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Abstract 
A recently developed spatial operator algebra for manipu- 
lator modeling, control, and trajectory design is dis- 
cussed. The elements of this algebra are linear operators 
whose domain and range spaces consist of forces, 
moments, velocities, and accelerations. The eflect of 
these operators is equivalent to a spatial recursion along 
the span of a manipulator. Inversion of operators can be 
efficiently obtained via techniques of recursive filtering 
and smoothing. The operator algebra provides a high- 
level framework for describing the dynamic and kinematic 
behavior of a manipulator and for control and trajectory 
design algorithms. The interpretation of expressions 
within the algebraic framework leads to enhanced concep- 
tual and physical understanding of manipulator dynamics 
and kinematics. Furthermore, implementable recursive 
algorithms can be immediately derived from the abstract 
operator expressions by inspection. Thus the transition 
from an abstract problem formulation and solution to the 
detailed mechanization of specific algorithms is greatly 
simplified. 

1. Introduction: A Spatial Operator Algebra 
A new approach to the modeling and analysis of sys- 
tems of rigid bodies interacting among themselves. 
and their environment has recently been developed 
in Rodriguez (1987a) and Rodriguez and Kreutz 
(1990b). This work develops a framework for clearly 
understanding issues relating to the kinematics, 
dynamics, and control of manipulators in dynamic 
interaction with each other, while keeping the com- 
plexity involved in analyzing such systems to man- 
ageable proportions. 
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The analysis given in Rodriguez (1987a) and Ro- 
driguez and Kreutz (1990b) has shown that certain 
linear operators are always present in the dynamic 
and kinematic equations of robot arms. These opera- 
tors are called spatial operators, because they show 
how forces, velocities, and accelerations propagate 
through space from one rigid body to the next. Not 
only do  the operators have obvious physical inter- 
pretations, but they are also implicitly equivalent to  
tip-to-base or  base-to-tip recursions, which if 
needed, can be immediately turned into implementa- 
ble algorithms by projecting them onto appropriate 
coordinate frames. 

Compositions of spatial operators, when allowed 
to operate on functions of the joint velocities and 
accelerations, result in the dynamic equations of 
motion that arise from a Lagrangian analysis. The 
fact that the operators have equivalent recursive 
algorithms is a generalization of the well-known 
equivalence [described in Silver (1982)] between the 
Lagrangian and recursive Newton-Euler approaches 
to manipulator dynamics. The operator-based formu- 
lation of robot dynamics leads to an integration of 
these two approaches, so that analytic expressions 
can be shown to almost always have implicit, and 
obvious, recursive equivalents that are straightfor- 
ward to mechanize. 

The essential ingredients of the operator algebra 
are the operations of addition and multiplication 
(Roman 1975; Rudin 1973). There is also an 
"adjoint," or  "*" , operator that can operate on ele- 
ments of the spatial algebra. If a spatial operator A 
is "causal" in the sense that it implies an inward 
recursion, then its adjoint A* is "anticausal." An 
anticausal operation implies an outward recursion. 
Operator inversion is also defined in the spatial 
operator algebra. For an arbitrary finite-dimensional 
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linear operator, inversion is achieved by the tradi- 
tional techniques of linear algebra. However, many 
important spatial operators encountered in multi- 
body dynamics belong to a class that can be fac- 
tored as  the product of a causal operator, a diagonal 
operator, and an anticausal operator. For these 
operators, inversion can often be achieved using the 
inwardtoutward sweep solutions of spatially recur- 
sive Kalman filtering and smoothing described in 
Rodriguez (1987a), Rodriguez and Kreutz (1990b), 
and Anderson and Moore (1979). 

That the equations of multibody dynamics can be 
completely described by an algebra of spatial opera- 
tors is certainly of mathematic interest. However, 
the significance of this result goes beyond the math- 
ematics and is useful in a very practical sense. The 
spatial operator algebra provides a convenient 
means to manipulate the equations describing multi- 
body behavior at a very high level of abstraction. 
This liberates the user from the excruciating detail 
involved in more traditional approaches to multi- 
body dynamics where often one "can't see the for- 
est for the trees." Furthermore, at any stage of an 
abstract manipulation of equations, spatially recur- 
sive algorithms to  implement the operator expres- 
sions can be readily obtained by inspection. There- 
fore the transition from abstract operator 
mathematics to practical implementation is straight- 
forward to perform and often requires only a simple 
mental exercise. When applied to  the dynamic anal- 
ysis of a manipulator with n = links, the algebra 
typically leads to O(n) recursive algorithms. How- 
ever, numeric efficiency is not the main motivation 
for its development. What the algebra primarily 
offers is a mathematic framework that, because of 
its simplicity, is believed to  have great potential for 
addressing advanced control and motion planning 
problems (Rodriguez 1989~). 

To illustrate the use of the spatial operators, sev- 
eral applications of the algebra to robotics will be 
presented: (1) an operator representation of the 
manipulator Jacobian matrix; (2) the robot dynamic 
equations formulated in terms of the spatial algebra, 
showing the equivalence between the recursive 
Newton-Euler and Lagrangian formulations of robot 
dynamics in a far more transparent way than before; 
(3) the operator factorization and inversion of the 
manipulator mass matrix, which immediately results 
in O(n) recursive forward dynamics algorithms for a 
serial manipulator; (4) the joint accelerations of a 
manipulator caused by a tip contact force; (5) the 
recursive computation of the equivalent mass matrix 
as seen at the tip of a manipulator, referred to by 
Khatib (1985) as the operational space inertia 

matrix; (6) recursive forward dynamics of a closed- 
chain system. Finally, we discuss additional applica- 
tions and research involving, the spatial operator 
algebra. 

2. The Jacobian Operator 
Consider an n-link serial chain manipulator. After 
defining a link spatial velocity to be V(k) = 
col[w(k), v(k)] E R6, the recursion that describes 
the relationship between joint angle rates, e = 

col[b(l), . . . , e(n)], and link velocities, V = 
col[V(I), . . . , V(n)] is (Rodriguez and Kreutz 
1990b; Craig 1986): I 

V(n + 1) = 0 
f o r k  = n -.. 1 

V(k) = +*(k + 1, k)V(k + 1) + ~ * ( k ) e ( k )  
end loop 

H(k) = [h*(k) 0 0 01 where h(k) E R3 is the unit 
vector in the direction of the Mh joint axis. &k + 1, 
k) is defined as  

where I(k + 1, k) is the vector from the (k + 1)th 
joint to  the kth joint. Thus +*(k + 1, k) is the Jaco- 
bian that transforms velocities across a rigid link. 
This recursion represents a base-to-tip recursion that 
shows how link velocities propagate outward to the 
tip, point "0" on link 1, from the base "link n + 
1 ." This assumes for simplicity that the base has 
zero velocity. Note that the link numbering conven- 
tion used here and in Rodriguez (1987a) and Rodri- 
guez and Kreutz (1990b) increases from the tip to 
the base, unlike the numbering convention described 
in most robotics textbooks such as Craig (1986). 
This convention makes it easier to describe the 
recursive algorithms presented in this article. 

Summation of the preceding recursion leads to 

where the facts that &i, i )  = f and +( i ,  j ) .+(j ,  k) = 

+(i,  k) have been used. Also note that 4- ' ( i ,  j) = 

+ti, i). This naturally suggests that we define the 
?operators7' H* = diag[H*(l), . . . , H*(n)], B* = 
[+*(I ,  0), 0, . . . , 0] and 
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This results in V(0) = B*+*H*~ or  

V(0) = JB, where J = B*+*HX (1) 

The Jacobian operator J in eq. (1) is seen to be the 
product of three operators: B*, +*, and H*. The op- 
erator H*, being block diagonal, is called memory- 
less, or  nonrecursive. The operator B* projects out 
the link 1 velocity V(1) of the composite velocity V 
and propagates it to  the tip location at point 0. The 
operator 4 is lower block triangular, which we 
denote as  "causal," and +* is upper block triangular 
and hence "anticausal." +* represents a propagation 
of link velocities from the base to the tip, which is 
viewed as the anticausal direction, as opposed to the 
tip-to-base recursion represented by 6, which is 
denoted as causal. 

The action of the Jacobian operator on the joint 
angle rates e then is as  follows: (1) ~ * e  results in . 
relative spatial velocities between the links along the 
joint axes; (2) +* then anticausally propagates these 
relative velocities from the base to the tip to form 
the link spatial velocities V = col[V(l), . . . , V(n)J; 
and (3) B* then projects out V(1) from V and propa- 
gates it to the tip forming V(0). 

The well-known (Craig 1986) dual relationship to 
V(0) = J 8  is T = J*f (0) = H+B f (O), where f (0) = 
col[N(O), F(O)] E R6 is a spatial force that repre-' 
sents the tip interaction with the environment. The 
action of J *  on f(0) is as follows: (I) B takes f(0) to 
col[f(l), 0, . . . , 01; (2) 4 propagates f(1) causally 
from link 1 to the base forming the interaction spa- 
tial forces between neighboring links represented by 
f = col[f(l), . . . , f(n)J;  and (3) H projects each 
component of f ,  f(k) onto joint axis H*(k) = h(k) 
to obtain the joint moments T = col[T(l), . . . ,T(n)]. 

The key points to note here are that J and J *  have 
operator factorizations that have immediate physical 
interpretations and obvious recursive algorithmic 
equivalents. Working with the factorized version of 
J ,  one can manipulate expressions involving J in 
new ways while maintaining the physical insight pro- 
vided by the factors and the ability to produce 
equivalent recursive algorithms at key steps of a cal- 
culation. For example, using the techniques of the 
spatial operator algebra, one can find algorithms for 
eficient recursive construction of J ,  JJ*, J*J, and 
(when an arm is nonredundant and nonsingular) 
(J*J)- ' (see Rodriguez and Scheid 1987). 

3. An Operator-Formulated Robot Dynamics 
Consider the following equations of motion for an n- 
link serial manipulator in a gravity-free environment 
with the tip imparting a .spatial force f(0) to the 

external environment: 

(e denotes "bias" torques caused by the velocity- 
dependent Coriolis and centrifugal effects. Eq. (2) is 
precisely the form that arises from a Lagrangian 
analysis of manipulator dynamics. Eq. (2) has an 
operator interpretation that arises from the following 
spatial operator factorizations of A, %, and J*: 

These factorizations are derived in Rodriguez and 
Kreutz (1990b). The mass matrix factorization in eq. 
(3) is called the Newton-Euler factorization, for rea- 
sons to be discussed later. The quantity 

is made up of the spatial inertia M(k) associated 
with each link of the manipulator. M, being block 
diagonal, is interpreted as  a memoryless operator. , 

For a given link k, M(k) has the form 

where $(k) is the inertia tensor of link k about joint 
k;  m(k) is the link k mass; and p(k) is the 3-vector 
from joint k to the link k mass center. The "tilde" 
operator is defined by 3y  = x X y for any 3-vectors 
x and y. In eq. (4), a = col[a(l), . . . , a(n)] and b 
= col[b(l), . . . , b(n)] are known quadratic func- 
tions of the link spatial velocities. The operators H ,  
4, and B were described in the previous section. 

When eq. (2) is given an operator interpretation 
via eqs. (3)-(5). it is immediately apparent that eq. 
(2) is functionally identical to the Newton-Euler 
recursions given in Rodriguez and Kreutz (1990b), 
Craig (1986), and Luh et al. (1980): 

a(n + 1 )  = 0 
fork= n . - - 1  

a ( & )  = +*(k + 1, & ) a ( &  + 1) + ~ * ( k ) & k )  + n ( k )  
end loop 

where a = col[a(l), . . . , a(n)J, and a(k) = ~ ( k )  
denotes the spatial acceleration of link k. 

To make this equivalence clearer, consider the 
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"bias-free" manipulator dynamics given by 

This corresponds to taking a = 0, b = 0, and f(0) 
= 0 in the Newton-Euler recursions. Eq. (6) is also 
valid for the case when the Coriolis, centrifugal, and 
tip-contact force terms have been subtracted out of 
eq. (2), resulting in T' = T - % - J*f(O). From the 
Newton-Euler factorization in eq. (3) we see that eq. 
(6) is equivalent to 

The action of H* on the joint angle accelerations 0is  
memoryless (nonrecursive) and results in a vector of 
relative spatial accelerations between the manipula- 
tor links. The action of 4* on ~ * 8  is equivalent to  
an anticausal base-to-tip recursion that propagates 
link relative accelerations resulting in all the link 
spatial accelerations a. The combined action of 4* 
and H* on 0, denoted by 4*H*0, is equivalent to the 
recursion 

a(n + 1) = 0 
fork = n 1 

d k )  = &*(k + I ,  k ) d k  + I )  + ~*(k )B(k )  
end loop 

The action of M on a! = 4 * ~ * 0  is memoryless and 
leads to the D'Alembert forces col[M(k)a(k)], which 
represent the net spatial forces acting on each of the 
links. The action of 4 on Ma is equivalent to a 
causal tip-to-base recursion of all the single-link 
D'Alembert forces to form the link interaction spa- 
tial forces f = &Ma! acting on the manipulator links. 
Finally, the action of H = diag[H(l), . . . , H(n)] on 
f is to project the link spatial forces f(k) onto the 
joint axes H*(k) to obtain the joint moments T = 
Hf = col[T(k)], T(k) = H(k)f(k). The combined 
actions of H ,  4, and M on a, denoted by HcpMrw, is 
equivalent to the recursion 

This establishes the equivalence between the 
Lagrangian and recursive Newton-Euler formula- 
tions of manipulator dynamics (Silver 1982) and jus- 
tifies the use of the terminology Newton-Eulerfacto- 
rization for eq. (3). 

The factorizations given by eqs. (3)-(5) allow us 
to manipulate the dynamic equations of motion in 
ways not previously apparent. The fact that each 
factor has an interpretation as  a causal, memoryless, 

o r  anticausal recursion of spatial quantities means 
that at any point of the mathematic analysis, one 
can interpret expressions in a deeply physical way 
or  immediately produce an equivalent recursive 
algorithm. In the following sections it will be shown 
that an important alternative factorization to  the 
Newton-Euler factorization [eq. (3)] exists that 
results in new causal, memoryless, anticausal opera- 
tors with corresponding equivalent recursions. Also, 
we will discuss the existence of very useful operator 
identities that allow one to manipulate kinematic and 
dynamic equations in ways that would be otherwise 
impossible, all the while keeping the correspondence 
of abstract mathematic expressions to equivalent 
implementable algorithms. 

4. Operator Inversion of the Manipulator 
Mass Matrix 

From eq. (3), the well-known fact that At is sym- 
metric and positive definite can be easily seen. It is 
also well known that a symmetric positive-definite 
operator is a covariance for some Gaussian random 
process. A deeper result is that the factorization 
given by eq. (3) shows that At has the structure of a 
covariance of the output of a discrete-step causal 
finite-dimensional linear system whose input is a 
Gaussian white-noise process. This a very important 
fact, for it is well known (Rodriguez 1990a) that 
such an operator can be factored and inverted efti- 
ciently by the use of standard techniques from filter- 
ing and estimation theory. Applications of these 
techniques to  the manipulator mass matrix can be 
found in Rodriguez and Kreutz (1990b) and are par- 
tially summarized in this section. 

First we present an important alternative factori- 
zation to eq. (3). To  this end, we define 

and 

A Note that K(i ,  i - 1 )  = 4(i, i - l)G(i - 1). P = 
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diag[P(l), . . . , P ( n ) ] ,  where the diagonal elements 
P(k)  are obtained by the following causal discrete- 
step Riccati equation 

P(1) = 
fork = 2 .a-n 

P ( k )  = *(k, k  - 1)P(k - l)l,P(k, k  - 1) + M ( k )  
end loop 

where 

P(k)  is always symmetric positive definite, and 
hence D, which is diagonal with the positive diago- 
nal elements D ( k )  = H(k)P(k)H*(k) ,  is always 
invertible. 

In a fashion analogous to the definitions of + and 
8+, we define + and 8,: 

where +(k, k  - 1 )  is given by eq. (91, cCl(k, k )  = I,  
and 

for i r j. 
With these definitions, we can restate the defini- 

tion in eq. (9) as 

The action of t) on a composite spatial quantity y to 
form z = +y is equivalent to the following causal . 
tip-to-base recursion 

LEMMA 1: An alternative factorization of A = 

H+M+*H* is the innovations factorization 

where I + H+K is causal (lower triangular), and D 
is mernoryless, diagonal, and invertible. 

Proof: See appendix. 
0 

The innovations factorization eq. (1 I )  is equivalent 
to viewing the mass operator M as the covariance of 
a filtered innovations process, y .  In stochastic esti- 
mation theory, the innovations representation is 
given by the causal operator I  + H+K operating on 
an innovations process c - diag[e(l), . . . , ~ ( n ) ] ,  
which can be taken to be an independent Gaussian 
sequence. The action of ( I  + H+K)  on &, 

is equivalent to the following causal tip-to-base 
recursion 

r 
z"(0) = 0 ;  c(0)  = 0 

fork = 1 - - -  n 
2(k) = 4 ( k ,  k  - I).?(& - 1) 

+ K(k ,  k  - I ) & ( &  - 1 )  
y ( k )  = H(k)?(k) + d k )  

end loop 

The importance of the innovations operator I  + 
H+K is that it is trivially and causally invertible and 
that its inverse is precisely a discrete-step Kalman 
filter viewed as  a whitening filter. 

LEMMA 2: The causal (lower triangular) operators I  
+ H+K and I  - H+K are mutual causal inverses of 
each other 

Proof: See appendix. 
0 

The relationship E = ( I  + H + K ) - ' y  = ( I  - 
H$K)y is equivalent to the following causal tip-to- 
base recursion: 

i ( 0 )  = 0 ;  y(0) = 0 
for k = 1 .-- n 

i ( k )  = $(k, k  - 1)2(k - I )  
+ K(k ,  k  - l ) y (k  - 1 )  

d k )  = -H(k)z^(k) + y ( k )  
end loop 

This recursion is precisely a discrete-step Kalman 
filter. Lemmas I and 2 result in: 

LEMMA 3: The operator At-' has the following anti- 
causal-rnemoryless-causal operator factorization 

Application of lemma 3 to the bias-free robot 
equations of motion given by eq. (7) immediately 
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yields the following O(n) forward dynamics algo- 
rithm: 

Algorithm FD 

Eq. (14) represents an O(n) Newton-Euler recursion 
to remove the bias torques. Eq. (15) leads to the fol- 
lowing O(n) recursive forward dynamics algorithm: 

i(0); T'(0) = 0 
for k = 1 n 

i (k)  = +(k, k - l)i(k - 1) 
+ Kik, k - l)T'(k - 1) 

&(k) = T'(k) - H(k)t(k) 
d k )  = D- '(k)&(k) 

end loop 

A(n + 1) = 0 
fork = n ... 1 

A(k) = @(k + 1, k)A(k + 1) + H*(k)v(k) 
&k) = v(k) - K*(k + 1)A(k + 1, k) 

end loop 

It can be shown that the forward dynamics algo- 
rithm given by eqs. (14) and (15) is equivalent to 
that of Featherstone (1983) but is derived by vastly 
different means. Similarly, it can be shown that P(k) 
defined earlier is an articulated body inertia as 
defined by Featherstone (1983) but discovered inde- 
pendently, and in a much different context, in Rodri- 
guez (1987a). 

In addition to these operator factorizations, there 
exist many operator identities relating the various 
operator factors. This greatly enhances the ability to 
obtain a number of important results. For instance, 
it is shown in Rodriguez and Kreutz (1990b) how 
these identities can be used to obtain a variety of 
O(n) forward dynamics algorithms, all of them sig- 
nificantly different. Indeed, among these algorithms 
are ones that do not require the separate cornputa- 
tion of T' as in eq. (14) and directly take careof the 
terms involving a, b, and f(0) in the recursive imple- 
mentation of eq. (1  5). It is seen that the algorithm 
given by eqs. (14) and (15) is but one in a whole 
class of such algorithms available from an applica- 
tion of the spatial operator algebra. Furthermore, 
extensions to closed-chain systems made up of sev- 
eral arms rigidly grasping a common rigid object can 
be found in Rodriguez and Kreutz (1990a) and in 
Rodriguez (1989b). The case of loose grasp of non- 
rigid articulated objects is found in Jain et al. 
(1990b). General closed-graph rigid multibody sys- 
tems are analyzed in Rodriguez, Jain, and Kreutz 
(1989). 

5. Applications of Spatial Operator Identities 

Previously, we have referred to the availability of 
identities relating elements of the spatial operator 
algebra. In Rodriguez and Kreutz (1990b), many 
such relationships are derived. In this section, we 
will focus on the application of one such identity as 
representative of how these identities can be used to 
perform high-level manipulations that result in new - 
algorithms useful in dynamic analysis and control. 
The identity of interest is: 

LEMMA 4: 

Proof: See appendix. 
0 

5.1. Application 1: Tip Force Correction Accelerations 

From eq. (2) it is evident that 

e = l i , + & j  

where 

ef = &-'(T - %), and Ae  = -A-'J*f(O) 

can be determined from the forward dynamics algo- 
rithm eqs. (14) and (15). Our first application of 
lemma 4 is to find a simple relationship between tip 
contact forces and the resulting joint accelerations, 
A& caused solely by such tip forces. From eq. (1) 
and eq. (13), 

Application of lemma 4 then results in 

Eq. (18) is significantly simpler than eq. (17). It 
shows how the effect of the tip force propagates 
from the tip to the base of a manipulator, producing 
link accelerations that then propagate from the base 
to the tip. The algorithmic equivalent to eq. (18) is 
given by 

I i(1) = IM1, O)f(o) 
for k = 1 n 

i (k)  = $(k, k - l)z"(k - 1) 
v(k) = - D-'(k)H(k)z^(k) 

end loop 

A(n + I) = 0 
for k = n .-. 1 

A(k) = p ( k  + 1, k)A(k + I )  + H*(k)v(k) 
A&k) = v(k) - K*(k + 1, k)A(k + 1)  

end loop 
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5.2. Application 2: Effective Manipulator Inertia 
Reflected to the Tip 

The next application of lemma 4 will be to produce 
an O(n) recursive algorithm [see Rodriguez and 
Kreutz (1990a) for computing the operational space 
inertia matrix A of Khatib (1985)l. Knowledge of A, 
together with the operational space Coriolis, cen- 
trifugal, and gravity terms, enables the use of opera- 
tional space control-a form of feedback linearizing 
control described in Khatib (1985). The ability to 
obtain the operational space dynamics recursively 
avoids the need to  have explicit analytic expres- 
sions, which can be quite complex. Although we will 
only discuss the recursive construction of the opera- 
tional space inertia matrix A, the entire operational 
space dynamics can be computed via O(n) recur- 
sions using the techniques of the spatial operator 
algebra, allowing for recursive implementation of 
operational space control. 

If the dynamics of an n-link manipulator are 
reflected to the tip locations, the resulting manipula- 
tor inertia has the form 

For a manipulator whose work space is R6, the 
inversion of the 6 x 6 operator JM-'J* entails a 
constant cost that is independent of the number of 
manipulator links. The real work is to obtain and 
efficient algorithm for the construction of O(0) = 
JAt-'J*. Eq. (1) and eq. (13) reveal that 

Application of lemma 4 to  eq. (19) immediately 
results in 

a 0 )  JM-'J* = B*vH*D-'H$B (20) 

It is quite straightforward (Rodriguez and Kreutz 
1990a; Rodriguez, Jain, and Kreutz 1989) to show 
that the following O(n) anticausal base-to-tip recur- 
sive algorithm is equivalent to eq. (20): 

i. 
L?(n + 1) = 0 

for k = n 1 
O(k) = @(k + 1, k)O(k + 1)*(k + 1, k) 

+ H*(k)D - '(k)H(k) 
end loop 

5.3. Application 3: Closed-Chain Forward Dynamics 

Figure 1A represents a closed chain of rigid bodies 
connected by revolute joints that are all actuated. 
Figure 1A can be viewed as a graph whose nodes 

Fig. I .  Closed chain system. 

are links and whose edges are joints. A spanning 
tree can be found for this graph, which is equivalent 
to cutting the chain at some point-say, point c-of 
Figure 1A. The root of this tree is indicated by the 
arrow. 

Imagine that the chain is physically cut at c, and 
designate the root link to be the "Base." This 
results in Figure 1B. For simplicity, assume that the 
base is immobile. This assumption results in no real 
loss of generality (Rodriguez and Kreutz 1990a). 
Cutting the chain has resulted in arms 1 and 2 with 
nl and n2 links, respectively. We can now assign the 
causal/anticausal directions to each arm. (Note that 
this assignment propagated back to Figure IA corre- 
sponds to the existence of a directed graph.) 

The fact that the tips of arms 1 and 2 are always 
constrained to remain in contact corresponds to the 
boundary conditions 

f2(0) = -f1(0) ' f(0) (21) 

With eq. (21), the dynamic behavior of arms 1 and 2 
is given by 

&el  + (el = TI + ~: f (o ) ,  

.M*e + %, = T, - J?f(O) 
(23) 

subject to eq. (22). Looking first at arm 1, 

el = & i 1 ( T I  - %I) + M i l J ? f ( 0 )  

where 

and 

Note that is the "free" joint acceleration (i.e., 
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the joint acceleration that would exist if the tip were 
unconstrained), while A81 is the correction joint 
acceleration for arm 1 resulting from the presence of 
the tip constraint force f(0). Although can be 
obtained using the recursive O(n1) single-arm for- 
ward dynamics algorithms, so can A& once f(0) is 
determined. The same story holds for arm 2 also. 

Because VI(O) = J I & ,  

(YI(O) = ~ ' ( 0 )  = J l  el + JI 9,. (25) 

It then follows from eqs. (24) and (25) that 

where culf(0) = Jlelf + J ~ A &  

= a d o )  + A,'f(O), 

where A;' 4 J I J U i l J T .  

Similar1 y, 

~ ( 0 )  = a2dO) - A2 I f  (0) where A; ' 4 J 2 N I  'J2. 
Then, from the boundary condition constraint in eq. 
(22) 

f (0) = Acrm f(0) - fftd0)I 

where A,' E A;' + AT' 
(26) 

As discussed previously, AC ' and AT ' can be found 
via O(nl) and 0(n2) recursive algorithms, respec- 
tively. Noting that the inversion of A: ' E R 6 X 6  
involves a flat cost independent of nl and nz, we see 
that we have produced an O(nl + nz) recursive 
algorithm for finding the forward dynamics of the 
system of Figure 1A. A, is the effective inertia of 
the closed-chain system reflected to point c. 

For additional applications of the spatial operator 
algebra similar to those of this section, see Rodri- 
guez and Scheid (1987) and Rodriguez and Kreutz 
(1990a). In Rodriguez and Scheid (1987) an operator 
expression for (J*J)-I is obtained for nonredundant 
arms that is used in a recursive solution to the 
manipulator inverse kinematics problem. Rodriguez 
and Kreutz (1990a) contains an extensive listing of 
additional operator identities. Also shown is a 
method to easily find the effective inertia matrix for 
a system consisting of several arms grasping a com- 
monly held rigid body. 

6. Research ~ ~ ~ l i c a t i o n s  of the Spatial 
Operator Algebra 

The ability to adequately model rigid bodies in arbi- 
trary configurations and states of contact is impor- 
tant for the development of effective computer-aided 
design (CAD)-based motion planners. In situations 

involving remote multiarm robotic servicing of a 
multibody system (such as a space station), manipu- 
lator arms, tools, objects, and the environment will 
be constantly forming new and changing configura- 
tions of interaction. The topology of such configura- 
tions will, in general, be quite complex. The special, 
representative case of several arms rigidly grasping a 
commonly held rigid body is studied in Rodriguez 
(1986), Kreutz and Lokshin (1988) and Kreutz and 

' 

Wen (1988), both from the control and the modeling 
perspectives. In these references, several alternative 
representations for the dynamic equations describing 
this case are derived. An important quantity for 
understanding the behavior of a closed-chain system 
is seen to be the effective inertia matrix, which is just 
the natural generalization of the Khatib operational 
space inertia matrix for a single serial link arm. 

As our closed-chain example has shown, a key 
step in obtaining the effective inertia matrix is 
understanding how a new effective inertia is formed 
when a single arm grasps an object, which may be a 
simple single rigid body or  a complex multibody 
mechanism. The solution is best obtained not by 
recomputing the effective inertia for the new arm- 
object system from scratch, but by including the 
effect of the object as  an incremental change to the 
solution of the dynamics problem. To add the effect 
of the object, one first computes the contact forces 
at the points of contact between the arm and the 
object. This is achieved by an approach that is and-  
ogous to combining two distinct state estimates, 
each of which has a built-in error with a known 
"covariance" (i.e., articulated body inertia) (Rodri- 
guez 1989b). This perspective enables the generation 
of eff~cient recursive algorithms for computing the 
effective inertia of a system of several arms grasping 
a common object that is of complexity O(n) + O(l), 
when no arm is at a kinematic singularity. More gen- 
erally, O(n) + 0(13) algorithms can be developed 
where n is the total number of links in the system 
and 1 is the number of arms grasping the object 
(Rodriguez and Kreutz 1990a). 

For the model of several rigid-link serial arms 
grasping a common object to be well posed (in the 
sense that unique system accelerations and unique 
contact forces result for given applied joint 
moments), it can be shown that the inverse of the 
effective inertia must be full rank. This enables the 
determination of unique contact forces, which in 
turn are sufficient for computing accelerations. It is 
important that this full-rank condition be satisfied 

k 

everywhere in the work space if a dynamic simula- 
tion is to be well posed for all possible motions. In 
Rodriguez, Milman, and Kreutz (1988), it is shown 

3 

that the property of well-posedness throughout the .;I 
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work space is generic with respect to the base loca- 
tions of the arms. Thus almost surely, "with proba- 
bility one," any set of base locations for the arms 
will result in a closed-chain system that is well 
posed for simulation purposes. Assuming well- 
posedness, the techniques of the spatial algebra 
allow the joint accelerations and contact forces of a 
multiarm/object-grasp system to be computed from 
applied joint moments by means of an O(n) + O(1) 
recursive algorithm. 

Most of the multibody results mentioned previ- 
ously assume that a rigid attachment has been made 
between objects as they come in contact. Of course, 
this is a highly limiting assumption that must be 
relaxed in realistic problem domains. The algorithms 
described here for the dynamics of manipulators in 
rigid grasp of a rigid object have been extended in 
Jain et al. (1990a) to the case where the grasp is 
loose and the task object is nonrigid and has internal 
degrees of freedom. The grasp constraints are 
allowed to be either holonomic or  nonholonomic. 
This includes (I) possibly one-sided contacts, such 
as line contacts with friction; (2) point contacts with 
friction; (3) "soft-finger" contacts; and (4) sliding 
contacts, such as  occur in hybrid forcelposition con- 
trol. 

Notice that the factorization eq. (1 1) can be inter- 
preted as a change of basis, which results in a 
"decoupled" (i.e., diagonal) inertia matrix D. This 
key insight can be used to  obtain highly decoupled 
equations of motion in terms of the "innovations" 

and the "residuals" 

= D'"(z + ~ & r ) * e .  
The resulting equations of motion are of the form 

The diagonalized innovations form of the dynamic 
equations result in a significant simplification of 
dynamic analysis. Application of Lyapunov stability 
theory for control design is particularly appropriate 
when manipulator dynamics are described in this 
diagonal innovations canonical form and results in 
new forms of decoupled control. The analysis is sim- 
plified as a result of the diagonalization of the 
kinetic energy term, which is contained in many use- 
ful Lyapunov candidate functions. 

In Kreutz and Lokshin (1988) and Rodriguez, Mil- 
man, and Kreutz (l988), feedback linearizing type 
control laws for controlling a system of multiple 
arms grasping a common object are derived. These 
controllers enable the simultaneous control of con- 
figuration, as well as internal forces, either to regu- 

late the contact forces imparted to the held object o r  
for load-balancing among the arms. Via the spatial 
operator algebra, it is straightforward to obtain O(n) 
recursively implementable forms of these control 
laws. 

Recently new forms of manipulator control laws 
have been derived via the use of Lyapunov stability 
theory (Wen and Bayard 1988; Wen et al. 1988). 
Work is underway to extend these results to the 
closed-chain case (see Wen and Kreutz (1988)). A 
straightforward application of the recursive Newton- 
Euler algorithm will not work because of the need to 
distinguish in a complex manner the placing of 
desired and actual joint velocities into the bilinear Co- 
riolislcentrifugal terms. For  this reason, exact ana- 
lytic expressions of these controllers have been 
required to  date. Recently, however, we have 
applied the techniques of the spatial operator algebra 
to obtain O(n) recursive implementations of these 
new forms of control laws. 

The use of the spatial operator algebra for 
dynamic modeling and algorithms for arbitrary tree 
topology multibody systems can be found in Rodri- 
guez (1987b); for arbitrary graph topology rigid mul- 
tibody systems, in Rodriguez, Jain, and Kreutz 
(1989); and for flexible manipulators, in Rodriguez 
(1990b). Other application areas include motion and 
iorce planning for manipulators (Rodriguez 1989~); 
algorithms for manipulators with gear-driven joints 
(Jain and Rodriguez 1990a); computation of robot 
linearized robot dynamics models (Jain and Rodri- 
guez 1990b); operational space control (Kreutz et al. 
1990); and as  a unifying framework for multibody 
dynamics (Jain 1990). 

One of the most important features of the spatial 
operator algebra is that it is easy (Rodriguez and 
Kreutz 1990b) to develop hierarchical software for 
implementation of recursive algorithms. The com- 
plexity of the algorithms are not visible to the user, 
because only spatial operator expressions are 
required to  d o  the computer programming. This sim- 
plifies software prototyping without increasing com- 
putational complexity. It also makes simulation pro- 
grams arm-independent, bcause the operator 
statements and the computer program architecture 
do not vary in going from one arm to another arm. 

7. Conclusions 

A new spatial operator algebra for describing the 
kinematic and dynamic behavior of multibody sys- 
tems has been presented. The algebra makes it easy 
to see the relationship between abstract expressions 
and recursive algorithms that propagate spatial quan- 
tities from link-to-link. One consequence of the 
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operator algebra is that the equivalence between the 
Lagrangian and Newton-Euler formulations of 
dynamics is made transparent. Abstract dynamic 
equations of motion, such as those arising from a 
Lagrangian analysis, can be reinterpreted a s  equiva- 
lent operator-formulated equations. 

Important elements of the spatial operator algebra 
were presented, in particular those that arise from 
natural factorizations of critical kinematic and 
dynamic quantities. These factorizations allow one 
to manipulate equations of motion in previously 
unknown ways. This is particularly true given the 
existence of important identities and inversions that 
relate the spatial operators. A key result is the oper- 
ator factorization and inversion of the manipulator 
mass matrix given by lemma 1 and lemma 3. Var- , 

ious applications of the spatial algebra to kinematics, 
dynamics, and control were presented, including the 
development of a recursive forward dynamics algo- 
rithm that essentially comes for free once the key 
step of obtaining the innovations factorization eq. (9) 
is carried out. 

The factorizations made possible by the spatial 
operator algebra are model based, in the sense that 
the physical model of the manipulator itself is used 
to conduct every computational step. Hence every 
computational step has a physical interpretation. 
Numeric errors are easy to  detect, because the 
results of any given computation can easily be 
checked against physical intuition. These model- 
based factorizations are quite distinct from the more 
traditional factorizations, such as Cholesky decom- 
position, that are rooted in numeric analysis and for 
which there is not typically a one-to-one physical 
interpretation for every computational step. 

The potential payoff of the spatial algebra in man- 
aging the complexity associated with multibody sys- 
tems is large. For example, compare the abstract 
simplicity of the development of the forward dynam- 
ics algorithm in this article with those developed by 
other means that often require extensive notation 
and development. In section 6, we touched on some 
of the other areas where the spatial operator algebra 
is being applied. This algebra can greatly aid in the 
generation of computer programs that model the 
behavior of the dynamic world by the use of a suita- 
ble hierarchy of abstraction. 

Appendix 
We first establish the following identity. 

LEMMA 5: 

4-' = 4- '  + KH ' 

ProoJ It is easy to verify that + - I  = (I  - 8&) 
and + - I  = (I  - 8*). Then, 

Proof of  lemma 1: From eq. (8) it follows that 

M = P - %a$. 
However, it is easy to verify that ?P?* = P, where 
7 1  4 I - GH. And so, using eq. (10) and the fact 
that 4 + - I = 4'&&, 

M = P - %+P%$ P - %fl$ + KDK* 

3 +M$* = P + 4P  + P @  + 4KDK*4* 

= H+M+*HH" 

= H [ P  + &P + PP + +KDK*4*]HY: 

= D + H+KD + DK*+*H* + H+KDKH"4*H* 

= [I + H+K]D[I + H4K]*  
0 

Proof of lemma 2: Using a standard matrix identity 
followed by lemma 5, we have that 

[I + H 4 K ] - '  = I  - H$[I + K H 4 ] - ' K  

= I - H ~ + - ~ + I - ' K  = I - H+K 
0 

Proof o f  lemma 4: 

(I  - H+K)H4 = H(I - +KH)+ 

From lemma 5 it follows that ( I  - +KH) = ++-' ,  
and using this, the result follows. 

0 
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