
SimTKlapack
A Library for solving linear alge-

bra problems

Jack Middleton*

ROUGH DRAFT, April 4, 2006

Abstract
This document describes the goals and design deci-
sions behind the SimTKlapack library, which is a
linear algebra library for FORTRAN and C/C++
programmers. The goal is to provide an accurate,
high performance library for solving linear algebra
problems. [Note: this document is only partially
written at the moment.]

1 Purpose of this document ... 1
2 Goals .. 1

2.1 Performance..1
2.2 Accuracy...1

3 Design issues .. 1
3.1 Why we chose ATLAS...1
3.2 Shared libraries ...1
3.3 Updates to ATLAS ...2

4 Implementation... 2
4.1 Build system structure ..2
4.2 Regression tests ..2

5 Using LAPACK ... 2
5.1 Documentation..2
5.2 Examples ..2

Acknowledgments.. 2
References.. 2

1 Purpose of this document
To describe the goals, design issues, implementa-
tion and use of the SimTKlapack library.

2 Goals
The overall goal of this project is to provide devel-
opers and researchers access to high quality nu-
merical methods software for solving linear algebra
problems. This requires that the software be accu-
rate, robust, and easy to use and be free of licensing
issues.

* Department of Bioengineering, Stanford University,
jacklm@stanford.edu, (650) 736-1378.

2.1 Performance
Our goal is to provide high performance software
that performs well on large problems (matrices
greater than 100x100) running on small tightly
connected SMP systems.

2.2 Accuracy and robustness
The software must provide accurate results and be
stable across a wide range of problems.

2.3 Ease of use
The library must be easy to install on our target
platforms (Linux, Mac and Windows) and the pro-
gramming interfaces be easy to use. This requires
good documentation, and examples.

2.4 No licensing issues
Our goal is to provide software that does not have
any licensing issues associated with it. This will
allow developers to use it to create products with-
out dealing with any licensing encumbrances.

3 Design issues
The project goals stated above created a number of
design issues which are explained below.

3.1 Why we chose ATLAS
ATLAS (Automatically Tuned Linear Algebra
Software)[2] is a high performance code generate
system for linear algebra. We chose ATLAS to
build our implementation of LAPACK because it
produces very fast, high quality code for the target
platform and has no licensing restrictions. The
ATLAS build system generates a set of candidates
for each routine based on parameters such as cache
size, number of registers and supported instruction
sets. It then times each candidate routine and se-
lects the fasted candidate.

3.2 Shared libraries
SimTKlapack is deployed as a single shared li-
brary. We decided on a shared library instead of a
static library because applications can take advan-
tage of any bug fixes or performance improvements
simply by installing the new library. The applica-
tion does not have to be relinked.

 1

mailto:msherman@stanford.com

3.3 Updates to ATLAS
Because ATLAS is actively being developed we
need to be able to easily incorporate new versions
of ATLAS into our build system. Our goal is to
replace our existing version of ATLAS with a new
version when updates are available without making
major changes to our build system.

4 Implementation

4.1 Build system structure
The build system for ATLAS is very complex be-
cause its timing and comparison measurements are
integrated into its build process. We decided to
make as few changes to the ATLAS build process
as possible while still allowing cross-platform
builds. To accomplish this we use cmake custom
commands to pass arguments to the ALTLAS con-
figure program and then initiate the ATLAS build
process. ALTAS generates a set of static libraries
which implement BLAS and a subset of the
LAPACK API. Cmake is used to compile the
source for the remaining LAPACK API and com-
bines these objects with the ATLAS built objects
into the SimTKlapack library.

In order to build ATLAS on our nightly build sys-
tem, without user intervention, two types of
changes needed to be made to ATLAS. The first
change modified ATLAS’s configure program to
stop prompting the user to input various parameters
such as build directories and the number of CPU’s.
New switches were added to the configure program
to allow passing in any parameters that the config-
ure program could not determine at runtime. The
second type of changed involved modifying rou-
tines used in comparing the execution time of can-
didate routines to produce consistent timing results.
When ATLAS compares execution times of candi-
date routines it runs the each candidate multiple
times to verify that the results are consistent and are
not affected by other processes running on the build
system. If ATLAS encounters inconsistent results
the build stops. Changes were made to force the
tests to be rerun if inconsistencies are encountered
and to adjust the estimated FLOPS counts that are
used to determine the size of the matrices used in
the timing tests.

All ATLAS source code is stored in the subversion
source tree as a single compressed tar image. At
build time, the tar file is untarred and any ATLAS
files that need to be changed are overwritten before
the build starts.

4.2 Regression tests

5 Using LAPACK

5.1 Documentation

5.2 Examples

Acknowledgments
This work was funded by the National Institutes of
Health through the NIH Roadmap for Medical Re-
search,1 Grant U54 GM072970.

6 References

[1] LAPACK Users' Guide, Third Ed, by Ander-
son, E. and Bai, Z. and Bischof, C. and Blackford,
S. and Demmel, J. and Dongarra, J. andDu Croz, J.
and Greenbaum, A. and Hammarling, S.
andMcKenney, A. Society for Industrial and Ap-
plied Mathematics, 1999

[2] Automatically Tuned Linear Algebra Software,
by R. Clint Whaley and Jack Dongarra, Ninth
SIAM Conference on Parallel Processing for Scien-
tific Computing, 1999

[3] Information on the National Centers for Bio-
medical Computing can be obtained from:
http://nihroadmap.nih.gov/bioinformatics

1 Information on the National Centers for Biomedical
Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

http://nihroadmap.nih.gov/bioinformatics
http://nihroadmap.nih.gov/bioinformatics

	1 Purpose of this document
	2 Goals
	2.1 Performance
	2.2 Accuracy and robustness
	2.3 Ease of use
	2.4 No licensing issues

	3 Design issues
	3.1 Why we chose ATLAS
	3.2 Shared libraries
	3.3 Updates to ATLAS

	4 Implementation
	4.1 Build system structure
	4.2 Regression tests

	5 Using LAPACK
	5.1 Documentation
	5.2 Examples

	Acknowledgments
	6 References

