
Available online at www.sciencedirect.com

Procedia IUTAM 2 (2011) 241–261

Available online at www.sciencedirect.com

2210-9838 © 2011 Published by Elsevier Ltd.
doi:10.1016/j.piutam.2011.04.023

2011 Symposium on Human Body Dynamics

Simbody: multibody dynamics for biomedical research

Michael A. Shermana,*, Ajay Setha, Scott L. Delpa,b

aBioengineering and bMechanical Engineering, Stanford University, Stanford, CA, USA

Abstract

Multibody software designed for mechanical engineering has been successfully employed in biomedical research for
many years. For real time operation some biomedical researchers have also adapted game physics engines. However,
these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to
analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing
this problem through the development of an open source, extensible, high performance toolkit including a multibody
mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a
variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as
biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind
OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in
biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address
them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be
obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any
purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.

© 2011 Published by Elsevier Ltd. Peer-review under responsibility of John McPhee and József Kövecses

Keywords: biomedical simulation; biological joints; minimal coordinates; coupled motion; compliant contact; real time simulation;
neuromuscular simulation; biomolecular simulation; open source

1. Introduction

Multibody dynamics methods and software were developed in a mechanical and aerospace engineering
context and have become indispensable in these application areas [1-5]. When studying the mechanical
aspects of biological systems it is natural to employ the same tools, and much has been learned as a result

* Corresponding author. Tel.: +1-650-721-2091
 E-mail address: msherman@stanford.edu.

242 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

(e.g., [6-11]). However, the analogy between engineered mechanical systems and evolved biomechanical
systems is imprecise, and multibody mechanics tools designed for engineered systems can be difficult to
apply to study the dynamics of complex biological structures. For example, biomechanical joints typically
do not perform simple rotations about fixed axes and may comprise several moving parts; contact
between soft biomaterials may involve significant deformation; redundant actuation of joints is common;
data needed for parameterization are not directly measurable; and available measurements tend to contain
large errors and inconsistencies. In the context of whole-body musculoskeletal mechanics, segment mass
properties and muscle path geometry, for example, are hard to measure, while body segment kinematics
(i.e., joint angles) estimated from surface markers are inconsistent with accelerations determined from
external force measurements (i.e., ground reaction forces). As a result of issues like these, concepts that
are simple to apply to engineered systems, such as “generalized coordinate” or “moment arm”, become
difficult to define precisely in a biomechanical context. A further difficulty is that while the culture and
economics of mechanical engineering make the use of commercial multibody codes practical and cost
effective, in research or teaching the costs and lack of transparency of commercial codes can be
problematic.

Game physics engines like ODE [12] have been developed for gaming and virtual worlds with an
emphasis on real time performance and efficient handling of contact. Although biomechanical researchers
have used game engines in their work [13], these codes were not designed for predictive simulation and
attain performance by using simplified theory that may not converge to correct results. Developers of
game engines understand that; for example the ODE manual [12], states in section 3.3 “ODE should not
be used for quantitative engineering.” Real time performance can be important in quantitative research,
but it is necessary to have a way to quantify the tradeoff between accuracy and performance. Methods
built on sound theory that provide selectable accuracy can provide high speed, and can also be made to
converge to high fidelity when necessary.

These and similar issues across many aspects of biomedical computation led the NIH to include in its
Roadmap for Medical Research support for several national centers for building reusable biomedical
computational infrastructure. Simbios is the national center for physics-based simulation of biological
structures at Stanford University [14]. Simbios is charged with defining and developing an open source
biosimulation toolkit, called SimTK, which provides computational libraries that enable development and
sharing of a wide variety of domain-specific biomedical simulation software built on a common core. A
major component of SimTK is the multibody dynamics code Simbody, which is the topic of this report.

In this paper we will discuss how Simbody addresses the biosimulation issues listed above. We
introduce some of Simbody’s novel architectural features in section 2, and then present the methods
Simbody uses to advance time in a dynamic simulation in section 3. Section 4 details Simbody’s
formulation of multibody systems, and section 5 and an appendix cover methods to simulate collisions
and contact. We will conclude with a discussion of Simbody’s current state, the next steps in its
development, and an invitation for community participation.

2. Simbody overview

Simbody is an Application Programming Interface (API). The Simbody programming library is
intended as a community resource that can be used to incorporate robust, high performance, minimal-
coordinate O(n) multibody dynamics into a broad range of domain-specific end-user applications.
Applications using Simbody have been implemented in areas of biomedical research across a wide range
of scales and purposes. These range from studying the motion of biomolecular machines built from amino
and nucleic acid components [15], to studying pathological gait in musculoskeletal models of humans

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 243

[16], to design of biologically inspired robots and avatars [17]. Desired accuracy is user-controllable to
cover needs from interactive real time simulation to detailed, high fidelity simulation.

 Simbody is a tool for programmers, but these programmers do not need to be expert dynamicists.
Rather, they are expected to be application developers who have expertise in the needs of biomedical
researchers in particular areas of study, such as causes of pathological gait or structural basis of RNA
function. Although Simbody contains some novel developments, it is conceived primarily as a reliable
tool for use in biomedical research, rather than as a vehicle for multibody dynamics research.
Consequently Simbody’s development is managed by professional software engineering staff at Simbios,
with emphasis placed on testing, documentation, packaging, distribution, and support. Simbody is written
in C++ and presents an object-oriented API to the application programmer. It is distributed in binary form
for multiple platforms, or can be built easily from source. Details provided below apply to the Simbody
2.2 release [18]. Simbody is licensed under permissive open source terms [19] for any academic,
commercial, government, or personal use to encourage wide adoption and broad community support that
will maximize its ongoing impact on biomedical research and ultimately patient care.

2.1. Simbody scope

Simbody provides the biomedical application programmer with a diverse set of tools to handle the
modeling and computational aspects of multibody dynamics, to ensure correct and efficient deployment
without requiring specialized knowledge of multibody dynamics. In practice that means we must address
more than just the formulation of multibody equations of motion. Thus, Simbody also includes contact
modeling, numerical integration and differentiation, constraint stabilization and redundancy handling,
assembly analysis, optimization and root finding, vector and matrix manipulation, numerical linear
algebra, event isolation and event handling, accuracy control, threading, debugging, visualization, and
real time interaction. Customizable user-written extensions are supported for force and constraint
elements, as well as for novel internal coordinate joints [20] whose kinematics can be based on empirical
measurements.

For scientific and engineering use, it is critical to allow user-specifiable accuracy in simulations. To do
this efficiently requires variable-step integration methods that estimate errors and can adapt to the
changing computational demands needed to maintain accuracy and stability during a simulation. In turn
that means trial evaluations are performed, requiring strict management of the system state to avoid
referencing out-of-date computations after step rejection. Out-of-date computations are qualitatively
similar to the correct values, so they can easily remain unnoticed, especially by users who are not expert
dynamicists. Simbody’s architecture prevents these errors.

2.2. Top-level architecture

The three primary objects in the Simbody architecture are the System, State, and Study (Fig. 1). A
System object encapsulates the components of a model (e.g. bodies, joints, force elements) and the code
necessary to perform computations with that model. A System defines a model’s parameterization, but is
itself stateless and remains unchanged during a study. A complete set of values for each of the System’s
parameters is called a “state” for that System, and such sets are maintained in separate State objects
constructed to be compatible with that System. (Here uppercase “State” refers specifically to the software
object of that name in the Simbody API; lowercase “state” refers to a set of numerical values.) The
response of a System is completely determined by the state values presented to it. A Study couples a
System and one or more States, and represents a computational experiment intended to reveal something
about the System. By design, the results of any Study can be expressed as a state or series of states that

244 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

satisfies some pre-specified criteria, along with results that the System can calculate from those values.
Such a series of states is called a trajectory.

Simbody’s notion of “state” is more general than the common use of the term. By state, we mean
everything variable about a System. That includes not only the traditional continuous time, position and
velocity variables, but also discrete variables, memory of past events, modeling choices, and a wide
variety of parameters that we call instance variables (e.g. masses and lengths). A System’s compatible
State objects have entries for the values of each of these variables.

This design allows the conceptually simple model depicted in Fig. 1 to express every kind of
investigation one may wish to perform. Here are some examples. A simple evaluation Study merely asks
the System to evaluate specific quantities, such as the position of an end effector or the reaction force in a
joint, using values taken from a particular State (which remains unchanged). An assembly Study returns a
new state whose generalized coordinate values satisfy a set of position constraints, such as loop closures
or couplers. An inverse kinematic Study returns a series of states whose generalized coordinates generate
virtual marker positions that best match a series of marker observations. A dynamic Study produces a
series of time, position, and velocity values that satisfy Newton’s laws of motion. An energy
minimization is a Study that seeks values for the State’s position coordinates at which an energy
calculation yields its minimum value. A Monte Carlo simulation is a Study yielding a trajectory that
satisfies an appropriate probability distribution, such as a Boltzmann distribution. Design studies, also
used for parameter fitting, find values for instance variables such as lengths, masses, attachment points,
material properties, or coefficients which meet specified criteria. Modeling Studies select among models
or algorithmic choices to improve defined measures of behavior, such as accuracy, stability, or execution
speed. Since by definition all System variability is contained in the State, we can guarantee that any
desired results regarding the System can be expressed in terms of State values, provided that a
corresponding System is available to interpret them.

There are other significant advantages to having separate State objects. Trajectories may be saved and
restored simply by copying State objects, with no danger that “hidden” states may be missed. Examples
include enable/disable flags for model components, “previous solution” values for continuity and
acceleration of nonlinear model calculations such as wrapping geometry, and controller or muscle
dynamics states. Trial states may be generated and discarded easily, and states may be sampled or
compared with no overhead associated with switching from one state to the next.

Study

S
ta

te System

Results
statesInputs

Trajectory

Fig. 1. Top-level Simbody architecture. A read-only System object contains the model components and defines the
parameterization. Values of those parameters are stored separately in State objects. A Study generates a series of states (State
values) representing a desired solution such as a physical time history.

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 245

2.3. Handling of state

Careful handling of state is required for correctness and efficiency of a simulation. Given values for
state variables, there are many useful quantities that can be calculated (reaction forces, say). These
calculations can be very expensive so we only want to calculate them once for a given state and save the
result. But, if the state changes these must be recalculated so we do not accidentally reference “stale”
(out-of-date) computations. This must be dealt with automatically to prevent mistakes, which can be very
difficult to detect. Simbody addresses this by including carefully-managed storage for state-dependent
computations within the State object. This storage space is called the realization cache, and the process of
calculating the values stored in it is known as realizing the state. By realizing we mean presenting a State
to a System and asking the System object to compute the physical consequences of the values in that
State. As a concrete example, a finger tip location is a consequence of the state’s generalized coordinate
values.

In practice, evaluation of a multibody system proceeds in distinctly ordered steps. Positions must be
known before velocities can be calculated. Velocities must be known before forces can be calculated.
Applied force calculations must precede accelerations. At the same time, for a given state variable we can
say which of those steps are invalidated by changes to that variable’s value. For example, a generalized
speed (velocity variable) invalidates velocity, force, and acceleration calculations but has no effect on
already-calculated positions. Simbody’s State architecture exploits this structure by dividing the state
variables and the realization cache into stages as shown in Fig. 2.

Although cached results are stored in the State object, those results are not logically part of the system
state. They are simply intermediate calculations that have been derived from the state, and can easily be

discarded and re-created when necessary. They are needed only for efficient computation using the
System-State-Study architecture. Further, we can automatically invalidate cache entries whenever a state
variable at that stage or earlier is changed. Any attempt to access an invalid value will either initiate
recomputation or raise an error message as appropriate. Simulation programmers will recognize this as an
architectural substitute for error-prone ad hoc “isValid” flags that otherwise proliferate to avoid
expensive recalculation.

1. Topology

2. Model

3. Instance

4. Time

5. Position

6. Velocity

7. Force

S
tages

8. Acceleration

System

State

Realization
cache

Fig. 2. Organization of the state variables and realization cache into ordered stages. A change to a state variable at stage s
invalidates all cache entries at levels s and above. Construction of the System may be viewed as the first stage of computation
(topology).

246 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

To summarize briefly: a System by itself is stateless once constructed. The values of state variables
stored in a particular State object completely determine the response of the System. That response is
produced by realizing the State, which is done in sequential stages. The results of realization are stored in
a hidden cache that is physically contained in the State object, but is not logically part of the state in the
sense that, except for computation speed, cache values do not alter the behavior of the System. Cache
values are automatically invalidated when state variables they depend on are changed, and access to
invalid values is detected and prevented.

3. Time stepping

Simbody-based simulations are classified as hybrid simulations [21], meaning they consist of both
continuous evolution in time and discrete events. Advancing such a system through time is handled by an
algorithm called a time stepper, consisting of a numerical integrator for advancing through smooth parts
of the simulation and detecting pending events, and an event handler for dealing with those events.

3.1. Formulation of dynamic equations as seen by the time stepper

A time stepper does not need to know much about the internal workings of the model it is advancing
through time. Consequently the formulation that Simbody presents to the time stepper is simpler than the
multibody formulation we will describe subsequently. Fundamentally, these are the equations as seen by
the time stepper:

differential equations (; ,)y f d t y (1)
algebraic constraints 0 (; ,)c d t y (2)
event detection 0 (; ,)e d t y (3)

Here t is the independent variable (time), y is a vector of continuous state variables, and d is an
arbitrary set of discrete state variables. The first equation is a set of ordinary differential equations (ODE)
in y. The second is a set of algebraic equations (constraints), such as loop closure conditions, coordinate
couplers, prescribed motion, or contact conditions. Together, equations (1) and (2) constitute the
continuous portion of the system as a set of differential-algebraic equations (DAE) [22] that can be used
to advance states y through time smoothly while d remains fixed. Equation (3) represents a set of event
trigger functions that are constructed to change sign (pass through zero) when an event occurs, for
example a signed distance between objects or the difference between a reaction force and a maximum
limit at which a model change is required.

More precisely, our continuous system (1), (2) is formulated as a differential equation on a manifold
(DEM) [23-25]. Such a system additionally guarantees that when constraint equations (2) are satisfied
their time derivatives are satisfied automatically. Therefore, the differential equations (1) must be
formulated to satisfy the constraint derivatives. That is, we require that

diff. eqn. on manifold condition 0 0c c (4)

Simbody produces differential equations that assure condition (4) is met, as discussed in section 4. A
DEM is considerably easier to solve than a general DAE and permits us to use conventional numerical
integration methods designed for ODEs, augmented as described below.

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 247

3.2. Advancing the continuous system

Simbody offers a variety of numerical integrators with differing properties. These consist of
conventional error controlled, variable step integrators suitable for advancing ODE Eqn. (1) through time
with a specified accuracy and include a variety of explicit Runge-Kutta methods well-suited for
biomechanical and real time applications [26], a velocity Verlet method for biomolecular systems [27],
and, for stiff systems [28], a unique variable-order backwards difference formula (BDF) implicit
integrator CPODES developed in collaboration with Lawrence Livermore National Laboratory’s Center
for Applied Scientific Computing. CPODES is a modification of CVODE [29] to add coordinate
projection in the manner described by Dehombreaux et al. [30] and justified theoretically in [31].

All Simbody integrators are capable of continuous (dense) output [26, 32], meaning that they can
efficiently and accurately interpolate state values at any time within a step. This important capability
allows step size choice to be decoupled from the desired reporting interval. Thus a Simbody step can be
much larger than a reporting interval yet deliver accurate results for each report. In addition all Simbody
integrators are capable of monitoring Eqn. (3) for sign transitions and using their interpolation capability
to efficiently isolate the time at which a transition occurs, to facilitate event handling by the time stepper.

Note that, because of the DEM condition in Eqn. (4), if given initial conditions that are on the
manifold of Eqn. (2) then perfect integration of Eqn. (1) would result in a trajectory that remained on the
manifold. However, truncation error inherent in methods for approximate numerical integration allows
the solution to drift away from the manifold. Eqn. (2) can be used directly to eliminate this drift, and
improve the solution overall, using the method of coordinate projection [31, 33-34]. Coordinate
projection is superior to the more commonly-used Baumgarte stabilization method [35] for several
significant reasons. See Ascher et al. [34] for a detailed discussion. Briefly, Baumgarte stabilization
requires a difficult choice of feedback gains: too small and the constraints drift unacceptably; too large
and the problem becomes numerically stiff. The optimal gains depend on both the step size and
integration method in use. Coordinate projection has no constants to choose and guarantees that the
solution lies on the manifold at every step. Taking an ODE step and then removing constraint errors with
coordinate projection also improves the ODE solution [25, 31], provided the projection is normal to the
constraint manifold in a suitable norm [36], reducing the error estimate and permitting larger time steps.

Coordinate projection is particularly attractive computationally when there are few constraint
equations, yielding small projection matrices. Simbody’s biological internal coordinate joints eliminate
most constraints otherwise needed for biomechanics [20]. Details of Simbody’s implementation of
coordinate projection and event isolation can be found in the Simbody documentation [37].

3.3. Controlling accuracy

Simbody is intended to be useful to people who are not expert in numerical simulation. The collection
of accuracy controls offered by some numerical methods can be bewildering. Our goal is to offer instead
a single scalar accuracy parameter , which corresponds roughly to the “% relative error” or “number of
significant digits” desired in the results. This is necessarily a qualitative description but in our experience
it comes closest to what biomedical researchers (and most other scientists and engineers) mean when they
discuss “accuracy.” A fully quantitative understanding of error in variable step, variable order, event-
isolating numerical methods applied to the propagation of a chaotic hybrid DAE system requires
specialized training in numerical analysis that is rare even among numerical simulation experts. Instead
we ask our users to provide only information they understand such as how many digits they want, or even
just “more accuracy” or “less accuracy.” We use that information as follows to influence our quantitative
numerical treatment to attempt to satisfy the user’s qualitative request.

248 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

Accuracy request is related to the desired number of digits n as follows:

 10 n (5)

Thus four digits of accuracy is requested by setting =0.0001, roughly corresponding to a “relative
error” of 0.01%. Real time simulation with Simbody generally involves accuracy requests of 1–10%.
Accuracy is thus similar to the “relative tolerance” (rtol) parameter provided by most numerical
integrator implementations [38]. However, there is no equivalent to the common “absolute tolerance”
(atol) parameter. Instead, Simbody combines with internally-calculated scaling factors for estimated
state variable errors and actual constraint violations to define two equations that must be satisfied before
an integration step can be accepted:

 y RMSW (6)

 (; ,) RMSc d t yT (7)

where y is a vector of the integrator-provided estimates of absolute error in each element of y, and c is
the constraint error function from Eqn. (2) returning a vector of absolute errors. y and c contain a mix of
potentially incompatible error units such as lengths, angles, and velocities. Diagonal weighting matrices
W and T map each error to a “unit” error in the represented quantity, and then finally we interpret as
the acceptable fraction of unit error in the chosen norm, typically root mean square. Simbody can
estimate values for W and T using knowledge of coordinate types, an overall length and time scale, and
other internally-available information. Expert users may alter these calculations.

In practice this procedure results in rational control over accuracy for non-expert users via a single
“knob” that can be turned to increase or decrease the level of accuracy with predictable results. It is our
assessment that few users are better served by exposing more knobs. Fig. 3 shows one numerical
example. More information about accuracy in Simbody can be found in [37].

Fig. 3. CPU time vs. accuracy example. We ran six identical 20s simulations at accuracies =10–2 to 10–7, recording the amount of
CPU time required. The system comprised 11 20-body chains using randomly oriented revolute joints, attached to a common
oscillating base, with gravity and light damping. All dofs had random initial velocities assigned, with speeds low enough to avoid
chaotic motion so that all simulations approximated identical trajectories. The number of steps (and thus CPU time) required by a
4th-order integrator should be proportional to -1/4. The plotted red line is 0.118 -1/4. Note that absolute CPU times can vary
substantially for similar-sized systems with different characteristics; this is intended only as an example of relative performance vs.
accuracy.

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 249

3.4. Real time interaction

A simulation suitable for real time interaction with a human must match simulated time to clock time,
deliver simulation frames for screen update at a steady pace, and be responsive to user input. Typically
this is achieved by using a fixed-step numerical integrator so that every unit of simulated time has the
same computational cost. But for most dynamic systems, step size requirements to achieve accuracy and
stability vary substantially during a simulation. For a fixed-step simulation, the step size must be chosen
to achieve adequate performance during the worst-case interval (e.g., ground impact during running),
which may be only a very small fraction of the total time. This causes many unnecessary steps to be taken
during the easier parts of the simulation, increasing the total amount of computation required for the full
simulation. That limits the maximum complexity of systems that can run in real time to those that can
achieve real time rates even during their most computationally demanding intervals. Using variable step
sizes, substantially more complex systems could achieve real time performance on average but might
have intervals where they fall behind. For “hard” real time systems (e.g. controllers for antilock brakes or
spacecraft attitude), where a missed frame can be literally fatal, it is difficult to exploit this fact. However,
for the “soft” real time requirement of interacting with humans it is practical to exploit variable step
integration to permit more complex models to run in real time while maintaining stability and accuracy.

For soft real time applications, Simbody includes support for a method adapted from the “local lag”
approach [39] used to manage network latency for networked games and distributed virtual environments.
The idea is to exploit slow human reaction time to smooth out simulation variability. Delays of up to
100ms are typically imperceptible [40-42] and longer delays can be nearly unnoticeable and tolerable in
many applications. A first-in-first-out delay buffer of selectable length tdelay is used to collect frames that
are regularly-spaced in simulated time but arrive at a variable rate in real time. At the other end of the
buffer, frames are extracted at a fixed real time rate, but delayed slightly behind real time. For example, if
the frame rate is 50/s (20ms/frame) and tdelay=120ms, then there is room for six frames in the buffer. In
this case frames are removed regularly from the buffer every 20ms but their times lag real time by 120ms.

This approach is able to eliminate variability produced by occasional difficult intervals during a
simulation and by discrete event handling, provided that the resulting delays do not exceed tdelay and that
the average performance is real time or faster. The use of variable-step methods with interpolation
capability substantially improves average speed since steps of length up to tdelay can be taken while
delivering regularly-spaced frames at the required rate. Each step, regardless of length, has the same
computational cost; interpolated frames usually have negligible cost. The architectural separation of
System from State (see section 2.2) facilitates the real time implementation since it is only necessary to
copy whole State objects into the delay buffer and retrieve them later.

4. Formulation of the multibody system

Simbody uses a generalized coordinate formulation with the goal of having the fewest possible
coordinates to represent the pose and motion of a multibody system. However, it does not attempt to
reduce the system to an ODE; instead we choose coordinates to form a basis in which to express the
motion and then require that motion be restricted to a constraint manifold. This formulation provides a
compact representation of motion with a small number of coordinates and small number of constraints,
and allows for robust treatment of important numerical issues such as constraint stabilization, poor
conditioning, and redundant constraints.

The solution method for the unconstrained system is a recursive O(n) method following the spatial
operator approach of Rodriguez and Jain [3, 43-45] and extending the templatized C++ implementation of
Schwieters [46]. The m constraint equations are adjoined in the manner described below. As discussed in

250 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

ref. [47], this introduces an O(m3) term in the computational complexity. However, because Simbody
supports biologically-realistic internal coordinate joints capturing coupled rotation and translation [20],
the need for most constraints is eliminated and we typically have n>>m. Further, only blocks of coupled
constraints need be solved simultaneously, so the cubic term applies only to the maximum number of
coupled constraints which is typically much lower than the total number of constraints, and in many
systems can be viewed as a constant since the amount of coupling does not necessarily grow with
problem size. In practice we have not yet found constraint coupling to be a bottleneck and Simbody does
not currently exploit decoupling. Jain [48] presents a method for efficiently eliminating locally-coupled
constraints in the spatial algebra framework that we intend to incorporate in a future release.

4.1. Equations of motion

A Simbody multibody system is constructed via the API as a tree-structured system of “mobilized
bodies” each consisting of a body and its unique inboard internal coordinate joint (hinge) which we call a
mobilizer. This avoids confusion with the biologically-meaningful term “joint” which may be modeled as
a mobilizer, or with constraints, or with force elements, or some combination. Simbody mobilizers and
their capabilities are discussed extensively in Seth et al. [20]. To the tree of mobilized bodies is added a
set of holonomic (position) and nonholonomic (velocity) constraints restricting the motion of bodies or
directly affecting generalized coordinates.

Mobilizers are not constraints. Instead, the ith mobilizer provides its body with 0 6in degrees of
freedom with respect to its parent body. These are parameterized with in generalized speeds ui which
collectively form the basis for our equations of motion. The mobilizer also introduces a set of

i inq n generalized coordinates qi to represent the pose (relative position and orientation) of the body
with respect to its parent. The time derivatives of generalized coordinates are related to the generalized
speeds by the kinematic differential equation:

 ()i i i iq q uN (8)

where iN is an i inq n invertible matrix. When i inq n there are i inq n local constraints that the qi
must satisfy; in practice these are almost always quaternion normalization constraints. These constraints
are introduced only for numerical stability and have no physical significance; they do not produce forces,
have little computational cost and will not be discussed further here. { }iu u and { }iq q are the
generalized speeds and coordinates for the system as a whole, giving

 kinematic diff. eqns. ()q q uN (9)

where N is block diagonal.
Simbody constraints may be specified in terms of geometry (e.g. distance between points, non-

penetration, non-slip) as well as directly on generalized speeds or coordinates (e.g. prescribed motion,
couplers), and linear acceleration-only constraints may also be specified. However, Simbody
automatically reduces these to algebraic relationships among the coordinates and speeds which is how we
will present them here. The first set of equations arises from constraints that are explicitly specified
during modeling:

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 251

 holonomic constraints (;) 0p t q (10)
 nonholonomic constraints (, ;) 0v t q u (11)
 acceleration-only constraints (, , ;) 0aa t q u u uA b (12)

Here t is time, q and u are defined above. In addition to the above equations, the time derivatives of the
holonomic and nonholonomic constraints must also be satisfied, adding three more equations:

 holonomic derivatives 0p
tp uP (13)

 0pp uP b (14)

 nonholonomic derivative 0vv uV b (15)

From differentiation of Eqns. (10) and (11) it can be seen that ()p qP N and v uV . bp and
bv collect terms that do not depend on u . Eqn. (10) defines the position constraint manifold that restricts
q, Eqns. (11) and (13) together define the velocity constraint manifold that restricts u, and Eqns. (12),
(14) and (15) generate unknown constraint forces that appear in the equations of motion and affect u .
For exposition of the equations of motion, the acceleration constraints are assembled together:

 all acceleration constraints (, , ;) 0g t q u u uG b (16)

where []Tm nG P V A and 1 []Tp v amb b b b . Matrix G(q) is the acceleration constraint Jacobian
which in general is poorly conditioned or singular due to redundant constraints; b(t,q,u) is the
acceleration constraint residual. The remaining dynamic equations are:

 dynamics T
applied inertialuM G f f (17)

 auxiliary diff. eqns. (, , ,)z z t q u z (18)

where z is a set of auxiliary continuous variables defined by first order differential equations (e.g. for
muscle dynamics or controllers), is the vector of m Lagrange multipliers representing the constraint
forces, and M(q) is the nxn symmetric, positive definite internal coordinate mass matrix. finertial(q,u) are
the velocity-dependent Coriolis and gyroscopic forces, converted to generalized forces. fapplied(t,q,u,z)
collects all explicitly applied body forces and torques including gravitational forces (converted to
generalized forces), plus any directly applied generalized forces (e.g. motor torques).

Equations (9) through (18) are propagated through time by Simbody’s numerical integrators during
continuous intervals, giving trajectories q(t), u(t), and z(t). For comparison with section 3 note that

{ , , }y q u z and function c comprises functions ,p p , and v.

4.2. Solving for accelerations

For forward dynamics, Eqns. (16) and (17) are solved simultaneously for the unknowns u and .
When G has full row rank (i.e., rank(G)=m), the solution is unique. In general rank(G)<m due to
redundant constraints, leaving underdetermined although u is still unique. Commonly, multibody codes
that are able to handle this situation (e.g. SD/FAST [49]) do so by dropping some of the constraints, so
that only a subset of constraints generates forces. This can lead to absurd results that we consider
unacceptable since they can undermine a non-expert user’s confidence in the tool. While the “right”
answer can only be obtained by replacing redundant constraints with more detailed compliant elements,
one can do much better than delete constraints altogether. Simbody instead determines a least-squares
solution for underdetermined which in many cases returns the limiting value of compliant elements as

252 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

their stiffness goes to infinity; in any case we produce a plausible solution in which redundant constraints
each carry part of the load rather than having any of them zero.

Recall that Simbody is a recursive O(n) multibody code. Despite the form of the equations written
above, Simbody does not normally calculate the nxn mass matrix, since that would be O(n2) and inverting
it would be O(n3). (M and other system matrices can be obtained when needed.) Here we will show what
is being calculated and comment on the computational complexity; space does not permit showing how
this is performed using recursive spatial operators. The interested reader may consult refs. [43, 46, 50]
for details.

Using the fact that M is invertible, Eqns. (16) and (17) can be combined to eliminate u :

 1
0

T uGM G G b (19)

where 1
0 ()applied inertialu M f f is the generalized acceleration vector of the unconstrained system, and

the right hand side is 0 0(, , ;)g g t q u u in Eqn. (16), that is, the acceleration constraint errors that result

from the unconstrained accelerations. The operator 1 vM � for any column vector v is available in O(n)
time, so 0u is calculated in O(n). g() is the vector of acceleration errors for each of m constraint
equations, given the generalized accelerations; each error is available in constant time from the definition
of its constraint element, so g() is O(m). Thus the right hand side of (19) is available in O(n+m) time.

Let 1 T
m mY GM G . This matrix is formed as follows: a (generalized force-like) column of TG is

formed explicitly in O(n) time from the constraint element definition. The O(n) 1M � operator is applied.
The resulting acceleration is supplied to g() in Eqn. (16), yielding a column of Y in O(n+m) time. This is
done for m columns, so the total cost of forming Y is O(mn+m2). We can now rewrite Eqn. (19) as:

 0gY (20)
If Y has full rank m this equation may be solved by any suitable method such as LU with pivoting. If it

is acceptable simply to drop some of the equations in the singular case, we may obtain the non-zero
subset of using a QR method. For a least squares solution, we would like the solution

 0gY (21)
where Y+ is the pseudoinverse of Y. Pseudoinverse is commonly calculated with an SVD decomposition,
but Simbody uses the complete orthogonal factorization (QTZ) instead, which is approximately 5X faster
than SVD. See ref. [51] for information on any of these methods; Simbody uses the implementation
provided by LAPACK [52]. All of these factorizations have complexity O(m3) so the total cost of
determining is O(m3+mn+m2). As discussed above, we expect m to be very small due to our extensive
use of internal coordinate joints [20]. And if the problem were to be solved in uncoupled blocks (not yet
done), m and n represent only those constraints and generalized coordinates that are coupled.

Once we have obtained the multipliers , we calculate T
constraintf G in a single O(n) evaluation, then

Eqn. (17) gives us 1()applied inertial constraintu M f f f which is a final O(n) application of the 1M �
operator.

5. Contact modeling

Biomechanical models often involve contact among components of the model. In many cases the
contacts can be idealized into joints or constraints. However, real contact forces arise from deformations
of the compliant materials from which biological systems are composed. Simbody provides two
compliant contact models that take deformations into account to generate contact forces. One is based on
Hertz contact theory [53-54] which analytically generates accurate forces and deformations based on

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 253

linear elasticity theory, but limited to simple geometric objects. The second is the Elastic Foundation
Model [54-55], which uses meshes to represent arbitrarily complicated geometric surfaces in contact, but
calculates deformations and forces using a simplified elastic model. These models are augmented with a
dissipation model described by Hunt and Crossley [56] and a model of Stribek friction [57]. For each
contact element, we produce a force composed of three effects: stiffness, dissipation, and friction:

 contact stiffness dissipation frictionf f f f (22)

Calculation of stiffnessf differs between the two compliant contact models but we use the same method
for the dissipation and friction terms once the stiffness force has been determined.

5.1. Hertz stiffness, Hunt and Crossley dissipation, Stribek friction

To apply Hertz theory rigorously, we need two linearly elastic materials in non-conforming contact,
where the dimensions of the contact patch are small compared to the curvatures, and small compared to
the overall dimensions of the object [54]. Contact must initiate at a common point at which the two
surface normals are opposed. Each of the contacting surfaces must be well-approximated by a paraboloid
at the contact point. Brought into a common frame, these may be added together to characterize the
separation between the two surfaces. That sum will also be a paraboloid, so it can be expressed using just
two principal curvatures to represent the relative contact curvatures. See ref. [54], section 4.1 for a
discussion. Thus the undeformed geometry of contact can be represented by a contact point and normal,
and the two principal curvatures of the separation paraboloid. Any sufficiently smooth nonconforming
surfaces can be described this way [58], and Hertz theory can also be applied to cylindrical contact that
initiates in a line rather than a point. Currently Simbody provides Hertz contact for planes, spheres, and
ellipsoids. Fig. 4 illustrates the geometry of contact for the case of two spheres.

Fig. 4. Contact geometry for the Hertz/Hunt and Crossley model.

R2

R1

*
1 1,E c

,x x2 2
,x x

1

1

1

1 22 (1)
x s x

x s x s xxx

O1•

O2•

n

• P

1 2

1 2

1 1 1

2 2 2

O O
O O

O (RP)
O (R)

x
x

n

n

n

*
2 2,E c

1 1
,x x

a

B2

B1

254 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

Deformation is characterized by a scalar displacement x that is the total deformation of the two
surfaces along the contact normal, with x>0 when the surfaces are contacting. Displacement x may also
be viewed as the minimum distance by which one of the surfaces would have to be translated along the
contact normal so that no deformation of either surface would be required to prevent overlap.

Under the above restrictions, Hertz theory assumes that the deformation of the two surfaces produces
an elliptical contact patch, in a contact plane perpendicular to the contact normal. The resulting normal
force, contact patch dimensions, and pressure distribution can then be determined just from material
properties, undeformed contact geometry, and deformation x. The force magnitude is

 1 2 * 3 24
3()stiffness Hzf f R E x (23)

Here R is a composite relative radius of curvature, E* is a composite elastic modulus, and 1 is an
eccentricity factor with =1 for circular contact, slowly growing as a function of elliptic integrals of the
ratio of the two relative curvatures [54]. R and depend only on the curvatures of the separation
paraboloid, so the parenthesized quantity above is independent of x. Note that although the materials are
assumed linear elastic, the force-displacement relationship is nonlinear because of the changing geometry
during contact. Appendix A gives details for calculating R, and E* from undeformed contact geometry
and material properties.

To apply this force, Simbody calculates an instantaneous contact point P, located along the line
separating the initiation points on each surface, with the exact location dependent on the relative
stiffnesses of the two contacting materials. If the materials are the same, P will be located midway
between the two surfaces. If one surface is much stiffer than the other then P will be located much closer
to the undeformed surface of the stiff (non-deforming) body than to the undeformed surface of the soft
body. P determines the height of the contact patch ellipse along the contact normal and is the center point
of the contact patch ellipse. The contact force is applied to each body at P along the contact normal in
opposite directions, such that the force is always pushing on each surface, never pulling.

 For Hunt and Crossley dissipation to apply rigorously, the impact velocities should be small enough
not to cause permanent yielding of the materials [56, 59]. Once the magnitude of the stiffness force has
been determined as above, the Hunt and Crossley dissipation force may be calculated as

 *3
2HC Hzf f c x (24)

where c* is an effective dissipation coefficient combining the individual dissipation properties of the two
contacting materials. The material property c may be determined from impact experiments as the negated
slope of the coefficient of restitution vs. impact velocity curve at low velocities, using the relationship

1e cv where e is the measured coefficient of restitution and v is the impact speed [60]. (Coefficient of
restitution is not a material property.) See Appendix A for details on computing c* from individual
material properties.

Note that HCf is a signed quantity; this creates an empirically observed hysteresis. Hunt and Crossley
[56] show that the total force 0Hz HCf f under typical conditions; negative total forces are due to
unmodeled losses (such as “ringing”) so we do not allow the total to become negative:

 max(,)dissipation HC Hzf f f (25)

This accounts for all contact forces in the normal direction, that is

 normal stiffness dissipationf f f (26)

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 255

Finally, the friction force is calculated as follows. Find the body stations (points) coincident with the
contact point P and calculate their relative velocity v in the contact plane. With slip rate v v we
calculate the magnitude of the friction force as follows

 ()friction normalf v f (27)

The function μ calculates an effective coefficient of friction that is dependent only on the slip velocity,
but is parameterized by given surface properties of the materials in contact: static, dynamic, and viscous
coefficients of friction, and a transition speed at which static friction reaches its peak value. Fig. 5 shows
the shape of this curve in the absence of viscous friction. With viscous friction the final segment would
have a positive slope rather than zero. Simbody implements this function using a three-segment spline
with the first two segments quintic polynomials to ensure C2-smooth transitions between static friction,
the Stribeck transition region, and the final sliding region. The transition velocity is set to a tiny value that
is negligible for the problem at hand. One may also use intermittent no-slip constraints to enforce stiction
with exactly zero slip, but in practice the above continuous method produces robust behavior without
detecting and handling stiction transition events explicitly.

A drawback of this method is that the system may become stiff in the stiction region if transition
velocity is set very small, reducing the efficiency of explicit integration [28]. Some choices of material
and properties can also make the problem stiff. However, as discussed in section 3.2, Simbody provides
an implicit integrator CPODES that performs well on stiff problems, provided they are not too large. The
size limitation is due to the necessity for CPODES to periodically calculate numerically, and factor, the
matrix of partial derivatives of Eqn. (1). Whether the much-increased step size compensates for the
additional costs is highly problem dependent, and we have not yet adequately characterized the tradeoffs.
We have seen a number of human-sized models for which CPODES has been highly effective, and it is
easy to try a variety of integration methods in the Simbody framework.

Fig. 5. Stribeck friction curve showing effective coefficient of friction as a function of slip velocity. Transition velocity vt is set to a
negligible value.

v=vt
v/vt

μs

μd

μs=0.95
μd=0.7
μv=0

μ

256 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

5.2. Elastic foundation model

The Elastic Foundation Model (EFM) [54-55] assumes that contacting solids may be considered rigid
bodies but for a thin layer of elastic material of thickness h at the surfaces. Linear elastic properties are
determined for the material properties in contact and combined into a composite stiffness modulus E* as
for Hertz contact, though with a different combining formula; see Appendix A. The geometry of each
surface, which can be arbitrarily complicated, is approximated with a triangular mesh of suitable density.
At the centroid of each triangle on each surface is placed a spring whose stiffness k can be determined
from the area of its triangle, the composite material property E* and thickness h. This forms a “bed of
springs” on the surface of each body that can be used to generate forces during contact.

At run time when an EFM body A contacts another body B, Simbody determines all the triangles of A
whose centroids are inside body B, considering only undeformed geometry. For each of these triangles,
the point S on body B’s surface closest to the centroid is determined. A displacement x is determined as
the distance from the centroid to S. Then a force kx is applied to both bodies using a contact point P along
the line segment between the centroid and S. P’s placement accounts for the relative stiffness of the two
bodies as described for Hertz contact above. A Hunt and Crossley-like dissipation term *()kx c x is added
to complete the normal force, and relative velocities are calculated at P and used to generate friction
forces in the plane of the triangle using Eqn. (27). This is repeated independently for each overlapping
triangle. If B is also an EFM body, then the same calculation is performed for each of B’s triangles whose
centroids are inside A. All force contributions from each triangle are summed up and used to calculate the
net force and moment applied to the two rigid bodies. The distribution of normal forces is also used to
calculate the center of pressure for the irregular contact patch.

EFM produces results that are inferior to the finite element method (FEM) but take much less time to
compute. In contrast to Hertz and FEM, EFM does not account for coupling between elements and hence
does not converge to the result predicted by linear elastic material theory even at very fine mesh
resolutions. As shown in Fig. 6, EFM can be viewed as a discretization of a Winkler foundation [61],
commonly used to represent particulate materials like soil.

Fig. 6. Continuum bases for contact models. EFM discretizes a Winkler foundation, while Hertz and FEM are based on linear theory
of elasticity.

Despite this limitation, EFM can give very good agreement with FEM for total force even though
patch geometry may not agree as well [62]. Simbody does not provide a built-in FEM contact method
although one could be supplied as a user force element. For most uses of Simbody FEM would be
prohibitively expensive; EFM can be a useful alternative but should be used cautiously.

5.3. Rigid contact

An alternative approach to collision and contact problems is to treat the contact objects as rigid and to
use unilateral constraints to prevent interpenetration and sliding [63-64]. Collisions are handled
impulsively with a coefficient of restitution supplied to emulate dissipative collisions. These are
essentially non-physical assumptions but can be useful in practice and have been used successfully for
some biomechanical research, e.g. [65]. Simbody’s constraints, operators, and event handling mechanism

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 257

can be employed currently to use this contact method, and automated support is planned in a near future
Simbody release.

Temporary replacement of compliant elements with rigid ones is especially useful in biomechanics for
muscle induced acceleration analysis [66-67], since reaction forces are generated instantaneously with
constraints. In this case compliant element deformations and patch calculations can be used to guide
placement of the rigid constraints. Hamner, et al. [68] uses Simbody constraints to implement induced
acceleration analysis in OpenSim [16].

6. Future directions

Simbody is used heavily in biomechanics through the OpenSim application and in other research
areas, where it has proven fast and reliable. (See companion paper [69] in this volume for more
information about OpenSim.) However, we hope to improve it in a number of ways over the next few
years. In particular, we plan to add to our collision/contact system an option for treating some or all
contacts using rigid contacts and impulsive collisions as discussed above, with automated handling of
unilateral constraints. We also plan to extend the set of analytical surfaces that can be used with the Hertz
compliant contact method. Jain and Rodriguez [44] provide a method for significant speed improvements
for systems with prescribed motion that we intend to incorporate. Jain [48] describes a promising method
for eliminating locally-coupled constraints which we will also explore.

We also hope to grow our library of predefined forces, constraints, and mobilizers and invite
community contributions. We are continuously improving our documentation and encourage
contributions of examples, and to the Simbody Wiki. Feature requests and bug reports are tracked and
support forums available. All source code is available and submissions of patches, enhancements, and
new features are welcome. For more information about obtaining and/or contributing to Simbody, visit
the Simbody home page https://simtk.org/home/simbody.

Acknowledgements

The authors thank the many contributors to Simbody’s development, including Peter Eastman, Radu
Serban, Paul Mitiguy, Jack Middleton, Christopher Bruns, and Charles Schwieters. Samuel Hamner
provided many helpful comments on an earlier draft of this paper. This work was supported by the
National Institutes of Health through grants U54 GM072970 and R24 HD065690.

References

[1] W. W. Hooker, and G. Margulies, “The dynamical attitude equations for an n-body satellite,” J. Astronautical Sciences, vol.
12, pp. 123-128, 1965.

[2] R. Featherstone, Robot dynamics algorithms, Boston: Kluwer, 1987.
[3] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “A spatial operator algebra for manipulator modeling and control,” The

International Journal of Robotics Research, vol. 10, no. 4, pp. 371-381, August 1, 1991, 1991.
[4] D. E. Rosenthal, and M. A. Sherman, “High performance multibody simulations via symbolic equation manipulation and

Kane's method,” J. Astronautical Sciences, vol. 34, pp. 223-239, 1986.
[5] R. R. Ryan, "ADAMS multibody systems analysis software," Multibody Systems Handbook, W. Schielen, ed., pp. 361-402,

New York: Springer-Verlag, 1990.
[6] F. E. Zajac, R. R. Neptune, and S. A. Kautz, “Biomechanics and muscle coordination of human walking: Part I: Introduction

to concepts, power transfer, dynamics and simulations,” Gait & Posture, vol. 16, no. 3, pp. 215-232, 2002.
[7] S. J. Piazza, “Muscle-driven forward dynamic simulations for the study of normal and pathological gait,” Journal of

NeuroEngineering and Rehabilitation, vol. 3, no. 5, 2006.

258 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

[8] S. L. Delp, and J. P. Loan, “A computational framework for simulating and analyzing human and animal movement,”
Computing in Science & Engineering, vol. 2, no. 5, pp. 46-55, 2000.

[9] M. G. Pandy, “Computer modeling and simulation of human movement,” Annual Review of Biomedical Engineering, vol. 3,
no. 1, pp. 245-273, 2001.

[10] C. U. de Jongh, A. H. Basson, and C. Scheffer, “Predictive modelling of cervical disc implant wear,” Journal of
Biomechanics, vol. 41, no. 15, pp. 3177-3183, 2008.

[11] P. O. Riley, U. D. Croce, and D. Casey Kerrigan, “Propulsive adaptation to changing gait speed,” Journal of Biomechanics,
vol. 34, no. 2, pp. 197-202, 2001.

[12] R. L. Smith, Open Dynamics Engine (ODE) Manual, 2004, http://opende.sourceforge.net/wiki/index.php/Manual_(All).
[13] W. I. Sellers. "GaitSym," March 20, 2011, 2011; http://www.animalsimulation.org.
[14] J. P. Schmidt, S. L. Delp, M. A. Sherman et al., “The Simbios National Center: Systems biology in motion,” Proceedings

of the Ieee, vol. 96, no. 8, pp. 1266-1280, Aug, 2008.
[15] S. C. Flores, “Fast flexible modeling of RNA structure using internal coordinates,” IEEE/ACM Transactions on

Computational Biology and Bioinformatics, vol. 99, no. PrePrints, 2010.
[16] S. L. Delp, F. C. Anderson, A. S. Arnold et al., “OpenSim: open-source software to create and analyze dynamic

simulations of movement,” Biomedical Engineering, IEEE Transactions on, vol. 54, no. 11, pp. 1940-1950, 2007.
[17] N. Pronost, A. Sandholm, and D. Thalmann, “Correlative joint definition for motion analysis and animation,” Computer

Animation and Virtual Worlds, vol. 21, no. 3-4, pp. 183-192, 2010.
[18] M. A. Sherman. "Simbody home page," 2011; https://simtk.org/home/simbody.
[19] X. Consortium. "The MIT License," 2011; http://opensource.org/licenses/mit-license.
[20] A. Seth, M. Sherman, P. Eastman et al., “Minimal formulation of joint motion for biomechanisms,” Nonlinear Dynamics,

vol. 62, no. 1, pp. 291-303, 2010.
[21] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and Simulation, 2nd ed.: Academic Press, 2000.
[22] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic

equations, New York: North-Holland, 1989.
[23] U. Ascher, “Stabilization of invariants of discretized differential systems,” Numerical Algorithms, vol. 14, no. 1, pp. 1-24,

1997.
[24] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration : structure-preserving algorithms for ordinary

differential equations, 2nd ed., Berlin ; New York: Springer, 2006.
[25] L. F. Shampine, “Conservation laws and the numerical solution of ODEs,” Computers & Mathematics with Applications,

vol. 12, no. 5-6, Part 2, pp. 1287-1296.
[26] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations I: nonstiff problems, 2nd rev. ed., Berlin;

New York: Springer-Verlag, 1993.
[27] L. Verlet, “Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,”

Physical Review, vol. 159, no. 1, pp. 98-103, 1967.
[28] E. Hairer, and G. Wanner, Solving ordinary differential equations II: stiff and differential-algebraic problems, 2nd rev. ed.,

Berlin ; New York: Springer-Verlag, 1993.
[29] S. D. Cohen, and A. C. Hindmarsh, “CVODE, a stiff/nostiff ODE solver in C,” Computers in Physics, vol. 10, no. 2, pp.

138-143, 1996.
[30] P. Dehombreux, O. Verlinden, and C. Conti, “An Implicit Multistage Integration Method Including Projection for the

Numerical Simulation of Constrained Multibody Systems,” Multibody System Dynamics, vol. 1, no. 4, pp. 405-424, 1997.
[31] E. Eich, “Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems with Algebraic

Constraints,” Siam Journal on Numerical Analysis, vol. 30, no. 5, pp. 1467-1482, Oct, 1993.
[32] E. Hairer, and A. Ostermann, “Dense output for extrapolation methods,” Numerische Mathematik, vol. 58, no. 1, pp. 419-

439, 1990.
[33] D. Vlasenko, and R. Kasper, “A New Software Approach for the Simulation of Multibody Dynamics,” Journal of

Computational and Nonlinear Dynamics, vol. 2, no. 3, pp. 274-278, 2007.
[34] U. M. Ascher, H. Chin, L. R. Petzold et al., “Stabilization of Constrained Mechanical Systems with DAEs and Invariant

Manifolds,” Mechanics of Structures and Machines, vol. 23, no. 2, pp. 135 - 157, 1995.
[35] J. Baumgarte, “Stabilization of constraints and integrals of motion in dynamical systems,” Computer Methods In Applied

Mechanics And Engineering, vol. 1, pp. 1-16, 1972.
[36] R. von Schwerin, Multibody system simulation : numerical methods, algorithms, and software, Berlin ; New York:

Springer-Verlag, 1999.
[37] M. Sherman, Simbody Theory Manual, Simbios Center at Stanford University, 2011,

https://simtk.org/docman/view.php/47/231/SimbodyTheoryManual.pdf.
[38] W. H. Press, Numerical recipes in C++ : the art of scientific computing, 2nd ed., Cambridge, UK ; New York: Cambridge

University Press, 2002.

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 259

[39] M. Mauve, J. Vogel, V. Hilt et al., “Local-lag and timewarp: providing consistency for replicated continuous applications,”
Multimedia, IEEE Transactions on, vol. 6, no. 1, pp. 47-57, 2004.

[40] S. L. Teal, and A. I. Rudnicky, “A performance model of system delay and user strategy selection,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, Monterey, California, United States, 1992, pp. 295-305.

[41] B. Shneiderman, “Response time and display rate in human performance with computers,” ACM Comput. Surv., vol. 16,
no. 3, pp. 265-285, 1984.

[42] S. K. Card, T. P. Moran, and A. Newell, The psychology of human-computer interaction, Hillsdale, N.J.: L. Erlbaum
Associates, 1983.

[43] G. Rodriguez, A. Jain, and K. Kreutz-Delgado, “Spatial operator algebra for multibody system dynamics,” J. Astronautical
Sciences, vol. 40, no. 1, pp. 27-50, 1992.

[44] A. Jain, and G. Rodriguez, “Recursive dynamics algorithm for multibody systems with prescribed motion,” Journal of
Guidance, Control, and Dynamics, vol. 16, no. 5, pp. 830-837, 1993.

[45] A. Jain, N. Vaidehi, and G. Rodriguez, “A fast recursive algorithm for molecular dynamics simulation,” Journal of
Computational Physics, vol. 106, no. 2, pp. 258-268, 1993.

[46] C. D. Schwieters, and G. M. Clore, “Internal coordinates for molecular dynamics and minimization in structure
determination and refinement,” Journal of Magnetic Resonance, vol. 152, no. 2, pp. 288-302, Oct, 2001.

[47] K. S. Anderson, and J. H. Critchley, “Improved `Order-N' Performance Algorithm for the Simulation of Constrained Multi-
Rigid-Body Dynamic Systems,” Multibody System Dynamics, vol. 9, no. 2, pp. 185-212, 2003.

[48] A. Jain, “Recursive algorithms using local constraint embedding for multibody system dynamics,” ASME Conference
Proceedings, vol. 2009, no. 49019, pp. 139-147, 2009.

[49] M. G. Hollars, D. E. Rosenthal, and M. A. Sherman, SD/FAST User's Guide B.2: Symbolic Dynamics, Inc., 1994.
[50] R. Featherstone, Rigid body dynamics algorithms, 1st ed., New York, NY: Springer, 2007.
[51] G. H. Golub, and C. F. Van Loan, Matrix computations, 3rd ed., Baltimore: Johns Hopkins University Press, 1996.
[52] E. Anderson, LAPACK users' guide, 3rd ed., Philadelphia: Society for Industrial and Applied Mathematics, 1999.
[53] H. Hertz, “On the contact of elastic solids.,” J. Reine Angew. Math., vol. 92, pp. 156-171, 1882.
[54] K. L. Johnson, Contact mechanics, Cambridge Cambridgeshire ; New York: Cambridge University Press, 1985.
[55] L. Blankevoort, J. H. Kuiper, R. Huiskes et al., “Articular contact in a three-dimensional model of the knee,” Journal of

Biomechanics, vol. 24, no. 11, pp. 1019-1031, 1991.
[56] K. H. Hunt, and F. R. E. Crossley, “Coefficient of restitution interpreted as damping in vibroimpact,” ASME Journal of

Applied Mechanics, vol. 42, pp. 440-445, 1975.
[57] B. Armstrong-Hélouvry, Control of machines with friction, Boston: Kluwer Academic Publishers, 1991.
[58] D. J. Struik, Lectures on classical differential geometry, 2nd ed., New York: Dover Publications, 1988.
[59] D. W. Marhefka, and D. E. Orin, “Simulation of contact using a nonlinear damping model,” in International Conference on

Robotics and Automation, Minneapolis, Minnesota, USA, 1996, pp. 1662-1668.
[60] W. Goldsmith, Impact : the theory and physical behaviour of colliding solids, Mineola, N.Y.: Dover Publications, 2002.
[61] E. Winkler, Theory of elasticity and strength, Czechoslovakia: Dominicus Prague, 1867.
[62] A. Pérez-González, C. Fenollosa-Esteve, J. L. Sancho-Bru et al., “A modified elastic foundation contact model for

application in 3D models of the prosthetic knee,” Medical Engineering & Physics, vol. 30, no. 3, pp. 387-398, 2008.
[63] F. Pfeiffer, and C. Glocker, Multibody dynamics with unilateral contacts, New York: Wiley, 1996.
[64] D. Baraff, “Fast contact force computation for nonpenetrating rigid bodies,” in Proceedings of the 21st annual conference

on Computer graphics and interactive techniques, 1994, pp. 23-34.
[65] S. J. Piazza, and S. L. Delp, “Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-

Up Task,” Journal of Biomechanical Engineering, vol. 123, no. 6, pp. 599-606, 2001.
[66] F. E. Zajac, and M. E. Gordon, “Determining muscle's force and action in multi-articular movement,” Exercise and Sport

Sciences Reviews, vol. 17, no. 1, pp. 187-230, 1989.
[67] P. O. Riley, and D. C. Kerrigan, “Kinetics of stiff-legged gait: induced acceleration analysis,” Rehabilitation Engineering,

IEEE Transactions on, vol. 7, no. 4, pp. 420-426, 1999.
[68] S. R. Hamner, A. Seth, and S. L. Delp, “Muscle contributions to propulsion and support during running,” Journal of

Biomechanics, vol. 43, no. 14, pp. 2709-2716, 2010.
[69] A. Seth, M. A. Sherman, J. A. Reinbolt et al., “OpenSim: A musculoskeletal modeling and simulation framework for in

silico investigations and exchange,” in IUTAM Symposium on Human Body Dynamics, Waterloo, Canada, 2011.
[70] J.-F. Antoine, C. Visa, C. Sauvey et al., “Approximate Analytical Model for Hertzian Elliptical Contact Problems,”

Journal of Tribology, vol. 128, no. 3, pp. 660-664, 2006.
[71] A. Dyson, H. P. Evans, and R. W. Snidle, “A simple, accurate method for calculation of stresses and deformations in

elliptical hertzian contacts,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science 1989-1996 (vols 203-210), vol. 206, no. 23, pp. 139-141, 1992.

260 Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261

Appendix A. Contact model details
This appendix gives details of the calculation of terms that appear in section 5.

A.1. Material properties combining rules; location of contact point

We are given Young’s modulus Ei and Poisson’s ratio i, i=1,2 for a pair of contacting objects. These
are first combined into the plane strain modulus for each material: * 2/ (1)i i iE E . To use Hertz
theory, we need a single equivalent modulus combining both materials. The literature (e.g. [54]) seems to
suggest * * * * *

1 2 1 2()E E E E E but this would be inconsistent with the nonlinear Hertz relationship, by
the following reasoning. First, the relative curvature is a geometric property and is straightforward to
calculate: 1 2 1 2()R R R R R . Looking at Fig. 4, note that the contact situation depicted should be
indistinguishable from one in which B1 (the top, red body) had met an infinitely rigid halfspace, with a
displacement of 1x instead of x, provided that B1’s radius were R instead of R1. The effective modulus

would be just *
1E of B1. Hertz theory would then give 3/ 2*4

1 1 13f RE x . By the same reasoning, we can
view B1 as a rigid half space and see that the force on B2 (with radius changed to R) would be unchanged
at 3/ 2*4

2 2 23f RE x . But the forces must be the same on both bodies and the same as 3 2*4
3f RE x .

Recalling that 1 2x x x , we now have enough information to write E* in terms of *
1E and *

2E :

3
22/3 2/3

3 23 2 3 2 2/3 2/3 2/3

2/3 2/3

* *
* * * * * * * 1 2
1 2 1 2 1 1 2 2 1 21 2 * *

1 2

E E
E x E x E x x E x E x E x x E

E E

This combining formula is similar, but not identical, to * * * * *
1 2 1 2()E E E E E . We can now rearrange

this to determine how x is split into x1 and x2 given the stiffnesses of the materials, the result we need to
determine the contact point location P:

2 2
3 32/3 2/3

2/3 2/3 2/3 2/3

* *
2 1

1 2 1* *
1 1 2 2 1 2

,
E EE Ex x x x x x x x

E E E E E E

By inspection, the time derivatives 1x and 2x are split in the same ratios, which gives us a way to define

an equivalent dissipation coefficient for x : *
1 1 2 11c c s c s , where 2/3 2/3 2/3

1 2 1 2s E E E . To

summarize, here are the combining rules we use for Hertz:
3
22/3 2/3 2/3 2/3

2/3 2/3 2/3 2/3 2/3 2/3

* *
*1 2 1 2 2 1

1 2 1* *
1 2 1 2 1 2 1 2

1 1 2 2
* *

1 1 2 2 1 1 2 2

, , , 1

,

R R E E E ER E s s s
R R E E E E E E

x s x x s x

c x c x c x c c s c s

Note that the EFM method uses linear elements, and thus the standard combining rule * * * *
1 2 1 2()E E E E is

the correct one to use for calculating E* and s1, s2.

Michael A. Sherman et al. / Procedia IUTAM 2 (2011) 241–261 261

A.2. Elliptical contact

We presented the Hertz contact force calculation in Eqn. (23) with a correction factor to deal with
the eccentricity of the contact ellipse. The correction factor is

1/2

3/2
()

2 ()
E m k
K m

 (28)

where /k a b , 21 (1/)m k , E and K are complete elliptic integrals of the first and second kinds,
resp., a, b the semi-major and semi-minor axes of the contact ellipse, resp. so 1k . The ratio a/b of the
contact ellipse dimensions in turn depends only on the principal semi-curvatures A, B, B A of the
(undeformed) separation paraboloid that describes the relative contact geometry:

2 () ()

() ()
B k E m K m
A K m E m

 (29)

The above expressions may be derived from references [54] and [70-71]. Eqn.(29) can be solved
numerically to machine precision for k, or by approximation. Simbody uses the approximations from [70]
which provide smooth, high-accuracy approximations for k and the elliptic integrals, giving accurate to
five decimal places. Ref. [71] provides a method for calculating this to machine precision, which
Simbody includes for testing purposes but does not use during simulation.

