
EMMA 1.2 Markov Model Algorithms

Tutorial and Documentation

Martin Senne∗ and Frank Noé

martin.senne@fu-berlin.de

frank.noe@fu-berlin.de

September 2, 2011

Markov models, often called Markov state models (MSMs) or kinetic transition networks, are concise
and easy-to-analyze discrete models of continuous stochastic processes. They have been extensively used
in the analysis of molecular dynamics (MD) [34, 35, 8, 17, 5, 44], see [33] for an introductory overview.
The EMMA software provides a number of command line tools that provide the basics of construction,
validation and analysis of Markov models. EMMA is Java-based and can be executed on Linux, Windows
and Mac OS shells. It can be used in conjunction with a few common molecular dynamics trajectory �le
formats (Gromacs xtc, Charmm dcd, NAMD dcd, tabulated ASCII). EMMA stands for EMMA's Markov
Model Algorithms.

This document is organized in three parts:

Part-I tutorial with installation directions. The individual EMMA commands are then illustrated on a
simple model of a di�usion in a metastable potential. Example input and output �les are provided
with the software.

Part-II command reference that explains the available EMMA commands and all arguments in detail.

Part-III (in Appendix) de�nition of �le formats

The EMMA v1.2 framework provides the following commands:

mm_generate Generate sample trajectories for simple model potentials (this is just meant for testing)

mm_discretize Discretize the state space of continuous input trajectories (known formats dcd, xtc or
ASCII) and construct discrete trajectories. Clustering is done in two steps: (1) choosing cluster
centers with k-means, k-centers, equally spaced in time or equally spaced in space; (2) assigning all
trajectory frames to the nearest center using either Euclidean or minimal RMS distance.

mm_connectivity Test the connection between microstates and determine the largest connected set of
microstates.

mm_timescales Computation of implied timescales of Markov models constructed on the discrete tra-
jectories using di�erent lagtimes τ . This is useful to decide whether the clustering is su�ciently
�ne and to pick an appropriate lagtime τ .

mm_estimation Calculation of the transition probability matrix T(τ), which is the Markov model for
given lagtime τ using all data.

mm_transitionmatrixAnalysis Basic tools to analyze the Markov model T(τ), especially including cal-
culating eigenvalues, eigenvectors and the stationary distribution.

mm_pcca Tools to compute metastable states from a Markov model [34, 49, 43].

∗Surname changed from Fischbach to Senne.

1

mm_tpt Transition path theory is useful for the computation of transition pathways and �uxes from
Markov models, e.g. folding pathways [35].

mm_observables Analyze MSMs in a way that allows comparison to experimental measurements. Dy-
namical observables such as perturbation-relaxation and correlation curves can be calculated as
they can also be measured in kinetic experiments. The interpretation of this curves in terms of
dynamical �ngerprints which can be dissected into dynamical features that are associated with
individual relaxation timescales and structural rearrangement processes [36, 20].

Part I.

Tutorial

1. Overview of the tutorial

This tutorial presents the essential steps to construct, validate and analyze a Markov model from molec-
ular dynamics simulation data. For the sake of simplicity and execution speed, the tutorial uses 2d model
trajectory as input data. The tutorial will enlighten the individual steps and commands to construct and
validate a Markov model, as well as it will present possible analysis steps to extract essential features.

Having this general approach in mind, a typical Markov model analysis from molecular dynamics data
may include the steps listed below. A schematic overview is given in Figure 1.

• Preparation of input data

� Optionally, the input data is reduced in dimensionality, thus reduced to �interesting co-
ordinates�, which may be certain angles, distances or principal components (via PCA [1]).
Such data reduction will speed up the modeling process and may help to reduce statistical
problems. On the other hand, the construction of appropriate and valid Markov Models may
be impossible when important degrees of freedom are neglected.

• I. Markov state model construction

� Discretization of time-series data. Either

∗ by simple partitioning such as binning, or

∗ by geometrical clustering algorithms (e.g. k-means, k-centers,) with

· determination of appropriate cluster centers and

· subsequent assignment of time-series data to these cluster centers, which is usually
done by Voronoi partitioning.

� Determination of an appropriate lagtime: The computation of implied timescales for
discrete time-series data reveals this information.

� Count matrix construction from discretized data for appropriate lagtime.

� Transition probability matrix construction from determined count matrix. This transi-
tion matrix together plus the structural de�nition of states is called Markov Model.

• II. Determination of metastable sets by means of the Perron-cluster-cluster-analysis (PCCA)
method.

• III. Markov Model validation

� Chapman-Kolmogorov test

2

• IV. Markov model analysis

� Analysis of transition matrix: eigenvalues and -vectors, stationary distribution

� Computation of transition pathways and �uxes from source to target states.

IV AnalysisII MetastabilityI Generation

III Validation

Geometrical
Clustering

Kinetic
Clustering

Microstate
Trajectory

(MD)
Trajectory Estimation of

Count Matrix,
Transition Matrix

Transition
Matrix T(τ)

Stationary
Distribution

Chapman-Kolmogorov
Test

Determination of
Implied Timescales

appropriate
lagtime τ Metastable Sets

of Microstates

Spectral Analysis

Observables &
Fingerprints

Error Analysis

TPT

Figure 1: Schema of the steps involved in construction, validation and analysis of Markov state models.

2. Installation and Preparation

The following steps are required to use the tools for Markov Model construction:

• Extract provided zip Emma_v1_2__DATE_TIME.zip.

• Make sure, you have an appropriate Java environment setup.

• Only if running from Linux, please make sure you have the Bash-shell installed. The scripts use
the Bash-shell internally, so it is required.

The scripts have been tested for Linux, MacOS and Windows. In case of any di�culties, problems or
irregularities or potentials bugs please contact the authors.

2.1. Zip-File extraction

Extract the zip-�le MarkovStateModel.zip to a folder of your choice. Either use unzip (Linux) or an
archive extraction utility of your choice (�le-roller in Linux, WinZip or Winrar in Windows).

2.2. Java Environment and prerequisites

The usage of the command line tools for Markov models requires that you have installed Sun Java
Runtime Environment (Version 5 (v1.5) or later). The command line tools have been developed
and tested with Sun Java JDK. Other Java runtime environments implementations, such as Open-JDK
may work as well, but have not been tested. (Feedback on those is welcome.)

The EMMA-package contains a collection of command-line tools. Each tool is command which is to be
executed via a command line shell (on Windows/Linux / MacOS). Since the commands rely on the Java
executable, it is essential that you have added the Java executable �java� to your path. Please test this

3

by executing the following command in a console to validate, that your java version is su�cient and your
path is set appropriately:

> java -version

The output should be similar to:

java version "1.6.0 _20"

Java(TM) SE Runtime Environment (build 1.6.0_20 -b02)

Java HotSpot(TM) Server VM (build 16.3-b01 , mixed mode)

Here, the java version is reported to 1.6., but any version higher than 1.5 is su�cient.

If the command is unrecognized, you need to modify the path variable. For Linux this requires (see also:
http://www.troubleshooters.com/linux/prepostpath.htm):

> PATH=$PATH:/path/to/java/executable

> export PATH

Under Windows the installation routine of Java (JRE or JDK) places the Java executable �java.exe�
usually at the location �c:\windows\system32�, where the executable is automatically included by the
system path. If you can not execute �java� directly from the console, please modify your path environment
accordingly. There are several how-to's available, when searching for �set path windows� under Google.

3. Model Trajectory Generation

The �rst step of the tutorial consists in the generation of two 2-dimensional model toy trajectories, which
are used for the Markov model construction and for further analysis.

Open a shell and navigate to the directory (via the �cd� command), where the .zip �le was extracted to.

Change path to the example directory via

Clustering$ cd example

Now execute the command below to generate the �rst model trajectory starting at (0.0, 0.0). For Linux,
the command execution is

Clustering/example$./ mm_example_generate_start0

For Windows (if running the cmd shell) please omit the �./� and add �.bat� at the end of each command.
Thus please call

Clustering\example > mm_example_generate_start0.bat

In the following, the commands are only denoted for Linux, so please adapt the example commands
accordingly if using Windows.

After the execution of the command, the output should be similar to

Command line parameters valid.

Generating trajectory 'modeltrajectories/traj1.traj ' with 10000000 steps ,

starting at (0.0, 0.0).

The command which is actually executed by the example script is

4

mm_generate

-start 0.0 0.0

-steps 10000000

-dt 0.1

-potdef potentials/toypotentialdef.ascii

-o modeltrajectory/traj1.traj

This command generates a trajectory on the potential de�ned in the �le potentials/toypotentialdef.ascii.
Details are given in Section 8.1.

The toy potential consists of a sum of two-dimensional Gaussian basins with the de�nition:

B(x, y) = −I exp

(
− (x− µx)2

2σ2
x

− (y − µy)2

2σ2
y

)
,

using the parameters:

Basin # I Intensity µx µy σx σy

1 2.0 15.0 15.0 20.0 15.0
2 1.2 9.0 9.0 5.0 5.0
3 0.8 21.0 9.0 5.0 5.0
4 1.0 13.0 21.0 5.0 5.0

By executing the following command, we generate a second model trajectory, this time starting at
(10.0, 10.0).

Clustering/example$./ mm_example_generate_start10

Since the created model trajectories are ascii-�les an arbitrary editor can be used to view the content of
the �les.

A plot of a generated trajectory is given in Figure 2. The trajectory within the potential of four Gaussian
basins is given in Figure 3.

Figure 2: The generated trajectory.

5

Figure 3: The generated trajectory within the potential of four Gaussian basins.

4. Markov Model Construction

4.1. Clustering and discretization

Two 2-dimensional model trajectories have been created in the last step. The construction of an ap-
propriate Markov model is done within the next steps. First the trajectories need to be clustered and
discretized (see 4.1). In order to do so the command

Clustering/example$./ mm_example_discretize

needs to be executed. Internally this invocation calls the command:

mm_discretize

-i modeltrajectories/traj1.traj modeltrajectories/traj2.traj

-istepwidth 1000

-algorithm kmeans -clustercenters 50 -metric euclidian

-oclustercenters discretized/clusterCenters.ascii

-o ./ discretized

which takes every 1000th step of the input model trajectories as input for a clustering algorithm. Here,
the k-means clustering algorithm is selected for the computation of a a total number of 50 clusters, while
using the Euclidean metric. After the cluster centers have been determined by the clustering algorithm
each frame of the trajectory is assigned to the closest cluster according to the given metric (in the
above case Euclidean metric). This assignment is called Voronoi-Partitioning. The resulting sequence of
microstates obtained thereby is called microstate trajectory or discretized trajectory.

In addition, the clusters centers obtained by the clustering algorithm are written to a �le (in our case:
�./discretized/clusterCenters.ascii�). This �le contains in the i-th line the i-th cluster center representing
microstate i. A graphical illustration of the trajectory and the determined cluster centers is given in
Figure 4.

The output of the example command is similar to:

Command line parameters valid.

Trajectories used for input

modeltrajectories/traj1.traj

modeltrajectories/traj2.traj

Using stepwidth of 1000 for cluster input.

6

312kb required , 828438 kB available. Copying trajectories to memory.

Performing clustering.

Iteration step: 1

Iteration step: 2

[...]

Iteration step: 69

Successful. 50 clusters found.

Writing cluster centers to ascii file './ discretized/clusterCenters.ascii '.

Performing assignment to clusters.

Writing discrete trajectory 'discretized/traj1.disctraj '.

Writing discrete trajectory 'discretized/traj2.disctraj '.

0 15 30
x¡ coordinate

0

15

30

y
¡
c
o
o
rd
in
a
te

Figure 4: Display of 2d model trajectory and cluster centers (black squares) obtained from k-means
clustering.

4.2. Connectivity

The connectivity tool tests which microstates are dynamically connected. It can output the largest
connected subset of microstates, which is normally used to conduct the Markov model estimation on.
Two microstates i and j are said to be connected, if trajectories exist that go from i to and j and from
j to i. A set of states is said to be connected when all states in this set can be reached from all other
states. It is important to have dynamical connection between the states used to build a Markov model.
Not only are numerical burden existent, but more importantly: Only within a connected component one
can calculate a well-de�ned stationary probability distribution, and this is a prerequisite for the correct
functionality of many MSM algorithms.

If all microstates used are dynamically connected, the analysis can be continued without intervention.

For the discretized model trajectories of the tutorial, execution of the example command

Clustering/example$./ mm_example_connectivity

which internally executes

mm_connectivity

-i discretized/traj1.disctraj discretized/traj2.disctraj

-o

7

The output (see below) reveals, that all microstates 0 to 49 are connected within one strong component
/ communicating class.

At this point we are �ne and need not to consider the connection aspect any further. However, you are
advised to check explicitly for connectivity of microstates when dealing with molecular dynamics simula-
tion data. If more than one strong component occurs, the connectivity command detects the component
with the highest number of microstates and writes this component out. Each of the EMMA commands,
which uses microstates trajectories as input, especially the commands mm_timescales, mm_estimate
and mm_chapman can be restricted to a subset of microstate by the option �-restrictToStates�.

Command line parameters valid.

Using 2 microstate trajectories for input:

discretized/traj1.disctraj

discretized/traj2.disctraj

Reading microstate trajectories.

Reading microstate trajectories finished.

Using sliding window sampling: (1 <-> 1+tau) (2 <-> 2+tau) ... (n <-> n+tau)

Strong components found in total: 1

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, ←↩
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, ←↩
45, 46, 47, 48, 49}

4.3. Implied timescales

Once a dynamically connected set of microstates has been identi�ed, it is possible to count the number of
transitions occurring for any pair of microstates between times t and t+τ . The resulting transition matrix
C(τ) is then converted into an estimate of the transition matrix T(τ) which together with the microstate
de�nition comprises the Markov model. However, until arriving at a T(τ) which is useful for further
analysis some tests must be conducted. The assumption that the jump process between microstates is
Markovian is only approximately true. Its quality depends on two properties [40, 24]: Firstly, is the
microstate de�nition �ne enough? Secondly, is τ long enough?

In order to evaluate the test for implied timescales, to determine an appropriate τ and thus to test
the quality of the Markov model, given the discretized trajectories, the following command needs to be
executed

Clustering/example$./ mm_example_timescales

Internally this command calls:

mm_timescales

-i discretized/traj1.disctraj discretized/traj2.disctraj

-sampling slidingwindow

-timestep 0.1

-lagtimes 1 2 3 5 10 20 50 100 200 500 1000

-neig 3

-o ./its/result.its

In the above command, the two discretized trajectories, which were created in the previous tutorial step
4.1, are taken as input. The �-sampling slidingwindow� option indicates that the discretized trajectory
zµ(t) is evaluated by counting transitions at 0→ τ, 1→ τ + 1, . . . , n− τ → n . Details on the counting
modes are given in Section 8.5 and in [40]1, Section 8.5. The timestep option is only needed to present a
proper, physical meaningful, output. Here, each time step of the trajectory corresponds to a time of 0.1
units, as speci�ed during trajectory generation in Section 3. Furthermore, the lagtimes are set, for each
of which the implied timescale is calculated.

The number of eigenvalues (-neig) sets how many (dominated) eigenvalues are considered. This number
should be plus 1 the number of implied timescales desired, since the �rst eigenvalue, also called Perron
eigenvector, corresponds to the stationary process with an in�nitely large timescale. By invoking the

1online available at http://publications.mi.fu-berlin.de/944/

8

implied timescales command, an appropriate timescale has been determined, where the Markov model
does not su�er from non-Markovianity. This lagtime τ , where the implied timescale is becoming nearly
constant, is chosen to construct a Markov model, T (τ), in the next tutorial step.

The output after the execution of mm_timescales looks similar to the output below and is written to a
�le. A plot of the resulting implied timescales is shown in Figure 5).

Command line parameters valid.

1,2,3,5,10 ,20,50 ,100,200,500,1000

Writing out its result file './its/result.its '.

0.1 39.50737060984496 16.017638305505443

0.2 56.21277745404773 22.76737152466685

0.3 69.26151098799545 27.8235891807563

0.5 89.94370429637985 36.004840722332716

1.0 128.71891129899757 51.68936786031137

2.0 181.6785451346952 73.04776641968233

5.0 269.04011647320135 111.8660116985601

10.0 328.87568512113955 141.61474716730407

20.0 370.9098068045524 166.7593724367217

50.0 402.46733412661604 181.4473432890914

100.0 408.4191706409627 190.69735215906582

ITS1
ITS2

0 25 50 75 100
lagtime ¿=a:u:

0

125

250

375

500

im
p
li
e
d
ti
m
e
sc
a
le
=
a
:u
:

Figure 5: The implied timescales for di�erent absolute lagtimes τ . Convergence of the implied timescales,
meaning that the timescales become nearly constant when varying τ , is achieved for a time of
80.0.

4.4. Transition Matrix Estimation

The next step consists in the estimation of the transition matrix for an appropriate lagtime τ . Using the
implied timescales test, an absolute lagtime of 80.0 (corresponds to 800 timesteps at a time of 0.1 between
each frame) was estimated in the previous tutorial step to be large enough to construct a Markov model.
Remember, that the Markovian property, which expresses that the system does not su�er from memory
e�ects, must be ful�lled. Furthermore, note that the Markov model still needs to be validated later on
using the Chapman-Kolmogorov test.

Next, we construct the Markov model for the lagtime τ = 80. This consists of two steps

• construction of the count matrix and

• construction of the transition matrix.

9

These two steps are done by the command mm_estimate.2The transition matrix can be estimated, once
the discrete trajectories are given and an appropriate lagtime has been determined. The next tutorial
step is the execution of the command

Clustering/example$./ mm_example_estimate

which internally calls:

mm_estimate

-i discretized/traj1.disctraj discretized/traj2.disctraj

-lagtime 800

-sampling slidingwindow

-outputtransitionmatrix matrix/transitionmatrixOf_Traj1_Traj2.ascii

The option �-i� speci�es the discretized input trajectories. The option �-lagtime� sets the lagtime, which
has been determined beforehand by the implied timescales calculation. The sampling method which
determines the way, how the count matrix is constructed, has been selected as �slidingwindow�. You are
referred to Section 8.5 for further details on the counting mode. The �nal transition matrix is written to
the �le �matrix/transitionmatrixOf_Traj1_Traj2.ascii�.

Within the steps of the tutorial and due to the good nature of our 2d model trajectory it is not essential
to consider the following aspects of microstate connectivity, statistical problems and reversibility now.
But even though none of these aspects is problematic for our model trajectory, which is su�ciently long
to avoid several statistical issues and second, does not su�er from being in a non-equilibrium state, the
above aspects become soon very evident when dealing with �real� molecular dynamics data. Here, only
references to possible strategies to solving the upcoming problems are given: the non-connectivity of
microstates can be circumvented by using the mm_connectivity command to discover connected sets of
microstates which can be used in commands, which depend on microstates trajectories. The problems of
insu�cient statistics, e.g. avoid numerical problems in scenarios with little data, is a to use an appropriate
prior to overcome this problems. Last, the burden of estimating reversible transition matrices, which
are transition matrices ful�lling the detailed balance condition, is overcome by using the �-reversible�
transition matrix option, which �nds the maximum likelihood transition matrix T under the constraints
of detailed balance. These options are just mentioned here, but are discuss in detail in Section 4.4.

The estimated output after execution looks similar to this output:

Command line parameters valid.

All parameters fine.

Reading trajectories.

Reading trajectories finished.

Writing transition matrix in sparse format to file

'matrix/transitionmatrixOf_Traj1_Traj2.ascii '.

The constructed transition matrix is written (in sparse matrix format) to a �le, it has dimension 50x50,
according to the number of states. The entry (i, j) of the transition matrix denotes the probability of
going from state i to state j.

5. Metastability - Lumping microstates

5.1. Perron-Cluster-Cluster-Analysis (PCCA)

Based on the transition matrix one can calculate the metastable sets by means of improved PCCA
clustering [50, 37]. In our example PCCA is executed by the command

Clustering/example$./ mm_example_pcca

which internally calls

2This behavior has changed from v1.1 to v1.2: Emma v1.1 o�ered the commands mm_countmatrixEstimation and
mm_transitionmatrixEstimation. From Emma v1.2 on,. both commands are uni�ed in the command mm_estimate.

10

mm_pcca

-inputtransitionmatrix matrix/transitionmatrixOf_Traj1_Traj2.ascii

-nclusters 3

-ofuzzy pcca/fuzzy.ms

-ocrisp pcca/crisp.ms

-osets pcca/sets.ascii

Here, the option �-nclusters� speci�es the number of metastable states to determine. Since our potential
landscape consists of 3 basins, we also expect 3 metastable states.

In general, there are di�erent strategies of choosing the number of clusters. One is often interested in the
processes that occur slower than a certain threshold (e.g. nanoseconds or microseconds timescale). Then,
the number of clusters should be set to the number of implied timescales at the chosen lagtime τ which
lie above this threshold. In some systems, the intrinsic structure of implied timescales may also suggest
a value of the number of clusters (�-nclusters�): If a large gap exists between timescale n and timescale
n+ 1, then n is a useful setting for nclusters. Note that PCCA is used here only as a tool for analyzing
and illustrating the essential features of a Markov model, and not to do calculations. Therefore, there is
no �wrong� or �right� setting for �-nclusters�, but instead it is only determined by the interest of the user.

Command line parameters valid.

Sparse matrix with dimension (50 x 50) read ←↩
successfully from file 'matrix/transitionmatrixOf_Traj1_Traj2.ascii '.

Fuzzy cluster assignments written to file 'pcca/fuzzy.ms '.

Crisp cluster assignments written to file 'pcca/fuzzy.ms '.

Metastable sets definition written to file 'pcca/sets.ascii '.

The result �le �sets.ascii� contains three lines (one for each metastable state), telling us, which microstates
belong to the appropriate metastable state in that line:

7 9 10 11 12 17 22 26 27 30 31 34 35 38 41 44 45

2 5 15 18 21 36 39 47

0 1 3 4 6 8 13 14 16 19 20 23 24 25 28 29 32 33 37 40 42 43 46 48 49

A graphical representation of that calculated PCCA cluster assignment is given in Figure 6.

0 15 30
x¡ coordinate

0

15

30

y
¡
c
o
o
rd
in
a
te

Figure 6: Cluster assignment to metastable states determined by kinetic clustering (PCCA). Three
metastable sets (red, blue, green) are visible, each consisting out of approx. 10 microstates.

11

6. Markov Model Validation

6.1. Chapman-Kolmogorov Test

Using the Chapman-Kolmogorov test we can test the quality of the Markov model by monitoring the
relaxation of probability out of a number of prede�ned sets [40]. This can be done for both the Markov
model and the simulation data directly, and comparison of the results yields an indication whether the
Markov model correctly predicts the long-time kinetics beyond the timescale τ used to parametrize the
model.

Start the Chapman-Kolmogorov test with the following command:

Clustering/example$./ mm_example_chapman

which calls:

mm_chapman

-i discretized/traj1.disctraj discretized/traj2.disctraj

-inputtransitionmatrix matrix/transitionmatrixOf_Traj1_Traj2.ascii

-dtTraj 0.1

-dtT 80.0

-sets chapman/sets.ascii

-kmax 10

-o chapman/result

In order to correctly relate the relaxation curves on the time axis,

• the time unit of the trajectory time step (�-dtTraj�) and

• the time unit τ of the Markov model used for the test (�-dtT�)

needs to be speci�ed. The time between the frames is set to 0.1, given by �-dtT�.

The test is done over a time range from 0 to kmaxτ (here, 10 · τ = 800 time units). The value of kmax is
speci�ed by the option �-kmax�. The relaxation of population is monitored out of the sets de�ned by the
�-sets� option. The user can de�ne any sets of interest here (each set is de�ned by a single line, by a list
of microstate indexes). For example, if one models protein folding or protein-ligand complex formation,
one set might be the folded state or the complex state, respectively. For a general test that depends less
on the subjectivity of the user we recommend using the sets identi�ed by PCCA above. Since these sets
are the most metastable sets of the system, this will be the hardest test - it may fail either due to a

• �bad� Markov model (discretization too coarse or lagtime τ too small) or due to

• insu�cient statistics (the metastable sets are the ones with the fewest transitions between them).

Thus, this variant tests the weakest points of the Markov model and the Markov model is rather trust-
worthy if this test succeeds. The quantity of being tested is the following: for each set Si chosen, one
starts with an initial probability vector p0 with a total probability of 1 on the set Si and locally dis-
tributed according to the starting distribution chosen (in the example no option is given, so the stationary
distribution of the input transition matrix is used). One then compares how much probability the two
propagations of: p0 · T̂ (τ)k (Markov model) and p0 · T̂ (kτ) (direct trajectory estimation) have on the sets
for all times kτ . Both probabilities should converge to the stationary probability of that set, i.e. both are
expected to be approximately equal at long enough times kτ . The Markov model is only a good model
of the kinetics if the test succeeds at times larger than τ and smaller than this convergence time.

Command line parameters valid.

Sparse matrix with dimension (50 x 50) read ←↩
successfully from file './matrix/transitionmatrixOf_Traj1_Traj2.ascii '.

Calculating stationary distribution.

Stationary distribution (calculated): (0.0202)

Loading discrete trajectories.

Loading discrete trajectories: done.

Reading sets from file './pcca/sets.ascii '.

Using trajectory at lag steps: 0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000

12

Relaxing trajectory.

Lagtime: 800

Set: 0

Set: 1

Set: 2

[...]

Relaxing trajectory: done.

Relaxing transition matrix.

Relaxing transition matrix: done.

0.0 0.9999999999999999 1.0 0.0

80.0 0.860142591743427 0.8631694901239807 0.003528702196760236

160.0 0.770089343931751 0.778288221489421 0.006031913490155252

240.0 0.6969697577850095 0.7060631832996931 0.008101863060554474

320.0 0.6377816144085355 0.646027062671976 0.00982096898766171

400.0 0.5898054630192 0.5941210102500002 0.011276660371134718

480.0 0.5508726082120141 0.5518770594990303 0.012511257167745999

560.0 0.5192499623572143 0.515578956227767 0.013581867743357704

640.0 0.493546625663306 0.48675981350332487 0.014523118864205422

720.0 0.4726428152831506 0.4655730202420918 0.015374549385603918

800.0 0.4556347577639292 0.4480369615332978 0.01615849167134321

[...]

A plot of the calculated relaxations is given in Figure 7.

0 200 400 600 800
lagtime ¿=abs: time units

0

0;5

1

p
ro
b
a
b
il
it
y

0 200 400 600 800
lagtime ¿=abs: time units

0

0;5

1

p
ro
b
a
b
il
it
y

0 200 400 600 800
lagtime ¿=abs: time units

0

0;5

1

p
ro
b
a
b
il
it
y

Figure 7: The propagation of the three di�erent metastable determined by PCCA. Set S0 =
{7, 9, 10, 11, 12, 17, 22, 26, 27, 30, 31, 34, 35, 38, 41, 44, 45}, S1 = {2, 5, 15, 18, 21, 36, 39, 47} and
S2 = {0, 1, 3, 4, 6, 8, 13, 14, 16, 19, 20, 23, 24, 25, 28, 29, 32, 33, 37, 40, 42, 43, 46, 48, 49} . The red
curve displays the relaxation of the transition according to pSi · T̂ (τ)k . The blue curve displays
the relaxation of the trajectory according to pSi · T̂ (kτ) .

7. Markov Model Analysis

7.1. Transition path theory (TPT)

Transition path theory allows to analyze the essential statistical features of the reactive transitions be-
tween two chosen subsets A and B. Especially when the dynamics are metastable, thus de�ning a natural
partition into long-living sub-states, characterizing the set of transition pathways between two chosen sub-
sets may provide a satisfactory picture of the process. Examples are protein folding where A may be the
unfolded and B the native states ([38], [47]), as well as protein-ligand binding, where A is the dissociated
set of states and B the bound complex ([23]).

The details of TPT are illustrated in Section 8.9.

13

Within this tutorial step we apply TPT to our 2-dimensional model system after having it characterized
by a transition matrix between microstate clusters. This transition matrix has been shown to be a good
model of the long-time kinetics of the system (see above).

The TPT algorithm expects the sets A and B to be chosen. The sets A and B are selected here for demon-
stration purposes to those microstates that belong to two of the metastable states obtained from PCCA
clustering. The microstates assigned to metastable sets have been written to the �le �pcca/sets.ascii�
within the last step of this tutorial (see 5.1).

Please open that �le containing the sets of PCCA with an editor. This �le will have three lines, where
the i-th line contains the microstates belonging to the i-th metastable state.

In order to identify, which line to copy and thus to determine, where the microstate are �located� in the
energy landscape, you are referred to the �le �discretized/clusterCenters.ascii�, which was created in the
2nd step - Clustering of the tutorial.

Select the line, which contains the microstates for your set A, copy and place it into a new �le �tp-
t/setA.ascii�. The �tpt�-folder already contains a templateSetA.ascii, which shows, how your �le should
look like. The content of the templateSetA.ascii is

7 14 19 20 25 43 45 46

Select a second line from the �sets.ascii� representing your set B and copy that into a new �le �tp-
t/setB.ascii� analogously.

After having created the two �les, we can now start TPT via

Clustering/example$./ mm_example_tpt

This command calls:

mm_tpt

-inputtransitionmatrix matrix/transitionmatrixOf_Traj1_Traj2.ascii

-seta tpt/setA.ascii

-setb tpt/setB.ascii

-oforwardcommittor tpt/forwardcommittor.ascii

-obackwardcommittor tpt/backwardcommittor.ascii

-onetflux tpt/netflux.ascii

-coarsegrain pcca/sets.ascii

-ocoarseforwardcommittor tpt/coarsedforwardcommittor.ascii

-ocoarsebackwardcommittor tpt/coarsedbackwardcommittor.ascii

-ocoarseflux tpt/coarsedflux.ascii

-ocoarsenetflux tpt/coarsednetflux.ascii

Option �inputtransitionmatrix� sets the transition matrix, options �seta� and �setb� de�ne the sets A and
B for TPT. The computed forward- and and backward-committor are written to the appropriate �les, as
well as the net�ux.

Command line parameters valid.

Sparse matrix with dimension (50 x 50) read ←↩
successfully from file './matrix/transitionmatrixOf_Traj1_Traj2.ascii '.

Set A: 2 5 15 18 21 36 39 47

Set B: 7 9 10 11 12 17 22 26 27 30 31 34 35 38 41 44 45

Computing forward committor.

Computing backward committor.

Computing flux and netflux.

Total flux : 0.02617799402685038

Reaction rate : 0.09250997102642466

Having performed the above calculating one yields the forward committor, the backward committor
and the �ux and net�ux. The total �ux and the reaction are written to the console only. A visual
representation of the committor values is given in Figure 8.

14

0

1

2
3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24
25

26

27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

0 15 30
x¡ coordinate

0

15

30

y
¡
co
or
d
in
at
e

0

1

2
3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24
25

26

27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

0 15 30
x¡ coordinate

0

15

30

y
¡
co
or
d
in
at
e

Figure 8: The forward q+ and the backward committor q− for each of the 50 clusters. The number right
to the dots indicate the cluster number. Red dots indicate a value of 1.0, black dots a value of
0.0. Set A consists of the points in the bottom right, set B of the topmost clusters. .

In the second step of the TPT related example, the obtained forward- and backwardcommittor and the
�uxes are coarse-grained, see Figure 9. This is done with the option �-coarsegrain� (see the command call
above). Actually, the three sets obtained from PCCA are used in the example for coarse graining.

0 30

0

30

B (set 0)
q+=1
q-=0

A (set 1)
q+=0
q-=1

set 2
q+=0.65
q-=0.36

0.014

0.012

0.014

Figure 9: The coarse-grained sets 0 (set B), 1 (set A) and 2. For each node, the forward committor q+and
the backward committor q− are given. Arrows indicate the �ux between the nodes. .

7.2. Evaluating observables

An observation vector o ∈ Rn, where n is the number of microstates, tells which observation oi is made,
when the Markov chain is in microstate µi, that is o = (o1, . . . , oi, ..., on). Here, for the sake of an

15

illustrative example, we create two observation vectors o1 and o2. The vector o1 shows observation value
1, when the cluster center attributed to the microstate µi has an y-coordinate larger 15.0, and which
shows an observation value of 0.0 for an y-coordinate below 15.0. Observation o2 does the same for the
x-coordinate.

In order to create these arti�cial observations from trajectory / cluster center data, invoke the helper
command

Clustering/example$./ mm_example_createObservation

which creates the appropriate observation vectors in �les �./observe/oObs1� and �./observe/oObs2�.

After having created the observation within the tutorial two example commands are prepared:

Clustering/example$./ mm_example_observables

which calls

mm_observables

-i matrix/transitionmatrixOf_Traj1_Traj2.ascii

-autocorrelation observe/obs1.ascii

-relax "1 2 5 10 50"

and computes the autocorrelation of the observation o1:

1.0 0.3324263002248801

2.0 0.2984933691943268

5.0 0.2301402516706576

10.0 0.17782130058131373

50.0 0.14700214159738803

100.0 0.14699069790336003

200.0 0.14699069731212533

Alternatively, the command

Clustering/example$./ mm_example_observables2

calls

mm_observables

-i matrix/transitionmatrixOf_Traj1_Traj2.ascii

-crosscorrelation observe/obs1.ascii observe/obs2.ascii

-relax "1 2 5 10 50"

and computes the cross correlation of the observation o1 and o2:

1.0 0.06455918601233172

2.0 0.06677618291331067

5.0 0.06782919195267265

10.0 0.06552375520042573

50.0 0.06310203671080655

100.0 0.0631010317107933

200.0 0.06310103165887004

16

Part II.

Command Line Tools for Markov

Models

8. Command Overview

8.1. Trajectory Generation - mm_generate

Description

The command generates a two dimensional trajectory in a model toy potential according to Brownian /
Smulokowski dynamics.

Brownian Dynamics in a potential is given by

dx(t)

dt
= −∇V (x(t))

γm
+

√
2kBT

γm

dη(t)

dt
. (1)

with the Gaussian random force dη(t)
dt , friction γ, mass m and thermal Energy kT . For simplicity, we set

γm = 1, and use the Euler-Maryama discretization methods, arriving at:

x(t+ ∆t) = x(t)−∇V (x(t)) +
√

2kBT
dη(t)

dt
. (2)

In the long run, the dynamics samples from the stationary probability distribution exp(−V (x)/kBT).

The command for the generation of model trajectories is restricted to the two-dimensional case. Thus
positions x become (x, y). The potential U(x) = U(x, y) which is used is a sum of Gaussians:

Ui(x, y) = −I · exp

(
− (µx − x)2

2σx
− (µy − y)2

2σy

)
so the �nal potential is given by

U(x, y) =
∑
i

Ui(x, y),

where I is the intensity of the Gaussian, µx and µy are the means, and σx and σy are the deviations
according to the x and y axis. The appropriate covariances σxy or σyx are not used.

Synopsis

mm_generate

[-sigma <double >:{0.6}]

[-dt <double >:{0.1}]

[-randomseed <int >]

-steps <int >

-potdef <potential -filename >

-start <double > <double >

-o <trajectory -filename >

17

Options

-sigma <double>

Sets the noise intensity σ . Parameter is optional, default is 0.6
Example: -sigma 0.5

-dt <double>

Timestep dt. Parameter is optional. Default is 0.1.
Example: -dt 0.2

-randomseed <int>

Seed for initialization of random number generator. If omitted, uses system clock as random seed.
Example: -randomseed 241563

-steps <int>

Specify the number of steps, the model trajectory has.
Example: -steps 10000

-potdef <potential-�lename>

Specify from which �le the de�nition of the model potential is read.

Example: -potdef 3bassin.pot

-start <double> <double>

Sets, at which position the model trajectory is started.
Example: -start 0.25 0.5

-o <trajectory-�lename>

Filename, where to store the generated model trajectory. Currently, output is limited to ascii �le-
format.
Example: -o modeltrajectory1.ascii

8.2. Clustering and discretization of trajectories - mm_discretize

Description

The discretization of data (e.g. trajectory frames in the above tutorial step) is performed by the two
subsequent steps of clustering and partitioning:

• A clustering algorithm is used to determine a set of data points which serve as cluster centers. The
input of the clustering is the set of data points (in our case trajectory frames), or a subset thereof.

• Assignment of data points (trajectory frames) to closest cluster centers, de�ning the so-called
Voronoi partitioning.

When reasonably used, the algorithms provided here have a runtime of O(nk) where n is the number of
data points (trajectory snapshots) and k is the number of clusters. All the clustering algorithm provided
here are geometrical clustering algorithms. The list of currently available clustering algorithms contains

• K-Means: arg min
S

∑k
i=1

∑
xj∈Si ‖xj − µi‖

2

� Assignment step: S
(t)
i =

{
xj :

∥∥xj −m
(t)
i

∥∥ ≤ ∥∥xj −m
(t)
i∗

∥∥ for all i∗ = 1, . . . , k
}

� Update step: m
(t+1)
i = 1

|S(t)
i |

∑
xj∈S(t)

i
xj

18

• K-Centers:
Given a complete undirected graph G = (V,E) with distances d(vi, vj) ∈ N satisfying the triangle
inequality, �nd a subset S ⊆ V with |S| = k while minimizing: maxv∈V mins∈S d(v, s).
A simple greedy approximation algorithm that achieves an approximation factor of 2 builds S in
k iterations. The �rst iteration chooses an arbitrary vertex and adds it to S. Each subsequent
iteration chooses a vertex v for which d(S, v) is maximized and adds v to S.

• Regular spatial clustering: A clustering method based on a minimum cut-o� distance (wrt. to
a given metric) between determined cluster centers:

� The �rst data point x0 is selected as �rst cluster center µ0. Variable k denotes the number of
clusters found so far and is set to 1.

� Index i goes from 1 to n.

∗ If a data-point xi is found, for which d(xi, µj) > dmin ∀µj
j=0...k

is ful�lled, then xi becomes

a new cluster center µj and k is incremented.

• Regular temporal clustering: Each i-th data point xi of the trajectory is selected as cluster
center. If the trajectory has length n, then k = bni c cluster centers µj are selected.

Synopsis

mm_discretize

-i (<trajectory -filename | trajectory -filenamepattern >+)

[-iformat [xtc | dcd | ascii | {auto}]]

[-istepwidth <int >:{1}]

[

-algorithm kmeans -clustercenters <int >

[-metric {euclidian }]

[-maxiterations <int >]

|

-algorithm kcenters -clustercenters <int >

-metric [minrmsd | euclidian]

|

-algorithm regularspatial -dmin <double >

-metric [minrmsd | euclidian]

|

-algorithm regulartemporal -spacing <int >

-metric [minrmsd | euclidian]

]

[-o <trajectory -outputdirectory >]

[-oclustercenters <clustercenter -filename >]

Options

-i <trajectory-�lename | trajectory-�lenamepattern>+

Specify input �les (trajectories) used for clustering. This can be a space separated list of �lenames.
Additionally, it is possible to use speci�c wildcards to select multiple trajectories. Two wildcards
are supported: # and * . # stands for chain of at least one digit like 253, * for a chain of arbitrary
signs.

Attention: Please use double-quotes to prevent the shell from substituting �lename wildcards, e.g.
* will be substituted by a Bash-Shell by a list of all the names in the current directory. �*� instead
is treated as the character * itself.

Example: A directory contains three �les: traj001.xtc, traj002.xtc and exp4.xtc.

19

• -i traj001. traj002.traj selects directly these two trajectories for input

• -i �traj#.xtc� selects all trajectories with a chain of digits after �traj�, that is traj001.xtc and
traj002.xtc .

• -i �*.xtc� selects all trajectories which are in .xtc format, that is traj001.xtc, traj002.xtc and
exp4.xtc.

• -i *.xtc selects all trajectories which are in .xtc format, but this time *.xtc is substituted
automatically by your bash shell to -i traj001.xtc traj002.xtc exp4.xtc. Note that there is a
usually a limit of the number of �lenames the shell can list in this way, so the quote-options
above may be necessary. (Explanation: the bash-shell substitutes *.abc by a list of space-
separated �lenames, that have the extension abc.)

-iformat [xtc | dcd | ascii | auto]

Speci�es the input format of the trajectories if it can not properly determined by the �le extension:

• xtc: Gromacs xtc trajectory format

• dcd: CHARMM or NAMD dcd trajectory format

• ascii: Simple tabulated text �le with each line being one data point and each column one
dimension.

Default is auto, which means, the trajectory type is determined by �le extension. This parameter
is optional.

-istepwidth int:1

By this option the input, consisting of trajectory frames, to the clustering is restricted. Instead of
taking every single frame of each supplied trajectory as input for the clustering algorithm, only a
subset of frames is selected. Let s be the stepwidth selected by the option. Then of each trajectory
only each s-th frame is taken.

Given are n input trajectories trajj with j ∈ J = {0, . . . , n} and trajj : Aj → Rn, where set
Aj = {0, . . . , length(trajj)} is the set of all indices for trajectory trajj . Thus the i-th trajectory
frame of the j-th trajectory trajj is fi,j = trajj(i). The input set F of selected frames for clustering
is then given by

F = {fi,j |i = k · s ∧ i ∈ Aj ∀k ∈ N}.

This options is most likely useful, if you are experiencing a message like �Using direct disc access,
not su�cient working memory available. Clustering may be slow.� in the beginning of the clustering
process. Then try this option to reduce the number of frames, so that all your frames, which are
used for clustering, �t into the main memory.

-algorithm kmeans

-clustercenters <int> Sets the number of clusters to use for k-means.

-metric euclidian Sets the used metrics for k-means. K-Means allows no other metric than Eu-
clidean metric. This parameter is optional.

-maxiterations <int> Sets the maximum number of iterations. Setting the number to 0 results in
computation until cluster centers do not change any more, this is referred to as convergence.
Setting this value to other than 0 runs the algorithm a maximum number of iterations, but the
algorithm is stopped if convergence is achieved before that number of steps. This parameter
is optional.

-algorithm kcenters

-clustercenters <int> Sets the number of clusters to use for k-centers.

-metric [minrmsd | euclidian] Sets the used metrics for k-centers. The minimal RMSD metric
or the standard Euclidean metric can be used.

-algorithm regularspatial

20

-dmin <double> Sets the parameter dmin, see above.

-metric [minrmsd | euclidian] Sets the used metrics for k-centers. The minimal RMSD metric
or the standard Euclidean metric can be used.

-algorithm regulartemporal

-spacing <int> Sets the spacing in frames to use. A value of s selects x0,xs,x2s . . . as cluster
centers

-metric [minrmsd | euclidian] Sets the used metrics for k-centers. The minimal RMSD metric
or the standard Euclidean metric can be used.

-o <trajectory-outputdirectory>

Directory, where to place discretized trajectories. Discretized trajectories automatically get their
original name, but the extension becomes �.disctraj�.

-oclustercenters <clustercenter-�lename>

File, to which the cluster centers are written.

8.3. Determining connectivity between microstates - mm_connectivity

Description

The program mm_connectivity tests which microstates are dynamically connected, thus which mi-
crostates build a communicating class. Internally a graph is constructed. This graph has edges between
those microstates, which show transitions in the given microstate trajectories. The algorithm of Tarjan
is then used to extract the strong connected components of the graph. The largest connected subset of
microstates, which is usually used to conduct the Markov model estimation on, can be written out.

Synopsis

mm_discretize

-i (<disc -trajectory -filename | disc -trajectory -filenamepattern >)+

-o [<largestset -filename >]

Options

-i <disc-trajectory-�lename | disc-trajectory-�lenamepattern>+

Specify discrete trajectory input �les (microstates trajectories) used.

-o [<largestset-�lename>]

This option speci�es, how and where to output data. If option �-o� is present, but without an
argument, then the number of strong components and the microstates belonging to each strong
component will be written to the console output. Otherwise, if the argument is given, the largest
component will be written to the �le named via the value �largestSetFilename�.

8.4. Calculation of Implied Timescales - mm_timescales

Description

This command is a combination of three commands, iteratively called for di�erent lagtimes τ .

For each of a set of lagtimes τj , do

21

• Count matrix estimation for lagtime τj , this yields C(τj).

• Transition matrix estimation from count matrix: T (τj) is constructed from C(τj).

• Transition matrix analysis to determine eigenvalues λi(τj).

Output t∗i (τj) = − τi
lnλi(τ)

, where t∗i is the characteristic timescale for mode i and lagtime τj .

Background

The eigenvalue / eigenvector pairs of a transition matrix indicate the elementary processes of the system.
Here, an eigenvalue yields the implied rate or implied timescale of the corresponding process and the
eigenvector bears the information between which states the corresponding process switches. The ith

implied timescale is related to the ith eigenvalue via:

t∗i =
−τ

ln[λi(τ)]
.

If the process associated to eigenmode i is Markovian, then t∗i is constant and thus independent of τ . For
many processes, this is true only for some minimum timescale τ , after which the memory pertaining to
the inter-state dynamics has disappeared. Monitoring the slowest timescales t∗i as a function of τ allows
an adequate lagtime τ to be chosen, indicating an approximately Markovian model T (τ).

The general estimation of the transition matrix T is on the one hand a basic building block for the
calculation of the implied timescales. On the other hand, only the implied timescales allow to determine
an appropriate τ to construct a �valid� Markov model via the transition matrix T (τ). The relevant
aspects: �connected microstates�, �choosing a suitable count-matrix prior�, and �reversible transition
matrix estimation� are considered in Section 8.5.

Synopsis

mm_timescales

-i (<disc -trajectory -filename | disc -trajectory -filenamepattern >)+

[-restrictToStates <largestset -filename >]

[-prior <double :{0.01} >]

[-sampling [{slidingwindow} | lag]]

[-reversible]

-lagtimes (<int >)+

-neig <int >

[-timestep <double :{1.0} >]

[-o <timescales -filename >]

Options

-i (<disc-trajectory-�lename | disc-trajectory-�lenamepattern>)+

Specify input �les (discrete trajectories) obtained from clustering. This can be a space separated
list of �lenames. Additionally, it is possible to use speci�c wildcards to selected multiple trajectories.
Two wildcards are supported: # and * . # stands for chain of at least one digit like 253, * for a
chain of arbitrary signs.

Note: please see the description at 8.2 for further information.

-restrictToStates <largestset-�lename>

Restrict states to the states given in largest connected set �largestset�. A detailed explanation is
given in 8.5

-prior <double:0.01>

Use prior. More information about the prior is given in 8.5

22

-sampling [slidingwindows | lag]

For details see countmatrix estimation 8.5.

-reversible

Estimate a reversible transition matrix. See 8.5

-lagtimes (<int>)+

Set of lagtimes (space separated), to calculate implied timescales for.
Example: lagtimes 1 2 5 10 50 100

-neig <int:neig>

Total number of eigenvalues (modes) to analyze. The number of timescales computed is neig − 1.

-timestep <double:1.0>

The length of one lag time unit τ , such it is the time from one trajectory frame to the next trajectory
frame. If not set explicitly, it defaults to 1.0.

-o <timescales-�lename>

File to write implied timescales to. The output �le contains ascii and is column oriented. The
�rst column contains the absolute lagtime, that is the productlagtime · timestep. Columns 2 to
2 + neig − 1 contain the neig − 1 implied timescales.

8.5. Transition Matrix Estimation - mm_estimate

Description

Estimate a count matrix C from a given set of discrete trajectories, C has dimension n × n where n is
the number of clusters used to discretize the data. From this count matrix C a transition matrix T is
estimated, reversible of option �-reversible� is present. This transition matrix T sets up the foundation
of the constructed Markov model.

Background

The countmatrix C is basically created by counting the number of transition from microstate i to state
j, building the matrix entry cij . Di�erent counting methods are available: slidingwindow, which creates
a high number of counts, but neglects the fact of statistical independence, and the lag count mode, which
count transition from t(0) to t(τ), t(τ) to t(2τ) and so forth. That way, a count matrix C is determined.

The user can choose to add a prior matrix Cp to avoid numerical problems with states that were rarely
visited or never left [32, 18]:

cij = cpij + coij .

The purpose of the prior Cp is to avoid numerical problems in scenarios with little data. It adds a
bias which vanishes when much data is accumulated as then the count matrix will be dominated by Co.
However, the bias should be chosen as small as possible and as large as necessary to ensure numerical
stability. As shown in [18, ?], a useful prior is the neighbor prior: cpij = α when coij(1) + coji(1) > 0, i.e.
when ever two states have been seen adjacently in the trajectory, they are considered as neighbors and a
small pseudo count is added to both in order to make sure that the stationary probability is nonzero in
all states.

It is intuitively clear that in the limit of an in�nitely long trajectory, the elements of the true transition
matrix are given by the trivial estimator:

T̂ij(τ) =
cij∑
k cik

=
cij
ci
. (3)

23

this is the maximum likelihood transition matrix using the count matrix C.

But when unbiased molecular dynamics trajectories are used the system is assumed to be in equilibrium,
and in this situation we expect detailed balance to hold:

πiTij = πjTji, (4)

however the estimated (with the trivial estimator) matrix will generally not ful�ll πiTij = πjTji, simply
as a result of statistical deviations from detailed balance for �nite amounts of data. Therefore, in cases
where the dynamics are in equilibrium it is useful to enforce detailed balance on the matrix. A suitable
approach is to use an estimator which �nds the maximum likelihood T̂ under the constraints (4) [4, 40].
This optimal reversible estimator as described in [40] is available in EMMA via the option �-reversible�.
It is applicable for the command mm_estimation and mm_timescales.

Synopsis

mm_estimate

-i (<disc -trajectory -filename | disc -trajectory -filenamepattern >)+

[-restrictToStates <largestset -filename >]

[-prior <double :{0.01} >]

[-reversible]

[-lagtime <int >:{1}]

[-sampling [{slidingwindow} | lag]]

[-outputtransitionmatrix <transitionmatrix -filename >]

Options

-i (<disc-trajectory-�lename | disc-trajectory-�lenamepattern>)+

Specify input �les (discrete trajectories) that were obtained from clustering. This can be a space
separated list of �lenames. Additionally, it is possible to use speci�c wildcards to selected multiple
trajectories. Two wildcards are supported: # and * . # stands for chain of at least one digit like
253, * for a chain of arbitrary signs.

Note: fur further details, please see Section8.2 to get further information on input parameter
wildcards.

-restrictToStates <largestset-�lename>

Restrict states to the states given in largest connected set �largestset�. A detailed explanation is
given in 8.5

-prior <double:0.01>

Use a prior of the count matrix. See 8.5

-reversible

Estimate a reversible transition matrix. See

-lagtime <int>:1

Lagtime used for construction.

-sampling [slidingwindow | lag]

In order to estimate the number of transitions between states in the trajectory, several methods are
available (see Figure 10 for graphical illustration). The discrete states of the trajectory are given
wrt. s(t), with t the time. A characteristic function χi(s) is zero, if i 6= j and is 1 if i = j:

lag: Cij =
∑n−τ

τ

k=1 χi(s(t)) · χj(s(k · τ)).

slidingwindow: Cij =
∑n−τ
t=1 χi(s(t)) · χj(s(t+ τ)).

24

-lagtime <int>:1

Lagtime used for construction.

-outputtransitionmatrix <transitionmatrix-�lename>

File to write constructed transition matrix to.

t
sampling with τ

t
window count

...

...

Figure 10: Illustration of di�erent counting modes. Top view: counting mode �lag� . Bottom view:
counting mode: �sliding window� .

8.6. Perron-Cluster-Cluster-Analysis (PCCA) - mm_pcca

PCCA is a method for the determination of metastable states based on a transition matrix ([10, 49, 43,
37]). The metastable sets are those sets of microstates, within which equilibration is most rapid and
between which transitions are most rare. It is therefore a kinetic clustering method. By PCCA each of
the microstates is assigned to one of 1,..,C clusters or metastable states. The assignment of macrostates
to microstates is called the membership-assignment.

We are interested in �nding m metastable sets from an n×n transition matrix. The membership matrix
χ ∈ Rm×n indicates by its elements χij to what degree each microstate j belongs to metastable set i,
where

∑
i

χij = 1 ∀i.

The membership matrixχ is calculated with an approximate PCCA+ method (see [10, 49, 43, 37] for the
mathematical details). Here, this is done, by calculating the set of m− 1 right eigenvectors ψ2, ..., ψm of
T (the stationary eigenvector ψ1 is constant and irrelevant for this analysis). In this m− 1-dimensional
eigenvector space, each microstate has a coordinate ψ(i) = (ψ2,i, ..., ψm,i). The microstates lie in a simplex
with m vertices v1, ..., vm which represent the metastable centers of the metastable sets. These vertices
are determined by the following (approximate) procedure:

1. Find v1 and v2 by searching the microstate pair with |ψ(v1) − ψ(v2)| → max.

2. For all k = 3...m: Find vk by searching the microstate with
∑k−1
i=1 |ψ(vk) − ψ(vi)|

Subsequently, each microstate is assigned a membership vector χ·,j by calculating the convex coordinates
to the vertices v1, ..., vm. In order to obtain a clear-cut assignment of microstates to metastable states,
we �nd the metastable state assigned to microstate j, m(j), by using simply the maximum membership:

m(j) = arg max
i
χij .

25

Synopsis

mm_pcca

[

-inputtransitionmatrix <transitionmatrix -filename >

|

-inputeigenvectors <eigenvectors -filename >

]

-nclusters <int >

[-ofuzzy <fuzzyassignment -filename >]

[-ocrisp <crispassignment -filename >]

[-osets <microstateassignment -filename >]

Options

[-inputtransitionmatrix <transitionmatrix-�lename> | -inputeigenvectors <eigenvectors-�lename>]
(alternative)

Specify input, which can be either a transition matrix or a set of eigenvectors in the form as they
are generated by mm_transitionmatrixAnalysis. If the input is set to a transition matrix, the
eigenvectors, required for PCCA, are computed internally.

-nclusters <int>

Number of clusters used for PCCA algorithm.

[-ofuzzy <fuzzyassignment-�lename>] (optional)

Output the assignment of microstates to those states determined by PCCA. �Fuzzy� means, that
one microstate is not strictly assigned to one PCCA state, but having a membership with each
metastable state.

[-ocrisp <crispassignment-�lename>] (optional)

Output the assignment of microstate to PCCA states. Each microstate is exactly assigned to one
PCCA state.

[-osets <microstateassignment-�lename>] (optional)

Output for every pcca state the microstates belonging to that pcca state. This contains the same
assignment information as with -ocrisp, but di�erently formatted.

8.7. Chapman-Kolmogorov Test - mm_chapman

Description

Conducts a test of the Markov model T̂ (τ). This is done by comparing the long-time propagation kinetics
of T̂ (τ) with the data available from trajectories and checking whether these two are consistent. When
successful the Chapman-Kolmogorov Test is a validation of the quality of the Markov model.

Background

A strong test of the Markov model is obtained by comparing its prediction of the long-time kinetics
obtained by propagating the transition matrix T̂ (τ), which had been obtained for a certain lagtime τ , k =
1 . . . kmax times to the direct estimation of T̂ (kτ), where kmax is limited by the length of the trajectories
available. For an exactly Markovian dynamics, this test would ful�ll the Chapman-Kolmogorov equality
which we here attempt to ful�ll approximately:

[T̂ (τ)]k ≈ T̂ (kτ),

26

where T̂ (τ) is the transition matrix estimated for the time series at lag time τ and T̂ (kτ) is the transition
matrix which is estimated for the time series for lagtimes kτ . The matrix T̂ (τ) is taken to the power of
k to simulate a propagation of the system for time k · τ .

But since it is di�cult to compare the matrices T̂ (τ)k and T̂ (kτ) directly, we instead choose to apply
a distribution p0 to T̂ (τ)k while we are estimating the quantity p0T̂ (kτ) directly from the trajectory,
yielding:

p0 · [T̂ (τ)]k ≈ p0 · T̂ (kτ). (5)

Here, p0 is chosen such that it sums up to 1 on a set Si of interest while being 0 otherwise. Within Si,
p0 ∝ ρ where ρ is the a set of weights, which usually is taken to be the stationary distribution of T .
The test is visualized by plotting the total probability on each set Si tested over times kτ , and checking
whether Markov model and direct calculation agree within error (see [40] 3 for further details).

Synopsis

mm_chapman

-i (<disc -trajectory -filename | disc -trajectory -filenamepattern >)+

[-restrictToStates <largestset -filename >]

-inputtransitionmatrix <transitionmatrix -filename >

[-randomsets [<int >:{1}] | -sets <sets -filename >]

-dtT <double >

-dtTraj <double >

-kmax <int >

Options

-i (<disc-trajectory-�lename | disc-trajectory-�lenamepattern>)+

Specify input �les (discrete trajectories) used for the Chapman-Kolmogorov test.
Note: please see the description at 8.2 to get further information.

-restrictToStates <largestset-�lename>

Restrict states to the states given in largest connected set �largestset�. A detailed explanation is
given in 8.5

-inputtransitionmatrix <transitionmatrix-�lename>

Transition matrix T̂ (τ) for lagtime τ , which is propagated wrt. to T̂ (τ)k.

-randomsets [<int>:1]

Use i random subsets Si of the discrete state space with its n discrete states which are propagated
independently. For each subset Si the probability distribution p

-sets <sets-�lename>

Instead of using -randomsets the subsets Si can be speci�ed manually in a �le. Here, each row of
the �le represents the discrete states of the subset Si. These sets may e.g. come from PCCA (see
below).

-dtT <double>

Speci�es the time of one lag unit τ (in order to align the Markov model and the trajectory estimate
in time).

-dtTraj <double>

Speci�es the time of one discrete trajectory timestep (in order to align the Markov model and the
trajectory estimate in time).

3available online at http://publications.mi.fu-berlin.de/944/

27

-kmax <int>

The test is performed on the time window 0 to kmaxτ .

8.8. Transition Matrix Analysis - mm_transitionmatrixAnalysis

Description

This tool allows to determine the stationary distribution, the �rst n eigenvalues plus the corresponding
left and right eigenvectors of a given transition matrix. The stationary distribution, eigenvectors and
eigenvalues are printed to the console or written to �les.

Synopsis

mm_transitionmatrixAnalysis

-inputtransitionmatrix <transitionmatrix -filename >

[-nev <int >]

[-stationarydistribution [<stationarydistribution -filename >]]

[-eigenvalues [<eigenvalues -filename >]]

[-lefteigenvectors [<lefteigenvectors -filename >]]

[-righteigenvectors [<righteigenvectors -filename >]]

Options

-inputtransitionmatrix <transitionmatrix-�lename>

File, to read transition matrix from.

-nev <int>

Sets the number of eigenvalues / eigenvectors to calculate. This option The value has to be

-stationarydistribution [<stationarydistribution-�lename>]

Output eigenvalues to a separate ascii �le.

-eigenvalues [<eigenvalues-�lename>]

Calculate and output eigenvalues. The number of eigenvalues computed depends on the value set
by -nev. If the output�lename is given, the eigenvalues are written to an ascii �le, otherwise they
are written to the screen.

-lefteigenvectors [<lefteigenvectors-�lename>]

Calculate and output left eigenvectors. If the output�lename is given, the eigenvectors are written
to an ascii �le, otherwise they are written to the screen.

-righteigenvectors [<righteigenvectors-�lename>]

Calculate and output right eigenvectors. If the output�lename is given, the eigenvectors are written
to an ascii �le, otherwise they are written to the screen.

8.9. Transition path theory (TPT) - mm_tpt

Transition path theory allows us to analyze the essential statistical features of the reactive transitions
between two chosen subsets A and B [46, 27, 28, 38], especially the set of transition pathways between
A and B, their relative probabilities, the total A→ B �ux and the A→ B rate.

The essential object needed to calculate statistics pertaining to the A → B reaction is the committor
probability, also called splitting probability or probability of folding [14, 9, 3, 26, 2, 12, 16, 25]. The

28

committor q(x) is a state function that provides the probability at any state x ∈ Ω of next moving to
B rather than to A under the action of the system dynamics. By de�nition, q(x) = 0 for x ∈ A and
q(x) = 1 for x ∈ A, while q(x) ∈ [0, 1] for all other states. The committor probability is calculated �rst
by the tpt command.

The committor is useful for calculating a number of quantities. Firstly, all sets of constant committor
probability in the state space Ω

I(q∗) = {x ∈ Ω | q(x) = q∗}, ∀q∗ ∈ [0, 1] (6)

are hypersurfaces that partition the state space into the two disjoint subsets IA(q∗) = {x ∈ Ω | q(x) < q∗}
with A ⊂ IA(q∗), ∀q∗ > 0 and IB(q∗) = {x ∈ Ω | q(x) > q∗} with B ⊂ IB(q∗), ∀q∗ < 1. The committor
is thus a measure for the progress of a process or reaction, i.e. it is the ideal reaction coordinate for the
process A → B [14, 2, 25]. Of special interest in this context is the isocommittor surface I(0.5), which
can be interpreted as the transition state ensemble in protein folding theory [39].

The transport properties from A to B can be be computed via transition path theory (TPT) [46, 28]. In
particular, the reactive �ux fij between two states i and j is given by

fij =

{
πiq
−
i kijq

+
j i 6= j

0 i = j
(7)

for rate matrices [28], or
fij(τ) = πiq

−
i Tij(τ)q+j (8)

if the transition probability matrix is used [38]. Here, q− is the backward committor which is the
probability that of the two states set A has been visited last and not B which is equal to 1 − q+ if the
dynamics is reversible. The reactive �ux fij is proportional to the probability that a reactive trajectory,
that is, a trajectory directly connecting A and B, passes through the transition i→ j. The net transport
through i→ j is given by

f+ij = max{fij − fji, 0}, (9)

which de�nes a network �ow out of A and into B that can be decomposed into a set of A→ B reaction
pathways along with their probabilities [28, 46, 38]. Finally the total �ux of the A→ B reaction is given
by

FAB =
∑

i∈A,j /∈A

fij =
∑

i∈A,j /∈A

f+ij . (10)

and the A→ B reaction rate is given by:

kAB =
FAB∑
i πiq

−
i

. (11)

Synopsis

mm_tpt

-inputtransitionmatrix <transitionmatrix -filename >

[-statdist <stationarydistribution -filename >]

-seta <filename >

-setb <filename >

[-oforwardcommittor <forwardcommittor -filename >]

[-obackwardcommittor <backwardcommittor -filename >]

[-oflux <flux -filename >]

[-onetflux <netflux -filename >]

[-coarse <string:filename >

[-ocoarseforwardcommittor <string:filename >]

[-ocoarsebackwardcommittor <string:filename >]

[-ocoarseflux <string:filename >]

[-ocoarsenetflux <string:filename >]

29

[-ocoarseseta <string:filename >]

[-ocoarsesetb <string:filename >]

]

Options

-inputtransitionmatrix <transitionmatrix-�lename>

Speci�es the input transition matrix.

[-statdist <stationarydistribution-�lename>] (optional)

Input �le which speci�es the stationary distribution, which is required by TPT. If this option is not
provided, the stationary distribution is computed from the transition matrix.

-seta <�lename>

Speci�es �le containing the de�nitions of states belonging to set A.

-setb <�lename>

Speci�es �le containing the de�nitions of states belonging to set B.

[-oforwardcommittor <forwardcommittor-�lename>] (optional)

Output the forward committor q+ (in vector form) to a �le.

[-obackwardcommittor <backwardcommittor-�lename>] (optional)

Output the backward committor q−(in vector form) to a �le.

[-o�ux <�ux-�lename>] (optional)

Output the �ux (in matrix form) to a �le.

[-onet�ux <net�ux-�lename>] (optional)

Output the net �ux (in matrix form) to a �le. This is the main result.

[-coarsegrain <string:�lename>] (optional)

Speci�es to coarse-grain the forward-committor, the backward-committor, the �ux and the net �ux
onto the de�ned sets. The set de�nitions are read from given �le. This option directly a�ects all
output.

For example, the metastable sets obtained from PCCA may be used here, resulting in a coarse-
graining for the committors and �uxes onto the metastable sets (see [38]).

Here, coarse-graining e�ectively means:

• Given the committor q the coarse-grained-committor is obtained by the summation of all
microstate committor values weighted by the stationary distribution: qS =

∑
i∈S πiqi.

• Given a �ux matrix fij , the coarse-grained �ux matrix FIJ is obtained by summation of all
microstate �uxes between sets: FIJ =

∑
i∈I
∑
j∈J fij for I 6= J .

The committors and �uxes for the coarse-grained case can also be output to �les. The following
output options can only be used if the option �-coarsegrain� is present. The options di�er only by
the part �coarse� from the output options for the non coarse-grained case above.

[-ocoarsedforwardcommittor <string:�lename>] (optional output, only available if �-coarsegrain�
present)

Output the coarse-grained forward committor to a �le.

[-ocoarsedbackwardcommittor <string:�lename>] (optional output, only available if �-coarsegrain�
present)

Output the coarse-grained backward committor to a �le.

30

[-ocoarsed�ux <string:�lename>] (optional output, only available if �-coarsegrain� present)

Output the coarse-grained �ux to a �le.

[-ocoarsednet�ux <string:�lename>] (optional output, only available if �-coarsegrain� present)

Output the coarse-grained net �ux to a �le.

[-ocoarsedseta <string:�lename>] (optional output, only available if �-coarsegrain� present)

Output the coarsed set A to a �le.

[-ocoarsedsetb <string:�lename>] (optional output, only available if �-coarsegrain� present)

Output the coarsed set B to a �le.

8.10. Expectation values, Correlation functions, Fingerprints - mm_observables

Description

The mm_observables command allows to analyze MSMs in a way that allow comparison to experimental
measurements. We here assume that a scalar observable ai is de�ned for each microstate, resulting in a
vector a. This vector is stored in a �le that containing the vector elements in the rows. Such observables
may be any function of the molecular state, such as a �uorescence, a FRET e�ciency, a distance, etc.

Background

Many experiments measure ensemble averages. Given a transition matrix T(τ) with associated stationary
distribution π and observable vector a, the ensemble average can be calculated with the -expectation

command. It is simply estimated by:

E[a] =

n∑
i=1

πiai. (12)

The most interesting features of mm_observables however allow dynamical observables to be calculated
such as perturbation-relaxation and correlation curves as they can also be measured in kinetic experi-
ments. Importantly, mm_observables can help to interpret these curves in terms of dynamical �ngerprints
which can be dissected into dynamical features that are associated with individual relaxation timescales
and structural rearrangement processes [36, 20]. Here, we di�erentiate between two types of kinetic
experiments: perturbation and correlation experiments.

In perturbation experiments, the ensemble average of an observable is tracked over time while the ensemble
relaxes from some perturbed or triggered initial state at time t = 0 towards its stationary distribution.
The initial trigger may consist of e.g. a jump in temperature [19, 41], pressure [13], a change in the
chemical environment [7] or a photo�ash [48, 42, 6]. Such a time-dependent ensemble averages can be
calculated with the commands -perturbation and -relax via:

E[a(kτ)]p0
=

n∑
i=1

n∑
j=1

p0,iTij(kτ)aj (13)

A special perturbation experiment is the temperature-jump experiment where an ensemble is prepared at
temperature T1 at t < 0 and is then suddenly changed to temperature T2 at t = 0. The system is kept at
T2 and relaxes from its old stationary distribution p0 = π(T1) to its new stationary distribution π(T2). In
cases where simulations have been conducted at both temperatures T1 and T2, the stationary distribution
at T1 can be straightforwardly plugged in as initial distribution to a perturbation experiment using the
transition matrix at T2 and the result can be calculated with the -perturbation command. If only a
single-temperature simulation has been made at temperature T2 we can still estimate the temperature-
jump relaxation curve with the command -Tjump. This makes the assumption that the microstates
clustering is �ne enough such that

31

πi(T1) ≈ Z−11 exp(−Ei/kBT1)

πi(T2) ≈ Z−11 exp(−Ei/kBT1)

with some common energy Ei. Based on this assumption, the initial distribution p0 for an initial temper-
ature T1 that is close to the target temperature T2 is approximated, and the temperature-jump relaxation
curve is calculated via Eq. 13.

A very common type of kinetic experiments are correlation experiments. Correlation experiments may
either be realized through scattering techniques such as inelastic neutron scattering [11], or via low
concentration or single molecule experiments accumulating auto- or cross-correlations of �uctuations,
e.g. correlation spectroscopy of the �uorescence intensity [22, 31, 29, 45, 15] or Förster resonance energy
transfer e�ciency [21, 30]. The -autocorrelation command calculates equilibrium autocorrelations of
observables a via:

E[a(0) a(kτ)]π =

n∑
i=1

n∑
j=1

aiπiTij(kτ)aj (14)

and the -crosscorrelation command calculates the cross-correlation between two observables a and b
via:

E[a(0) b(kτ)]π =

n∑
i=1

n∑
j=1

aiπiTij(kτ)bj (15)

Instead of directly printing the perturbation-relaxation or correlation curve via -relax, one can output
the dynamical �ngerprint of a perturbation or correlation experiment via the -fingerprint command.
As explained in detail in [36, 20], the long-timescale part of Eqs. (12), (13) and (14) can each be written
in the form

E(..., kτ) =

m∑
i=1

γi exp

(
−kτ
t∗i

)
where γ∗i is the i-th implied timescale and γi is an amplitude that depends on the speci�c experiment
conducted. The amplitudes γi are derived in [36, 20] and can be calculated from scalar products of initial
or stationary probability distributions, properly normalized left or right eigenvectors li, ri and observable
vectors a, b:

γperturbationi = 〈p0, ri〉〈a, li〉
γautocorrelationi = 〈a, li〉2

γcrosscorrelationi = 〈a, li〉〈b, li〉.

The command -fingerprint outputs the amplitudes γi and timescales t∗i for all spectral components
with positive eigenvalues.

Synopsis

mm_observables

-i <string:transitionmatrixfilename > [command] [output -mode]

-expectation <obs >

-perturbation <p0 > <obs >

-Tjump <temp1 > <temp2 > <obs >

-autocorrelation <obs >

-crosscorrelation <obs1 > <obs2 >

32

-relax [<time -list > | <tmin > <tmax > <dt >]

-relaxspectral [<time -list > | <tmin > <tmax > <dt >]

-fingerprint [<time -list > | <tmin > <tmax > <dt >]

Commands

-expectation <obs>

Stationary expectation value of the observable. Output-mode is disabled.

-perturbation <p0> <obs>

Time-dependent expectation value after letting the system relax from initial distribution p0.

-Tjump <temp1> <temp2> <obs>

1st order approximation to temperature jump experiment from temp1 to temp2. The MSM is
assumed to be parametrized for temp2.

-autocorrelation <obs>

Stationary autocorrelation-function of the observable obs

-crosscorrelation <obs1> <obs2>

Stationary cross correlation-function of the observables obs1 and obs2.

Options

-relax [<time-list> | <tmin> <tmax> <dt>]

Direct relaxation curve for time-dependent expectations

-relaxspectral [<time-list> | <tmin> <tmax> <dt>]

relaxation curve calculated from spectral decomposition. Should be equivalent to -relax

-�ngerprint [<time-list> | <tmin> <tmax> <dt>]

Dynamical �ngerprint for time-dependent expectations

Part III.

Appendix

A. File formats

Except from trajectory data, which can also be binary data (Gromacs: xtc, Charmm / NAMD: dcd)
all �les used for input and output are ascii-�les. This allows a high transparency, since all �les can be
inspected visually and second, modi�cations are easily possible where appropriate. Nevertheless, it is
essential to give a precise de�nition of how the formats of the di�erent �les are de�ned.

Trajectory format

A trajectory with n frames and with each frame fi ∈ Rdim of dimension dim and i ∈ 0, . . . , n− 1is stored
as follows:

33

<time_of_frame_0:double > <x1_of_frame_0:double > ... <x_dim_of_frame_0:double >

<time_of_frame_1:double > <x1_of_frame_1:double > ... <x_dim_of_frame_1:double >

...

<time_of_frame_2:double > <x1_of_frame_n -1: double > ... <x_dim_of_frame_n -1:double >

Dense matrix format

A matrix Mrows×columns is stored in a dense format as de�ned below. The header line is required.

DENSE <rows:int > <columns:int >

<entry_0_0:double > <entry_0_1:double > ... <entry_0_c:double >

<entry_1_0:double > <entry_1_1:double > ... <entry_1_c:double >

...

<entry_rows_0:double > <entry_rows_1:double > ... <entry_rows_c:double >

Sparse matrix format

A matrix Mrows×columns is stored in a dense format as de�ned below. The header line is required.

SPARSE <rows:int > <columns:int >

<row_of_entry1_at_i_j > <column_of_entry1_at_i_j > <entry1:double >

<row_of_entry2_at_i_j > <column_of_entry2_at_i_j > <entry2:double >

... lines of the above format for every entry not zero ...

Vector format

All vectors are written column-wise e.g. stationary distribution. A vector x ∈ Rdim is stored as de�ned
below. Currently there is no header. The i-line represents the i-th entry xi of x.

<entry_0:double >

<entry_1:double >

...

<entry_dim:double >

Set de�nition format

Sets of microstates, de�ning a metastable state (like in �pcca/sets.ascii�) have the format as de�ned below.
The i-th line contains the microstates (arbitrarily many) that belong to the i-th metastable set.

<microstate_0_of_set_0:int > <microstate_1_of_set_0:int > <microstate_2_of_set_0:int >

<microstate_0_of_set_1:int > <microstate_1_of_set_1:int >

<microstate_0_of_set_2:int > <microstate_1_of_set_2:int > <microstate_2_of_set_2:int >

References

[1] A. Amadei, A. B. Linssen, and H. J. C. Berendsen. Essential dynamics of proteins. Proteins,
17:412�225, 1993.

[2] Robert B Best and Gerhard Hummer. Reaction coordinates and rates from transition paths. Proc.
Nat. Acad. Sci. USA, 102(19):6732�6737, Jan 2005.

[3] Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L Geissler. Transition path sam-
pling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem., 53:291,
Jan 2002.

34

[4] Gregory R Bowman, Daniel L Ensign, and Vijay S Pande. Enhanced modeling via network theory:
Adaptive sampling of markov state models. J. Chem. Theo. Comp., 6(3):787�794, Jan 2010.

[5] Nicaolae V. Buchete and Gerhard Hummer. Coarse master equations for peptide folding dynamics.
J. Phys. Chem. B, 112:6057�6069, 2008.

[6] Janina Buck, Boris Fürtig, Jonas Noeske, Jens Wöhnert, and Harald Schwalbe. Time-resolved nmr
methods resolving ligand-induced rna folding at atomic resolution. Proc. Natl. Acad. Sci. USA,
104(40):15699�15704, October 2007.

[7] Chi-Kin Chan, Yi Hu, Satoshi Takahashi, Denis L. Rousseau, William A. Eaton, and James
Hofrichter. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc. Natl. Acad.
Sci. USA, 94(5):1779�1784, March 1997.

[8] J. D. Chodera, K. A. Dill, N. Singhal, V. S. Pande, W. C. Swope, and J. W. Pitera. Automatic dis-
covery of metastable states for the construction of Markov models of macromolecular conformational
dynamics. J. Chem. Phys., 126:155101, 2007.

[9] Christoph Dellago, Peter G Bolhuis, and Phillip L Geissler. Transition path sampling. Adv. Chem.
Phys., 123:1, Jan 2002.

[10] P. Deu�hard and M. Weber. Robust perron cluster analysis in conformation dynamics. ZIB Report,
03-09, 2003.

[11] Wolfgang Doster, Stephen Cusack, and Winfried Petry. Dynamical transition of myoglobin revealed
by inelastic neutron scattering. Nature, 337(6209):754�756, February 1989.

[12] Rose Du, Vijay S Pande, Alexander Yu Grosberg, Toyoichi Tanaka, and Eugene I Shakhnovich. On
the transition coordinate for protein folding. J. Chem. Phys, 108:334, 1998.

[13] Charles Dumont, Tryggvi Emilsson, and Martin Gruebele. Reaching the protein folding speed limit
with large, sub-microsecond pressure jumps. Nature Methods, 6(7):515�519, May 2009.

[14] Weinan E, Weiqing Ren, and Eric Vanden-Eijnden. Transition pathways in complex systems: Reac-
tion coordinates, isocommittor surfaces, and transition tubes. Chem. Phys. Lett., 413(1-3):242�247,
2005.

[15] Robert R. Hudgins, Fang Huang, Gabriela Gramlich, and Werner M. Nau. A �uorescence-based
method for direct measurement of submicrosecond intramolecular contact formation in biopolymers:
An exploratory study with polypeptides. J. Am. Chem. Soc., 124(4):556�564, January 2002.

[16] Gerhard Hummer. From transition paths to transition states and rate coe�cients. J. Chem. Phys,
120(2):516�523, Jan 2004.

[17] J. Chodera and F. Noé. Probability distributions of molecular observables computed from markov
models. ii: Uncertainties in observables and their time-evolution. submitted to J. Chem. Phys. on
23 Oct 2009. In revision, 2009.

[18] J.-H. Prinz and M. Held and J. C. Smith and F. Noé. E�cient computation of committor probabilities
and transition state ensembles. submitted to SIAM Multiscale Model. Simul. on, 2009.

[19] M. Jäger, Y. Zhang, J. Bieschke, H. Nguyen, M. Dendle, M. E. Bowman, J. P. Noel, M. Gruebele,
and J. W. Kelly. Structure-function-folding relationship in a ww domain. Proc. Natl. Acad. Sci.
USA, 103:10648�10653, 2006.

[20] Bettina Keller, Jan-Hendrik Prinz, and Frank Noé. Markov models and dynamical �ngerprints:
Unraveling the complexity of molecular kinetics. Chem. Phys. (in revision), 2011.

[21] Harold D. Kim, G. Ulrich Nienhaus, Taekjip Ha, Je�rey W. Orr, James R. Williamson, and Steven
Chu. Mg2+-dependent conformational change of rna studied by �uorescence correlation and fret on
immobilized single molecules. Procl. Natl. Acad. Sci. USA, 99(7):4284�4289, April 2002.

[22] Lisa J. Lapidus, William A. Eaton, and James Hofrichter. Measuring the rate of intramolecular
contact formation in polypeptides. Proc. Natl. Acad. Sci. USA, 97(13):7220�7225, June 2000.

[23] J.-H. Prinz M. Held, P. Metzner and F. Noé. Mechanisms of protein-ligand association and its
modulation by protein mutations. Biophys. J. (in press), 2011.

35

[24] M. Sarich and F. Noé and C. Schütte. On the approximation error of markov state models. accepted
for SIAM Multiscale Model. Simul. on 15 Mar 2010. Preprint at: http://proteomics-berlin.de/771/,
2010.

[25] A Ma and Aaron R Dinner. Automatic method for identifying reaction coordinates in complex
systems. J. Phys. Chem. B, 109:6769�6779, Jan 2005.

[26] Luca Maragliano, Alexander Fischer, Eric Vanden-Eijnden, and Giovanni Ciccotti. String method
in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys,
125(2):24106, Jul 2006.

[27] Philipp Metzner, Christof Schütte, and Eric Vanden-Eijnden. Illustration of transition path theory
on a collection of simple examples. J. Chem. Phys, 125(8):084110, Jan 2006.

[28] Philipp Metzner, Christof Schütte, and Eric Vanden-Eijnden. Transition path theory for markov
jump processes. Multiscale Model. Sim., 7(3):1192�1219, 2009.

[29] Xavier Michalet, Shimon Weiss, and Marcus Jäger. Single-molecule �uorescence studies of protein
folding and conformational dynamics. Chem. Rev., 106:1785�1813, 2006.

[30] Daniel Nettels, Armin Ho�mann, and Benjamin Schuler. Unfolded protein and peptide dynamics
investigated with single-molecule fret and correlation spectroscopy from picoseconds to seconds†. J.
Phys. Chem. B, 112(19):6137�6146, May 2008.

[31] Hannes Neuweiler, Marc Löllmann, Sören Doose, and M. Sauer. Dynamics of unfolded polypeptide
chains in crowded environment studied by �uorescence correlation spectroscopy. J. Mol. Biol.,
365:856�869, 2007.

[32] F. Noé. Probability Distributions of Molecular Observables computed from Markov Models. J.
Chem. Phys., 128:244103, 2008.

[33] F. Noé and S. Fischer. Transition networks for modeling the kinetics of conformational transitions
in macromolecules. Curr. Opin. Struc. Biol., 18:154�162, 2008.

[34] F. Noé, I. Horenko, C. Schütte, and J. C. Smith. Hierarchical Analysis of Conformational Dynamics
in Biomolecules: Transition Networks of Metastable States. J. Chem. Phys., 126:155102, 2007.

[35] F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl. Constructing the full ensemble
of folding pathways from short o�-equilibrium simulations. Proc. Natl. Acad. Sci. USA, 106:19011�
19016, 2009.

[36] Frank Noé, Sören Doose, Isabella Daidone, Marc Löllmann, John D. ChoderaJ, Markus Sauer, and
Jeremy C. Smith. Dynamical �ngerprints: Understanding biomolecular processes in microscopic
detail by combination of spectroscopy, simulation and theory. Proc. Natl. Acad. Sci. USA, in press,
2011.

[37] Frank Noé, Illia Horenko, Christof Schütte, and Jeremy C Smith. Hierarchical analysis of con-
formational dynamics in biomolecules: Transition networks of metastable states. J. Chem. Phys,
126:155102, 2007.

[38] Frank Noé, Christof Schütte, Eric Vanden-Eijnden, Lothar Reich, and Thomas RWeikl. Constructing
the equilibrium ensemble of folding pathways from short o�-equilibrium simulations. Proc. Nat. Acad.
Sci. USA, 106(45):19011�6, Nov 2009.

[39] V. Pande. Pathways for protein folding: is a new view needed? Current Opinion in Structural
Biology, 8(1):68�79, February 1998.

[40] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Fischbach, M. Held, J.D. Chodera, C. Schütte, J.D.
Chodera, and F. Noé. Markov models of molecular kinetics: Generation and validation. J. Chem.
Phys., submitted, 2011.

[41] Mourad Sadqi, Lisa J. Lapidus, and Victor Munoz. How fast is protein hydrophobic collapse? Proc.
Natl. Acad. Sci. USA, 100(21):12117�12122, October 2003.

36

[42] Ilme Schlichting, Steven C. Almo, Gert Rapp, Keith Wilson, Kyriakos Petratos, Arno Lentfer, Alfred
Wittinghofer, Wolfgang Kabsch, Emil F. Pai, Gregory A. Petsko, and Roger S. Goody. Time-resolved
x-ray crystallographic study of the conformational change in ha-ras p21 protein on gtp hydrolysis.
Nature, 345(6273):309�315, May 1990.

[43] C. Schütte, A. Fischer, W. Huisinga, and P. Deu�hard. A direct approach to conformational dynamics
based on hybrid monte carlo. J. Comput. Phys., 151:146�168, 1999.

[44] W. C. Swope, J. W. Pitera, and F. Suits. Describing protein folding kinetics by molecular dynamics
simulations: 1. theory. J. Phys. Chem. B, 108:6571�6581, 2004.

[45] Philip Tinnefeld and Markus Sauer. Branching out of single-molecule �uorescence spectroscopy:
Challen ges for chemistry and in�uence on biology. Angewandte Chemie Intl. Ed., 44:2642�2671,
2005.

[46] E. Vanden-Eijnden. Transition path theory. pages 453�493. 2006.

[47] Vincent A. Voelz, Gregory R. Bowman, Kyle Beauchamp, and Vijay S. Pande. Molecular Simulation
of ab Initio Protein Folding for a Millisecond Folder NTL9. J. Am. Chem. Soc., 132(5):1526�1528,
February 2010.

[48] A. Volkmer. One- and two-photon excited �uorescence lifetimes and anisotropy decays of green
�uorescent proteins. Biophys. J., 78(3):1589�1598, March 2000.

[49] M. Weber. Improved perron cluster analysis. ZIB Report, 03-04, 2003.

[50] Marcus Weber. Improved perron cluster analysis. ZIB Report, 04, Jan 2003.

37

