31 for determining the
200 N _| structure of the complex from NMR data given the X-ray struc-
Jxr i‘;l‘é') (ixed stop sise tures of the two proteins in isolation. Experimental NMR NOE-
© P8 - vaxiable tine step derlve_d interproton distance, dlpola_r coupling, ahdoupling
restraints were used, as B80). In addition to terms correspond-
ing to these data, the refinementenergy included bond, angle, ir
proper, dihedral, atom—atom repulsion, radius of gyrat&#), (
and knowledge-based dihedr&B] potential terms. The X-ray
100l— 4o _|  structures at various separations and orientations were used
& starting structures.
In the original protocol, two copies each of HPr and §IA
were utilized in the dynamics calculations, with the extra copie

Refinement Energy
0

y + o kept fixed in space. In the primary set of coordinates, all atom

008 not belonging to a sidechain at the interface between the tw

| | | | | proteins are bound to their corresponding copies using the >

1.0 1.5 2.0 2.5 3.0 PLOR noncrystallographic symmetry (NCS) potential. We refe

to this original protocol as NCS.

We implemented a new protocol in which all dynamics anc
FIG. 4. Refinement energy vs RMS deviation from the minimum energininimizations were carried out within the IVM. In the IVM
structure for refinement using three integration methods: the native TAMD infgrotocol the interfacial sidechain atoms were allowed their tor
grator, PC6 integrator with fixed step size, and PC6 integrator with the varialigyn g degrees of freedom during the dynamics calculation:

timestep feature enabled. The fixed timestep PC6 methods resulted in one stgyc- .. . . . .
ture with high energy and RMSD values larger tha, 4 e remaining atoms in IIA were fixed in space, while the

RMSD from optimal structure (R)

timestep protocols). This integration time was adjusted to giv 0.02 T T
results equivalent to those of the TAMD protocol. Significantly
better results were obtained when a longer integration tirr
was used. For instance, if the total integration time is appre
priately doubled (resulting in a run time approximately that o —
the fixed time IVM protocol), we found that all 10 structures &
converged. 3
The integration step siz&t and system temperature for one
of the PC6 structures are shown as a function of step number
Fig. 5. Downward spikes int occur at the beginnings of dynam- 0.00
ics simulations when potential parameters have been chanc
discontinuously and also when there are atom—atom collisior
At these steps the integrator detects a large error in energy ct
servation and halves the step size. Note that despite this¥act, g
stays relatively constant as the temperature decreases due tc o
fact thatA Eg, the energy-conservation tolerance, decreases 32
the temperature is lowered.
Note that when using a fixed step size it is appropriate té‘ 1000
tune the step size for each protocol. It is thus clear that th2
auto-adjusting timestep feature provides much in the way ¢
convenience. In fact, the exact same (variable step size) proto: L
could be used in all-degrees-of-freedom dynamics; the corre 0 1000 2000 3000 4000 5000 6000
step size would be chosen by the IVM.

2000 (— Y

era

[=]
~—

b)

\!1\||l|l]

Timestep number

4.2. Two Protein Complex FIG.5. Timestep size and system temperature during a structure determ

. nation run of protein G. The three regions of the dynamics protocol are identifie

Here we present an example of using the IVM module to dgs (a) high temperature equilibration, (b) addition of the atom—atom repulsio
termine the structure of the complex of enzyme3fAwith the potential, and (c) the cooling loop.
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noninterfacial atoms in HPR were allowed to rotate and translate
as arigid body.
In both cases, the protocol is summarized as follows:

e Rigid-body minimization, with atom-atom repulsion
slowly added. (2)

e High temperature, equilibration dynamics at 3000 K (3000
steps with the NCS protocol and 10 ps, approximately 600 steps
with the IVM).

e A molecular dynamics simulated annealing cooling loop
in which the force constants and atom—atom repulsion radii are
increased. The NCS protocol utilized 103 steps of 2 fs at each
temperature, while at each step, the IVM used a time duration
of 350 fs resulting in approximately 20 integration steps.

o All atom minimization for the NCS protocol, and rigid
body plus flexible sidechain torsion minimization using the
IVM.

¢ Rigid body minimizations first with the atom—atom repul-
sion and radius of gyration terms turned off and then with those
terms turned back on again.

Allatomic masses were setto 100 AMU. Four additional pseudo-
atoms were used to define the dipolar-coupling frame of refer-
ence B4). Both protocols treated these as a rigid body restricted
to rotation motion only. Before and after depictions of #A
and HPr are shown in Fig. 6.

With the above two protocols on the SGI Irix platform, the
IVM performed the calculations about five times faster than the
NCS protocol. For reference, the IVM protocol was modified to
allow all internal degrees of freedom for the interfacial sidechain
atoms during the dynamics portion of refinement and the result-
ing time was approximately the same as that using the NCS
protocol.

All of the resulting structures from both protocols agreed
to within 0.5 A RMS deviation of all nonhydrogen atoms.
The NCS structures had somewhat lower refinement energies:
this was apparently due to the fact that there was some dis-
tortion of the covalent geometry in the noninterfacial portion
of the proteins; this distortion was not possible in the IVM _ _ _ _

. . . . FIG. 6. Hierarchical refinement of the HPr/IA® complex. Flexible inter-
prOtOCOI' as those portions were ”g'd' In partlcular, the dlp(Pa'cial side chains and backbone atoms are displayed. Panel (a) depicts a start

lar coupling energy term is rather sensitive to tiny chang@sint configuration while panel (b) shows the final structure. In the figure, the
in bond orientation. Further, there is no experimental justifbackbone atoms are represented by gray tubes. The flexible regions of HPr a

cation for distorting the covalent geometry. The bottom linkA G'¢ are represented by blue and red lines, respectively. This figure was creat
is that the differences between structures calculated with difth the VMD-XPLOR visualization prograngt, 36).

ferent initial velocities using the same protocol were the same

size as differences between structures calculated using the other 5. CONCLUSION

protocol.

This example indicates two strengths of the IVM. It allows In this paper we have presented the internal variable modul
us to simply consider just those degrees of freedom which dog molecular dynamics and minimization calculations in inter-
probed in the experiment. As a result of this feature we were alnial coordinates. The IVM has been shown to be an efficient full
to obtain results equivalent to those obtained by a much mdeatured implementation of the recursive tree decompositior
complicated and costly procedure. Secondly, the IVM providesceleration evaluation algorithm which allows loop topologies
convenience in that all minimizations and dynamics simulatioms be treated correctly. Furthermore, the extensible, modular de
can be carried out within the same framework. sign allows new features to be easily incorporated. The IVM

(b)
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is currently actively used by our group in the determination oP. N. Vaidehi, A. Jain, and W. A. Goddard, Ill, Constant temperature con-
protein and nucleic acid structures by NMR. strained molecular dynamics: The Newton—Euler inverse mass operat

It should be noted that constraining arbitrary internal coordi- €04 Phys. Cherm00,10,508 (1996). _
nates can resultin unphysical dynamical behavior. For exampllg' G. M. Clore and A. M. Gronenborn, New methods of structure refinemen
. L " . ' for macromolecular structure determination by NMRoc. Nat. Acad. Sci.
ithas Pee” ShOWI’I that c_onstrammg, bond.angle motion ra|§es th%.S.A.95,5891—5898 (1998pvailable athttp://nmr.cit.nih.gov/xplor.nih/.
effective barrier for torsion motior8(). In simulated annealing  [Review]
molecular dynamics calculations used in structure determina- A. Jain and G. Rodriguez, Recursive flexible multibody system dynamic:
tion, such barriers are mitigated by strong experiment-based, using spatial operators, Guid. Control Dynaml5, 1453 (1992).
potential energy terms and by employing a suitably high initiab. H. Goldstein, “Classical Mechanics,” Chap. 5, Addison-Wesley, Reading
temperature in the annealing protocol. Moreover, the detailed MA (1980).
dynamical trajectory is of no interest. However, when perfornd3. G. Rodriguez, A. Jain, and K. Kreutz-Delgado, A spatial operator algebr:
ing molecular dynamics in nonstructure determination contexts, o manipulator modeling and contréht. J. Rob. Res10,371 (1991).
the implications of freezing degrees of freedom must be givéf‘r A. K. Mazur, Symplectic integration of closed chain rigid body dynamics

. . with internal coordinate equations of motioh, Chem. Phys111, 1407
calr:)eful %?nsflderanonr.] - ude the addit f (1999).
ossible future er,] ,an,cemems mq ude the a ition o 0”9&95. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, Numerical integration ¢
more Mont? (..:alﬂo m'mm'Z&t'on algorithms, addingamore mod- e cartesian equations of motion of a system with constraints: Molecula
ern local minimization methodology, such as TNPAC38(39, dynamics of-alkanes,). Comput. Phy23,327 (1977).
and better treatment of loop constraints. Finally, most of the ak. w. F. van Gunsteren and H. J. C. Berendsen, Algorithms for macromoleculz
gorithms which the IVM employs are amenable to efficient par- dynamics and constraint dynamiddol. Phys.34,1311 (1977).
allelization. For NMR structure determination and refinementy. D. Cremer and J. A. Pople, A general definition of ring puckering
parallelization efforts are usually better focused on processing coordinates). Am. Chem. So@6, 1354 (1975).
multiple structures simultaneously. However, other applicatioA8 L- VerIeF, Computer “experiments” on classical fluids. I. Thermodynamical
have different parallelization specifications, which could benefit Properties of Lennard-Jones molecufésys. Revi59,98 (1967).
from a parallelized version of this IVM 19. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numer-
’ ical Recipes in C,” p. 569, Cambridge Univ. Press, Cambridge, UK (1988)
M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquid,” p. 340,
Clarendon Press, Oxford (1987).
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