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Discontinuous Galerkin Methods for Nonlinear Elasticity
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SUMMARY

This paper presents the formulation and a partial analysis of a class of discontinuous Galerkin
methods for quasistatic nonlinear elasticity problems. These methods are endowed with several salient
features. The equations that define the numerical scheme are the Euler–Lagrange equations of a one–
field variational principle, a trait that provides an elegant and simple derivation of the method. In
consonance with general discontinuous Galerkin formulations, it is possible within this framework
to choose different numerical fluxes. Numerical evidence suggests the absence of locking at near
incompressible conditions in the finite deformations regime when piecewise linear elements are adopted.
Finally, a conceivable surprising characteristic is that, as demonstrated with numerical examples, these
methods provide a given accuracy level for a comparable, and often lower, computational cost than
conforming formulations.

Stabilization is occasionally needed for discontinuous Galerkin methods in linear elliptic problems.
In this paper we propose a sufficient condition for the stability of each linearized nonlinear elastic
problem that naturally includes material and geometric parameters; the latter needed to account for
buckling. We then prove that when a similar condition is satisfied by the discrete problem, the method
provides stable linearized deformed configurations upon the addition of a standard stabilization term.

We conclude by discussing the complexity of the implementation, and propose a computationally
efficient approach that avoids looping over both elements and element faces. Several numerical
examples are then presented in two and three dimensions that illustrate the performance of a selected
discontinuous Galerkin method within the class.
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1. INTRODUCTION

This paper presents the formulation and a partial analysis of a class of discontinuous
Galerkin (DG) methods for quasistatic nonlinear elasticity problems. These methods are
endowed with several salient features. The equations that define the numerical scheme are
the Euler–Lagrange equations of a one–field variational principle, a trait that provides an
elegant and simple derivation of the methods and brings their computational complexity and
cost in line with the most efficient existing ones. In consonance with general discontinuous
Galerkin formulations, it is possible within this framework to choose different numerical fluxes.
Numerical evidence suggests the absence of locking at near incompressible conditions in the
finite deformations regime when piecewise linear elements are adopted. Finally, a conceivable
surprising characteristic is that, as demonstrated with numerical examples, these methods
provide a given accuracy level for a comparable, and often lower, computational cost than
conforming formulations, i.e., where no discontinuities across elements are permitted.

Nonlinear elasticity theory is widely utilized in modeling the mechanical behavior of soft
materials, particularly in the phenomenological description of elastomers [38] and human tissue,
such as muscle[6], blood vessels [17] and the cornea[28]. Martensitic transformations in metals
and metal alloys, such as shape memory alloys, are also well described within the nonlinear
elasticity framework [29, 11]. In all these situations, the inherent nonlinearities in the theory
are crucial for their success.

The numerical solution of nonlinear elasticity problems is hindered by a number of challenges.
Conspicuous among these are problems related to capturing solutions in which the material
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DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR ELASTICITY 3

develops a very fine microstructure, see [10] for a recent perspective. These highly oscillatory
deformations are generally a direct consequence of the lack of convexity of the strain energy
density of the material. In fact, more often than not exact solutions for these problems in
the sense of Sobolev functions do not exist; solutions can exist, however, as Young measures.
Localization of deformation plagues nonlinear elastic behavior as well, most prominently in
the form of shear bands, cavitation and, if Griffith theory is adopted, brittle fracture [24]. The
fact that these localized singularities may ubiquitously appear in the body imposes seemingly
impossible requirements on the discretization scheme. For a fairly recent perspective on the
status of nonlinear elasticity theory we refer the reader to [4], where a number of open problems
are stated and discussed.

Notwithstanding these singularities, there are situations in which deformations are smooth;
in these cases numerical approximations to solutions of the equilibrium equations can be
obtained through more traditional methodologies, such as some type of finite element method.
The class of numerical methods introduced here were designed to address precisely this type of
problems. We shall speculate, however, that discontinuous Galerkin methods may prove useful
for some non–smooth problems as well, as the experience with shock–capturing for hyperbolic
problems dictates. For situations in which a fine microstructure is developed the nonconforming
approximation is likely to allow a localized enrichment of the discrete functional space, in the
spirit of [20, 18, 13].

In this paper we draw from the discontinuous Galerkin method presented in [22] for linear
elasticity to formulate a class of methods for the nonlinear elastic case. The method in [22]
adopts the numerical fluxes of Bassi and Rebay [5], following the work in [9] for the scalar
diffusion equation. More generally, a quite comprehensive description of discontinuous Galerkin
methods for elliptic problems (see, e.g., [19, 27, 26, 39, 1, 30, 16, 3, 40, 12]) can be found in
[2], which provides a common framework for most proposed methods. In [22], an elementwise
Hu–Washizu variational principle is used to derive the numerical method when restricted
to discrete sets of displacements, strains and stresses that are possibly discontinuous across
element boundaries. The method shares a number of features with others also stemming from
the Hu–Washizu variational principle, e.g., [32, 34], most prominent among them are assumed
strain methods, see, e.g., [35, 33, 14]. The obvious difference is that the methods we present
here use discontinuous approximations for the displacements.

A major drawback of the use of three–field variational principles is that the computational
cost can be overwhelming. As a result, a different perspective was adopted, in which we
obtain the methods through their primal formulation. To this end, after briefly discussing
the nonlinear elasticity problem in section 2, we recall the relationship between the exact
and approximated derivative of a field for discontinuous Galerkin discretizations in section 3;
we call the latter the DG-derivative. The numerical scheme is simply and elegantly derived
through a discrete variational principle in section 3.2. It consists of finding a local minimum
potential energy configuration of the body among all possible discrete configurations, with the
caveat that the gradient of the deformation mapping is evaluated through the DG–derivative.
It is precisely within the DG–derivative where all the information about the chosen numerical
fluxes and approximation space for the derivatives can be found. In section 3.4 we show how
an equivalent three–field variational principle, of the Hu–Washizu type, can be recovered from
this formulation, including the method for linear elasticity in [22].

A driving force behind the development of nonconforming and mixed-methods for elasticity
has been the appearance of locking in one–field conforming approximations when kinematic
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4 TEN EYCK A., LEW A.

constraints are imposed, such as incompressibility. When linearized kinematics are adopted,
the latter takes the well known form of a divergence–free constraint on the displacement
field. Solutions for this problem in the linear elasticity case are well known, such as
reduced integration, mixed methods, enhanced strain methods, assumed strain methods and
discontinuous Galerkin methods, among others. Some of these ideas remain valid when
nonlinear constitutive equations are adopted with either linearized [14] or exact [36] kinematic
descriptions. The numerical examples in section 6.6 suggest that when the Bassi and Rebay
numerical fluxes are chosen, together with piecewise linear elements, the resulting discontinuous
Galerkin method is locking–free for nearly incompressible situations with the body undergoing
large deformations, a notable advantage over mixed methods that need to carry the extra
pressure field.

It was shown in [22], closely following the developments in [9], that the choice of Bassi and
Rebay numerical fluxes for the linear elastic case results in a discrete bilinear form that may
not be coercive, i.e., unstable. Nonetheless, the addition of standard discontinuous Galerkin
stabilization renders the discrete problem stable for any positive choice of the stabilization
parameter. A similar feature should be present in the nonlinear extension, however, the exact
stability requirement in this case is not at all evident. For example, as discussed in section
4, it is very restrictive to request the elastic moduli at each linearized configuration of the
body to be uniformly positive semidefinite, a key assumption in the stress–free linear elastic
case. In fact, some eigenvalues of the elastic moduli can be negative at all points in space,
but the linearized elasticity problem still be coercive. For instance, from the discussion in
section 4 it can easily be seen that the elastic moduli in a body at equilibrium under spatially
uniform compressive pressure has some negative eigenvalues at every point. Notwithstanding,
it is possible for the potential energy to only increase when any infinitesimal displacement
field that is zero on the boundary is superimposed on the body, i.e., the configuration may be
stable.

In section 4 we propose a more general sufficient condition on the elastic moduli at each
linearized configuration that, if satisfied, leads to the coercivity of the linearized elasticity
problem. In it, information from both the constitutive relation and the geometry of the
deformed body is involved. Given that buckling is often geometric in nature, the inclusion
of a geometric factor comes with no surprise. The key contribution in this section is Theorem
4.1, which, at a deformed configuration, compares the coercivity of the bilinear form associated
with the exact linearized elasticity problem with that of the second variation of the stabilized
discontinuous Galerkin method. The proof of the theorem relies heavily in a generalized version
of Korn’s inequality [25]; its constant provides the geometric information in the stability
condition. We prove that, under certain conditions, the bilinear form in the second variation
of the stabilized method is coercive provided the stabilization parameter is large enough,
a somewhat striking difference with the results of the standard stress–free linear elasticity
problem. We cannot yet guarantee, however, that this bilinear form is coercive whenever the
exact one is. The consequences of this theorem are consistent with the behavior of the numerical
examples shown in section 6.3.

The numerical examples in section 6.4 show the somehow unexpected result that the
computational cost of computing a solution at a given accuracy is often equal or cheaper with
a discontinuous Galerkin approach than with a conforming method. Alternatively, this means
that discontinuous Galerkin methods often furnish equally accurate solutions with coarser
meshes. In contrast with established misconceptions, this shows that discontinuous Galerkin
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DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR ELASTICITY 5

methods in a primal formulation are computationally efficient. Of course, when a very large
value for the stabilization parameter is adopted, this advantage is lost, since the discontinuous
Galerkin scheme behaves as the conforming approximation. Likewise, as finer meshes are used,
the size of the jumps in the numerical solution wanes, giving up any advantage of discontinuous
Galerkin methods; see section 6.4.

Finally, in section 6.2 we show a numerical example in which a conforming approximation
fails to respect the symmetries of a problem, regardless of how much the mesh is recursively
refined. This is a direct consequence of the particular sequence of meshes chosen to solve it. On
exactly the same meshes, a discontinuous Galerkin method performs ostensibly better; it takes
advantage of the possible discontinuities across elements to relax the rigid kinematic constraints
imposed by the mesh. Section 6.7 presents selected three–dimensional numerical examples that
establish the feasibility of utilizing this approach for realistic complex configurations.

Throughout the paper vi, ϕi, . . . , denote components of vectors and wij , FiJ , . . . ,
components of second–order tensors, with respect to a Cartesian basis in Rd. As conventionally
done, uppercase letters are used for tensor components in the reference configuration, while
lowercase letters are reserved for spatial indices. We also adopt the summation convention in
which repeated indices indicate sum, its range tacitly determined from the context.

2. NONLINEAR ELASTICITY PROBLEM

We consider a body with reference configuration B0 ∈ Rd that deforms under the action of
external loads. For simplicity we assume that B0 is a polyhedron with a connected interior.
Because of the deformation, a point X ∈ B0 is mapped to a point x = ϕ(X) in the deformed
configuration, where ϕ : B0 7→ Rd is the deformation mapping. We are concerned here with
simple nonlinear elastic bodies; i.e., made out of materials for which there exists a strain energy
density function W : B0×Rd×d 7→ R, W (X,F), where F = ∇ϕ(X) is commonly known as the
deformation gradient at point X. For these materials, the first Piola–Kirchhoff stress tensor
follows as P = ∂W/∂F. In addition, the strain energy density function is assumed to satisfy
the postulate of material frame indifference [23]. Therefore, there exists a function Ŵ (X,C),
with C symmetric, such that W (X,F) = Ŵ (X,FTF); the strain energy density is invariant
under superimposed rigid body rotations.

Static equilibrium configurations of the body are given by the stationary points of the
potential energy functional

I[ϕ] =
∫
B0

W (X,∇ϕ) dV −
∫

∂τB0

T ·ϕ dS. (1)

More precisely, we seek deformation mappings ϕ ∈ V such that

〈δI[ϕ], δϕ〉 =
∂

∂ε
I[ϕε]

∣∣∣∣
ε=0

= 0, (2)

for all admissible variations δϕ = ∂ϕε/∂ε|ε=0, where ϕε ∈ V is a smooth one–parameter
family of deformation mappings in V such that ϕ = ϕ|ε=0 (see, e.g., [23]). External tractions
T (X) are applied on ∂τB0 ⊆ ∂B0, while any ϕ in the set of admissible deformation mappings
V is required to have prescribed values ϕ(X) on ∂dB0 ⊆ ∂B0. For simplicity, we assume that
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6 TEN EYCK A., LEW A.

∂τB0 ∩ ∂dB0 = ∅, ∂τB0 ∪ ∂dB0 = ∂B0 and that ∂dB0 has positive Hd−1–measure†, to prevent
rigid body motions. Body forces can also be accounted for in a straightforward way.

Only local minimizers of the potential energy functional (1) are stable under small
perturbations, and hence often the solutions of interest. Herein we assume that conditions
for minimizers to exist, such as W being polyconvex (see, e.g., [4]), are met.

For future reference, it is convenient to introduce two other stress tensors, i.e., the second
Piola–Kirchhoff stress tensor S = 2∂Ŵ/∂C = F−1P and the Kirchhoff stress tensor τ = PFT.
In Cartesian components, SIJ = F−1

Ii PiJ and τij = PiJFjJ . While P is not necessarily
symmetric, both S and τ are. For completeness, the Cauchy stress tensor is obtained as
σ = (detF)−1τ . Associated with these stress tensors, we introduce the first and second
elasticity tensors, A = ∂2W/∂F2 and C = 2∂2Ŵ/∂C2, respectively. The relation between
these two tensors is given by, in Cartesian components,

AiJkL(X,F) = 2CIJKL(X,FTF)FiIFkK + SJL(X,FTF)δik, (3)

where δik denotes the Kronecker delta. It follows from the definition that A has only major
symmetries, AiJkL = AkLiJ , while C has both major and minor symmetries, CIJKL =
CKLIJ = CJIKL. For more details about the relation between these nonlinear elasticity
concepts we refer the reader to [23].

3. DISCONTINUOUS GALERKIN DISCRETIZATION

In the following, we briefly outline basic definitions needed in formulating discontinuous
Galerkin methods; we refer the readers to [22, 2] for more comprehensive statements.

Let Th be a conforming finite element mesh on B0. Each element E ∈ Th is assumed to be an
open polyhedron with an orientable boundary ∂E and unit outward normal NE . Let e denote
an arbitrary element face, and Γ = ∪E∈Th

∂E be the set of all element faces. We assume that
the latter can be decomposed into three subsets, namely

ΓI = {e ⊂ ∂E \ ∂B0 : E ∈ Th} (4)

Γd = {e ⊂ ∂E ∩ ∂dB0 : E ∈ Th} (5)
Γτ = {e ⊂ ∂E ∩ ∂τB0 : E ∈ Th}, (6)

such that Γ = ΓI ∪ Γd ∪ Γτ . We assign an orientation to each face e ∈ ΓI . Henceforth we will
denote E+ and E− the two elements that satisfy E+ ∩ E− = e, with N being the outward
normal to E−. For faces e ∈ Γ \ ΓI , N simply denotes the outward normal to B0.

Let V E
h be a discrete vector space of smooth scalar (e.g., C∞) functions in an element E. For

example, V E
h can be the set of linear polynomials in a tetrahedral element. A discontinuous

Galerkin finite element space is constructed as Vh = ΠE∈Th
V E

h , which allows functions in Vh to
be discontinuous across element faces in ΓI . We shall consider two types of such spaces, Vh and
Wh, with Vh ⊆ Wh; and shall use V d

h and W d×d
h to approximate the deformation mapping and

its gradient, respectively. For definiteness, we choose to approximate each Cartesian component
of a vector or, more generally, a tensor with functions in Vh or Wh. Herein, we shall additionally

†Hausdorff measure
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DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR ELASTICITY 7

assume that ∇Vh ⊆ W d
h , to be used in defining the discontinuous Galerkin derivative in section

3.1. It is also useful to define T (Γ) = ΠE∈Th
L2(∂E), which contains bi–valued functions on ΓI

and single–valued on Γ \ ΓI .

3.1. Derivatives within Discontinuous Galerkin

Next, we would like to define a discrete discontinuous Galerkin derivative operator; we do so by
following the derivation of discontinuous Galerkin primal formulations (see [2]). We shall use
this derivative operator to formulate a variety of discontinuous Galerkin methods for nonlinear
elasticity.

As detailed in [2], the starting point for the formulation of discontinuous Galerkin methods
is the identity ∫

E

w · z dV =
∫

∂E

v̂ ⊗NE · z dS −
∫

E

v∇ · z dV, (7)

which holds for any element E ∈ Th and for all z ∈ W d
h . In equation (7), v ∈ Vh, and

w ∈ W d
h is an approximation to its derivative which we would like to solve for. The use of the

tensor product in equation (7) guarantees that the same expression holds when replacing v
for a vector field, such as the deformation mapping. The design of the discontinuous Galerkin
method is embedded in the choice of the so–called numerical flux v̂, that takes a function in
Vh and returns a numerical approximation to its values on Γ, i.e., a function in T (Γ), and
therefore possibly bi–valued on ΓI . We will only consider numerical fluxes that are linear, as
most commonly done in the literature.

For convenience, we introduce the jump [[·]] and average {·} operators for functions v ∈ Vh

and z ∈ W d
h , following the convention in [22]‡. If e ⊂ ΓI ,

[[v]] = v− − v+, {v} =
1
2

(
v+ + v−

)
(8)

[[z]] = z− − z+, {z} =
1
2

(
z+ + z−

)
, (9)

where the + and − superscripts correspond to evaluating the functions at either side of e, i.e.,
at the elements E+ and E− such that e = E+ ∩ E−. If e ∈ Γ \ ΓI we only need to define

[[v]] = v, {z} = z, (10)

Note that while the definition of the jump depends on the chosen orientation for e, the quantity
[[·]]⊗N does not.

It then follows from equation (7) that∑
E∈Th

∫
E

w · z dV =
∑

E∈Th

∫
∂E

v̂ ⊗NE · z dS −
∑

E∈Th

∫
E

v∇ · z dV (11)

=
∫

Γ

[[v̂]]⊗N · {z} dS +
∫

ΓI

{v̂} ⊗N · [[z]] dS −
∑

E∈Th

∫
E

v∇ · z dV, (12)

‡These definitions are not uniform across the literature. See, e.g. [2] or [9] for examples of other conventions.
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8 TEN EYCK A., LEW A.

which can be obtained by a straightforward rearrangement of the terms. Comparing this
expression with the integration by parts formula for smooth functions v and z with possible
discontinuities on Γ∑

E∈Th

∫
E

∇v · z dV =
∫

Γ

[[v]]⊗N · {z} dS +
∫

ΓI

{v} ⊗N · [[z]] dS −
∑

E∈Th

∫
E

v∇ · z dV, (13)

we obtain∑
E∈Th

∫
E

(w −∇v) · z dV =
∫

Γ

[[v̂ − v]]⊗N · {z} dS +
∫

ΓI

{v̂ − v} ⊗N · [[z]] dS. (14)

Equation (14) holds for all z ∈ W d
h , and uniquely defines the discontinuous Galerkin

derivative w. This equation can be explicitly solved for w by introducing the lifting operators
R : L2(Γ) 7→ W d

h and L : L2(ΓI) 7→ W d
h , defined to satisfy§∫

B0

R(v) · z dV = −
∫

Γ

v ⊗N · {z} dS,

∫
B0

L(v) · z dV = −
∫

ΓI

v ⊗N · [[z]] dS, (15)

for all z ∈ W d
h . A simple interpretation of the lifting operators follows after noticing that both

terms on the right–hand side of equation (14) are linear operators over W d
h , for each different

v. Hence, R(v) ∈ W d
h and L(v) ∈ W d

h are the representatives of these linear operators obtained
from the Riesz representation theorem under the L2 scalar product in W d

h .
Substituting in equation (14) we get∑

E∈Th

∫
E

(w −∇v −R([[v − v̂]])− L({v − v̂})) · z dV = 0, (16)

for all z ∈ W d
h . Since we assumed that ∇Vh ⊆ W d

h , it follows that

w = DDGv = ∇v + R([[v − v̂]]) + L({v − v̂}). (17)

Equation (17) defines the operator DDG : Vh 7→ W d
h , which furnishes a discrete discontinuous

Galerkin derivative amenable to be used in the formulation of the methods in the next section.
The operator DDG has only been defined for scalar functions; however, it is trivially

extended to vector fields in V d
h , given that each Cartesian component lives in Vh. For

definiteness, for v ∈ V d
h we have DDGv = ei ⊗ (DDGvi), where ei is a Cartesian basis

in Rd. This definition induces trivial extensions of the lifting operators such that equation (17)
formally holds for vector fields. In this case, R :

[
L2(Γ)

]d 7→ W d×d
h and L :

[
L2(Γ)

]d 7→ W d×d
h

are such that R(v) = ei⊗R(vi) and L(v) = ei⊗L(vi) , for all v ∈ V d
h . Finally, the numerical

flux v̂ is also trivially extended to give v̂(v) = eiv̂(vi), for any v ∈ V d
h . We have purposely

abused notation and utilized the same name for the original operators and their corresponding
extensions. Henceforth, we shall leave their exact nature to be tacitly understood from the
context.

§Once more, these definitions are not uniform across the literature, see, e.g., [22, 9].
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DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR ELASTICITY 9

3.2. Discrete Variational Principle

The discontinuous Galerkin method ensues by resorting to a discrete variational principle. Let
Ih : V d

h 7→ R be the functional

Ih[v] =
∑

E∈Th

∫
E

W (X, DDGv) dV −
∫

∂τB0

T · v dS. (18)

The discrete problem consists on seeking a discrete deformation mapping ϕ ∈ V d
h that is a

stationary point of Ih in V d
h . The discrete Euler–Lagrange equations follow from

0 = 〈δIh[ϕ], δϕ〉 =
∑

E∈Th

∫
E

∂W

∂F
(X, DDGϕ) : DDGδϕ dV −

∫
∂τB0

T · δϕ dS, (19)

for any admissible variation δϕ = ∂ϕε/∂ε|ε=0, where ϕε is a smooth one–parameter family of
discrete deformation mappings in V d

h , such that ϕε|ε=0 = ϕ.
Equation (19) is a nonlinear equation to be solved for ϕ. If using a Newton–like iterative

method, it is necessary to consider its linearization around a deformation mapping ϕ, given
by

0 = 〈δ2Ih[ϕ], δϕ,u〉+ 〈δIh[ϕ], δϕ〉 (20)

for all admissible δϕ, where

〈δ2Ih[ϕ], δϕ,u〉 =
∑

E∈Th

∫
E

DDGu : A(X, DDGϕ) : DDGδϕ dV, (21)

and u is another admissible variation to be solved for. Alternatively, u can be regarded as a
displacement field with respect to the configuration of the body given by ϕ. In the context
of discontinuous Galerkin methods for linear problems, equation (20) is known as the primal
formulation.

The current formulation possesses a number of salient features worth highlighting. For
example, the resulting numerical algorithm always derives from a discrete variational principle
analogous to that of the continuous problem. This has proved to be advantageous for the
algorithmic analysis and mesh adaption in the context of nonlinear problems [37], and for
the computation of configurational forces [21], such as the J–integral in fracture mechanics.
Moreover, the second variation of a smooth scalar potential is always symmetric, and so is the
matrix in equation (21).

Another distinguishing feature of the present framework is its flexibility for the design of
different flavors of discontinuous Galerkin methods for nonlinear elasticity. Notice that we
have not yet specified the numerical flux v̂, given that any of the known numerical fluxes
in the literature (see, e.g., [2]) can be adopted. It should be noted, however, that most
discontinuous Galerkin discretizations need the specification of numerical fluxes for both the
field and its derivative. By choosing only the form of v̂ we automatically respect the variational
structure of the original problem. Alternative approaches, in which the discontinuous Galerkin
discretization is constructed directly from the Euler–Lagrange equations and both fluxes are
chosen, need to satisfy additional compatibility conditions to derive from variations of a scalar
potential.

Finally, a recurring source of concern in the adoption of discontinuous Galerkin methods
stems for their often higher–computational cost. The present formulation contains only one
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10 TEN EYCK A., LEW A.

field, the deformation mapping, and hence exhibits a computational complexity comparable to
that of conforming finite element methods. This is nicely illustrated by the numerical examples
in section 6.4.

3.3. A choice of numerical fluxes

A particularly attractive choice for the numerical flux v̂ is the one used in [22] for linear
elasticity, in [5] for Navier-Stokes equations and in [9] for the scalar diffusion equation, known
as the Bassi and Rebay numerical flux, after [5]. In this case we let v̂(ϕ) = v̂0(ϕ) + v̂∂(ϕ),
where

v̂0(ϕ) =

 {ϕ} on ΓI

0 on Γd

0 on Γτ
, v̂∂(ϕ) =

 0 on ΓI

ϕ on Γd

ϕ on Γτ ,
(22)

and the resulting DDG operator is

DDGϕ = ∇ϕ + R([[ϕ]])−R([[v̂∂(ϕ)]]), (23)

since {v̂(ϕ)−ϕ} = {{ϕ} −ϕ} = 0 and [[{ϕ}]] = 0 on ΓI , while [[v̂0(ϕ)]] = 0 on Γ \ ΓI .
The numerical flux v̂∂ is used to impose boundary conditions. If the discrete functional space

V d
h contains only functions that attain the prescribed value ϕ on Γd, then [[v̂(ϕ)−ϕ]] = 0 on

Γd, and the boundary conditions do not contribute to the value of DDGϕ. Alternatively, if
functions in V d

h can attain any value on Γd, then v̂∂ is used to impose Dirichlet boundary
conditions weakly. In our numerical examples we chose to adopt the latter.

3.4. A three–field variational principle

The formulation in the previous section can be recast into a three–field variational principle,
with deformation gradients and first Piola–Kirchhoff stress tensors as additional independent
variables. In fact, as we shall see, it is equivalent to an element–by–element Hu–Washizu
variational principle. This ensues after enforcing equation (23) weakly, as in (16), with the
first Piola–Kirchhoff stress tensor as the test function,

IHW
h [ϕ,F,P] (24)

=
∫
B0

W (X,F) dV +
∑

E∈Th

∫
E

(∇ϕ + R([[ϕ]])−R([[v̂∂(ϕ)]])− F) : P dV

−
∫

∂τB0

T ·ϕ dS

=
∑

E∈Th

∫
E

[W (X,F) + (∇ϕ− F) : P] dV −
∫

Γ

[[ϕ]]⊗N : {P} dS

+
∫

Γd

ϕ⊗N : P dS +
∫

Γτ

ϕ⊗N : P dS −
∫

∂τB0

T ·ϕ dS

=
∑

E∈Th

IE [ϕ,F,P],
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DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR ELASTICITY 11

where the elemental Hu-Washizu functionals IE are given by

IE [ϕ,F,P] =
∫

E

[W (X,F) + (∇ϕ− F) : P] dV −
∫

∂E∩∂τB0

T ·ϕ dS

−
∫

∂E\∂B0

1
2

(
ϕ−ϕext

)
⊗N : P dS −

∫
∂E∩∂dB0

(ϕ−ϕ)⊗N : P dS. (25)

With ϕext we denote the value of ϕ across the element boundary ∂E. Each of the functionals
IE , obtained here by a rearrangement of (24), can instead be explicitly derived from an
application of the Hu–Washizu functional (see, e.g., [22]) on each element. Care must be
exercised though in not double counting element boundary contributions, and hence the origin
of the 1/2 factor when integrating on ∂E \ ∂B0.

The stress and strain fields are extracted from W d×d
h , while the deformation mapping is to

be found in V d
h . If, as assumed, ∇V d

h ⊆ W d×d
h , then the stationary points of IHW

h are described
by the following equations

0 =
∫

E

(
∂W

∂F
(X,F)−P

)
: δF dV (26)

0 = ∇ϕ + R([[ϕ]])−R([[v̂∂(ϕ)]])− F (27)

0 =
∑

E∈Th

∫
E

DDGδϕ : P dV −
∫

∂τB0

T · δϕ dS (28)

for all admissible variations δF and δϕ. As expected from the construction, we recover (17),
while an immediate examination of equation (26) reveals that the discrete first Piola–Kirchhoff
stress field is just the L2–projection onto W d×d

h of the constitutive equation. By replacing both
equations into (28), we recover the Euler–Lagrange equation (19) from our one–field discrete
variational principle.

For the sake of simplicity, we derived a three–field variational principle for the particular
choice of numerical flux given in section 3.3. It is clear nonetheless that an analogous
construction can be done for any choice of v̂, and it provides an explicit way of creating a family
of three–field variational principles, including the Hu–Washizu. Nevertheless, for computational
efficiency the use of the equivalent one–field variational principle is much more attractive. For
any of these principles, the stress and strain fields can always be computed a posteriori, once
the discrete deformation mapping is known.

3.5. Lifting operators

The objective in this section is to briefly describe and explain the behavior of the lifting
operators. We begin by recalling some of the important properties extensively described
elsewhere, see e.g. [22, 2]. An insightful decomposition is obtained by defining for faces e ∈ Γ
and e′ ∈ ΓI the operators Re : L2(e) 7→ W d

h and Le′
: L2(e′) 7→ W d

h that satisfy∫
B0

Re(v) · z dV = −
∫

e

v ⊗N · {z} dS

∫
B0

Le′
(v) · z dV = −

∫
e′

v ⊗N · [[z]] dS, (29)

for all z ∈ W d
h . Evidently we have that R =

∑
e∈Γ Re and L =

∑
e′∈ΓI Le′

. As in section 3.1,
these operators are trivially extended to the case in which DDG is computed for a vector field,
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12 TEN EYCK A., LEW A.

and we shall employ the same notation for both cases. It is immediate to see that Re and Le

are different from zero only in elements E+ and E−, such that E+ ∩ E− = e, and that

Re(v) = ∓2Le(v) in E±. (30)

An essential property of lifting operators is that

Re([[v]]) = 0 in B0 ⇐⇒ [[v]] = 0 on e (31)

for all v ∈ Vh and all e ∈ Γ. The fact that if [[v]] = 0 on e then Re([[v]]) = 0 is trivial. For
the converse, consider a special test function z ∈ W d

h , such that {z} ·N = [[v]] on e. Such a
function exists, given that Vh ⊆ Wh, and ‖z‖0,B0 6= 0 if [[v]] 6= 0 on e. Here ‖ · ‖0,Ω indicates
the L2–norm over a set Ω. Thus,

1
2
‖[[v]]‖20,e =

∣∣∣∣12
∫

e

[[v]] · [[v]] dS

∣∣∣∣ =
∣∣∣∣∫
B0

Re([[v]]) · z dV

∣∣∣∣ ≤ ‖Re([[v]])‖0,B0
‖z‖0,B0

(32)

Hence, it follows from equation (32) that if [[v]] 6= 0 on e then Re([[v]]) 6= 0, or, that if
Re([[v]]) = 0 then [[v]] = 0 on e. Analogously, we have that

Le′
({v}) = 0 ⇐⇒ {v} = 0 on e′ (33)

for all v ∈ Vh and all e′ ∈ ΓI , which follows immediately from equation (30) by considering
v′ ∈ Vh such that {v} = [[v′]] on e. This property of the lifting operators is a direct consequence
of the fact that for a quasi–uniform [8, p. 106] family of admissible subdivisions, in which all
elements are affine equivalent [8, p. 80] to a finite number of reference elements, there exist
constants C+, C− > 0 such that

C−h1/2 ‖Re ([[v]])‖0,B0
≤ ‖[[v]]‖0,e ≤ C+h1/2 ‖Re ([[v]])‖0,B0

(34)

for all v ∈ Vh, where h is a measure of the mesh fineness. The proof of this lemma can be
found in several references, e.g., [22, 2].

4. STABILIZATION

The use of discontinuous fields across element boundaries may occasionally produce a linearized
problem in which the associated bilinear form, equation (21), is coercive in the subspace of
continuous functions in V d

h , but fails to be so in all of V d
h . This feature is also encountered

in the unstressed linear elastic case, see [22], where a stabilization term was added to prevent
this pathology from appearing.

Linearized nonlinear elasticity problems need not be coercive; in fact, some of the most
interesting phenomena is observed precisely when coercivity is lost, e.g., buckling. A positive
definite linearized elastic problem is associated with linear stability of the current configuration,
with no incipient zero or negative energy modes. It is therefore unrealistic to expect positive
definiteness of the linearized problem for each possible configuration; it does make sense,
however, to request the discrete bilinear form (21) to be positive definite whenever the current
configuration is linearly stable. In the following we show that, even though we are not yet
able to fully comply with this request, we can substantially increase the stability range of the
discontinuous Galerkin discretization by the addition of a suitable stabilization term.
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DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR ELASTICITY 13

There are several examples of stabilized methods in the literature (e.g., [9, 22, 40]). We
discuss and analyze next the stabilization scheme we adopt for the nonlinear setting, which,
additionally, preserves the variational framework of the problem. For simplicity we concentrate
here in the particular choice of fluxes in section 3.3 ; a more general analysis should be possible
with minor modifications.

The type of stabilization term considered here is a natural extension of the one used in [40]
for linear elasticity. We modify the functional Ih in equation (18) by adding a stabilization
term to obtain

Iβ
h [v] = Ih[v] +

β

h

∫
Γ

[[v − v̂(v)]] · [[v − v̂(v)]] dS, (35)

where β is some positive number, and h is a measure of the mesh fineness. It will be evident from
the forthcoming analysis that an equivalent stabilized formulation is obtained from equation
(34) in the form

Ih[v] + β
∑
e∈Γ

∫
B0

Re([[v − v̂(v)]]) ·Re([[v − v̂(v)]]) dV, (36)

which was proposed in [9] for the scalar diffusion equation, and used in [22] for the linear
elasticity case. We adopt the formulation in equation (35) for the numerical examples, but the
coercivity analysis below applies to either one. Notice that either term vanishes for continuous
functions in V d

h that satisfy the boundary conditions on ∂dB0. Also, as written, the stabilization
parameter fails to be nondimensional; it has the units of the elastic moduli. Once a specific
problem is chosen, β can be nondimensionalized accordingly.

In the following we restrict ourselves to B0 ⊂ Rd with d = 2, 3 so that some results
in [25] are directly applicable; a more general treatment may be possible. Throughout this
section we will consider a deformed configuration ϕ ∈ V d

h , with corresponding DG–derivative
F = DDGϕ ∈ W d×d

h . Furthermore, we assume that there exists ε > 0 such that detF > ε in
∪E∈Th

E. The associated bilinear form of the linearized problem at ϕ is

〈δ2Iβ
h [ϕ],u,v〉 =

∑
E∈Th

∫
E

DDGu : A(X,F) : DDGv dV +
β

h

∫
Γ\Γτ

[[u]] · [[v]] dS, (37)

for any u,v ∈ V d
h . The properties of this bilinear form are a direct consequence of the form

of the first elasticity tensor A, the key difficulties arising from the material frame indifference
postulate on the strain energy density and possible material instabilities arising from a stressed
linearized configuration. These are partially unveiled after rewriting the first term in the right
hand side of equation (37) as follows∑

E∈Th

∫
E

(ui,j + rij([[u]])) aijkl (vk,l + rij([[v]])) dV, (38)

where we introduced the spatial lifting operators as

r(·) = R(·) · F−1

and the spatial displacement gradient

∇Fu = ∇u · F−1
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14 TEN EYCK A., LEW A.

of a displacement field u, or, in indicial notation, ui,j = ui,JF−1
Jj . In equation (38) we used one

of two more elasticity tensors relevant for the subsequent analysis, namely, a and c, where

cijkl(X,F) = 2CIJKL(X,FTF)FiIFjJFkKFlL (39)
aijkl(X,F) = AiJkL(X,F)FjJFlL (40)

= cijkl(X,F) + τjl(X,F)δik.

Here τ is the Kirchhoff stress tensor, which is symmetric. It follows from these definitions that a
has only major symmetries, while c has both major and minor symmetries, a direct consequence
of the material frame indifference postulate. Consequently, wijaijklwkl = τjlwijwil for any
skew–symmetric tensor w, which can be negative definite when τ has negative eigenvalues,
i.e., under compression.

For the upcoming discussion, it is convenient to define the spatial lifting operators

re(·) = Re(·) · F−1 and re,s =
1
2

(
re + [re]T

)
,

and the symmetric part of the spatial displacement field

∇F,su =
1
2

(
∇u · F−1 + F−T · ∇uT

)
.

Also, let
[H1

∂(B0)]d =
{
u ∈ [H1(B0)]d | u|∂dB0

= 0
}

, (41)

where, as assumed, ∂dB0 has positive Hd−1 measure. We will prove in Lemma 4.2 that the
functionals ||| · |||F,s : V d

h + [H1
∂(B0)]d 7→ R and ||| · |||F : V d

h + [H1
∂(B0)]d 7→ R given by

|||u|||2F,s =
∑

E∈Th

‖∇F,su‖20,E +
∑
e∈Γ

‖re,s([[u]])‖20,B0
(42)

|||u|||2F =
∑

E∈Th

‖∇Fu‖20,E +
∑
e∈Γ

‖re([[u]])‖20,B0
(43)

are norms in V d
h +[H1

∂(B0)]d. In particular, when F is the identity tensor, we recover the norms
||| · |||s, ||| · ||| in V d

h + [H1
∂(B0)]d from [22], used for the classical linear elastic case. In addition,

in the same lemma we obtain that there exists a constant k1 > 0 such that

k1|||u|||2F ≤ |||u|||2F,s ≤ |||u|||2F, (44)

for all [H1
∂(B0)]d. It therefore follows that, since V d

h is finite dimensional, there exists a constant
k1h > 0 such that

k1h|||u|||2F ≤ |||u|||2F,s ≤ |||u|||2F, (45)

for all u ∈ V d
h . Equation (45) can be regarded as a partial generalization of Korn’s inequalities

for functions in ΠE∈Th
[H1(E)]d independently proved by [22] and [7].

We discuss next some basic features of the linearized nonlinear elasticity problem. We
illustrate the main ideas and deliberately obviate all technical assumptions. The linearized
nonlinear elasticity problem consists of finding u ∈ [H1(B0)]d such that∫

B0

ui,JAiJkLvk,L dV =
∫
B0

fivi dV (46)
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for all v ∈ [H1(B0)]d given f ∈ [H1
0 (B)′]d, and can be generally proved to have solutions if A

is strongly elliptic, i.e.,
AiJkL ξiNJξkNL ≥ ε ξiξiNJNJ (47)

for all X ∈ B0 and some constant ε > 0, and for any vectors ξ,N ∈ Rd [23]. Strong ellipticity
generally implies Garding’s inequality, namely, that there exist constants b1, b2 ≥ 0 such that∫

B0

ui,JAiJkLuk,L dV ≥ b1‖u‖21,B0
− b2‖u‖20,B0

, (48)

for all u ∈ [H1(B0)]d, see [23] and references therein. By a standard argument ([23]), it follows
that the space of functions in u ∈ [H1(B0)]d for which the left hand side in equation (48)
is nonpositive is finite dimensional. However, even after fixing displacements on ∂dB0, the
positive definiteness of the left hand side is not always assured. In fact, these are the buckling
modes.

The definition of linearized stability for a given configuration follows naturally from the
foregoing discussion, namely, there exists b3 > 0 such that∫

B0

ui,JAiJkLuk,L dV ≥ b3‖u‖21,B0
(49)

for all u ∈ [H1(B0)]d. Although not true in general, under some conditions strong ellipticity
does imply linearized stability; for example when A is constant through the domain and
∂B0 = ∂dB0, see [23, p. 323].

The existence of necessary and sufficient conditions on A, or a, for linearized stability is
apparently still an open question. From the foregoing discussion on the symmetries on a, we
cannot expect a to be positive semidefinite without ruling out many relevant configurations.
This is in contrast with the unstressed linear elasticity problem, where aijkl = cijkl. In this
case to obtain linearized stability it is customary to request the existence of C1 > 0 such that

cijklgijgkl ≥ C1g
s
ijg

s
ij , (50)

for all tensors g ∈ Rd×d and all X ∈ Rd, where gs = (g + gT)/2, and then use Korn’s
inequality. As we shall illustrate through an example, it is somewhat restrictive to request
condition (50) in the general linearized nonlinear elasticity problem. The elastic moduli c may
not be positive semidefinite for symmetric tensors at some configuration; nevertheless, if the
configuration is stressed, linear stability may follow anyhow. For instance, the strain energy
density for a neohookean material extended to the compressible range is

W (F) =
λ

2
(log(detF))2 − µ log(detF) +

µ

2
F : F, (51)

where λ, µ > 0 are material constants. A straightforward computation yields the elastic moduli

aijkl = λδijδkl + (µ− λ log(detF)) δjkδil + µFjLFlLδik (52)
cijkl = λδijδkl + (µ− λ log(detF)) (δikδjl + δilδjk) (53)

Consider next hydrostatic compressions or expansions, i.e., FiJ = α1/3δiJ with α > 0. In this
case we have for any tensor g ∈ R3×3 that

aijklgijgkl = λ(gii)2 +
(
µ(α2/3 + 1)− λ log α

)
gs

ikgs
ki +

(
µ(α2/3 − 1)− λ log α

)
gw

ikgw
ki (54)

cijklgijgkl = λ(gii)2 + (µ− λ log α)2gs
kjg

s
kj (55)
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where gs and gw are the symmetric and skew–symmetric parts of g, respectively. It is simple
to see then that if log α > µ/λ condition (50) is not longer satisfied, i.e., for large enough
expansions c ceases to be positive definite for symmetric tensors. Nevertheless, the linearized
problems may still be linearly stable. For example, if α is such that (log α)/(α2/3−1) < µ/λ <
log α, then a is positive definite for all tensors g ∈ R3×3, and hence the linearized problem is
linearly stable even though condition (50) does not hold.

In the following theorem, we propose a condition that sidesteps these difficulties and still
guarantees linearized stability for the linearized continuous problem at a deformation ϕ ∈ V d

h ,
and the coercivity of the bilinear form for the stabilized discrete problem.

Theorem 4.1 (Coercivity) Let ϕ ∈ V d
h be a deformation mapping and F = DDGϕ its

DG–derivative, such that detF > ε for some ε > 0, for all X ∈ ∪E∈Th
E. Assume that there

exist a constant C1 > 0 such that

aijkl(X,F(X))gijgkl > C1g
s
ijg

s
ij − C2gijgij (56)

for some constant C2, for all tensors g ∈ Rd×d and for all X ∈ ∪E∈Th
E, where gs = (g+gT)/2.

Additionally, assume that k1C1 − C2 > 0, with k1 > 0 the constant in equation (44). Then
there exists C > 0 such that

〈δ2Ih[ϕ],u,u〉 > C|||u|||2F (57)

for all u ∈ [H1
∂(B0)]d.

Furthermore, if k1hC1−C2 > 0 with k1h > 0 the constant in equation (45), then there exists
Ch > 0 such that

〈δ2Iβ
h [ϕ],u,u〉 > Ch|||u|||2F (58)

for all u ∈ V d
h , provided β > 0 is large enough.

Some remarks are pertinent here, before proceeding to the proof. Useful sufficient conditions
for linearized stability on the elastic moduli A, especially for compressed configurations, can
hardly be based solely on the material constitutive behavior. Buckling is often geometrical in
nature, and such condition needs to incorporate information about the current configuration
of the body. In theorem 4.1 C1 and C2 carry information about the constitutive behavior of
the material, while Korn’s inequality constant k1 carries information about the current shape
of the body.

As hinted at the beginning of this section, theorem 4.1 does not guarantee the discrete
linearized problem to be coercive in V d

h even if the current configuration is linearly stable
in [H1

∂(B0)]d. This may be the case if, for example, k1hC1 − C2 < 0 < k1C1 − C2. Then, the
discrete problem may not be coercive for any β. With no added stabilization, however, the range
of stable configurations for the discrete problem would be severely reduced. This particular
problem is not found when utilizing traditional conforming finite element discretizations, in
lieu of discontinuous Galerkin, since the discrete spaces are just subspaces of [H1

∂(B0)]d.

The proof of theorem 4.1 proceeds by first showing that both ||| · |||F and ||| · |||F,s are norms
in V d

h + [H1
∂(B0)]d. This is done in the following two lemmas.

Lemma 4.1. Let F ∈ W d×d
h be such that detF > ε for some ε > 0, for all X ∈ ∪E∈Th

E.
There exists a constant k2 > 0 such that for all u ∈ V d

h and any e ∈ Th

k2

∥∥Re([[u]]) · F−1
∥∥

0,B0
≤ 1

2

∥∥∥Re([[u]]) · F−1 + F−T · [Re([[u]])]T
∥∥∥

0,B0

≤
∥∥Re([[u]]) · F−1

∥∥
0,B0
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or, alternatively,
k2 ‖re([[u]])‖0,B0

≤ ‖re,s([[u]])‖0,B0
≤ ‖re([[u]])‖0,B0

(59)

Proof. It is immediate to see that ‖re,s([[u]])‖0,B0
≤ ‖re([[u]])‖0,B0

. For the left inequality we
assume that [[u]] 6= 0, which corresponds to the nontrivial case. We consider first a face e ∈ Th

with normal N. Let T ∈ Rd be such that T ·N = 0, and consider test functions of the form
z = T⊗w, for any w ∈ W d

h ; clearly z ∈ W d×d
h . It follows from the definition of Re that

0 =
∫

e

([[u]]⊗N) · (T⊗ {w}) dS =
∫
B0

w ·Re([[u]]) ·T dV (60)

for all w ∈ W d
h . Consequently Re([[u]]) · T = 0 in B0. Since this holds for any T such that

T·N = 0, we get that Re([[u]]) = ρ⊗N, with ρ ∈ W d
h . Alternatively, re([[u]]) = Re([[u]])·F−1 =

ρ ⊗
(
F−T ·N

)
, and

(
F−T ·N

)
6= 0 because F is invertible. Notice that ρ = 0 if and only if

[[u]] = 0, because of (31).
However, a tensor of the form q⊗n, with q,n ∈ Rd, n 6= 0 6= q, cannot be skew–symmetric.

To see this, assume that q ⊗ n = −n ⊗ q. It follows that q = −n(q · n), and hence that
q · n = −q · n. But then q · n = 0, and consequently q = 0, which contradicts the hypothesis.

We conclude then that re([[u]]) cannot be skew–symmetric, or ‖re,s([[u]])‖20,B0
> 0. Therefore,

there exists Ce > 0 such that the quotient ‖re,s([[u]])‖20,B0
/‖re([[u]])‖20,B0

≥ Ce > 0 whenever
[[u]] 6= 0. Since there are only a finite number of faces, we can choose C > 0 such that Ce > C
for all e ∈ Th, and the lemma is proved.

Lemma 4.2 (F–norms and Korn’s inequality) Let F ∈ W d×d
h be such that detF > ε for

some ε > 0, for all X ∈ ∪E∈Th
E. Then ||| · |||F,s and ||| · |||F are norms in V d

h + [H1
∂(B0)]d.

Furthermore, there exists a constant k1 > 0 such that

k1|||u|||2F ≤ |||u|||2F,s ≤ |||u|||2F, (61)

for all u ∈ [H1
∂(B0)]d.

Proof. We will prove first that
|||u|||F,s = 0 ⇐⇒ u = 0, (62)

for any u ∈ V d
h + [H1

∂(B0)]d. It is clear that if u = 0 then |||u|||F,s = 0. Assume then that
|||u|||F,s = 0. Let u = u1 + u2, with u1 ∈ [H1

∂(B0)]d and u2 ∈ V d
h . Of course, ‖[[u1]]‖0,e = 0 on

any face e. It follows then from Lemma 4.1 that Re([[u2]]) ·F−1 = 0, and since F is invertible,
Re([[u2]]) = 0, and hence [[u2]] = 0 on Γ. Therefore, we have that ‖[[u]]‖0,e = 0 for any face
e ∈ Γ, and from [31, Theorem 1.3] we get that u ∈ [H1

∂(B0)]d.
Next we use theorem 4.3 in [25], which states that since u ∈ [H1(E)]d and F is smooth in

the interior of each element E,∥∥∇u · F−1 + F−T · ∇uT
∥∥

0,E
= 0 ⇐⇒ u = 0 in E (63)

provided that u = 0 on at least one face e ∈ ∂E. We use this fact in every element in the
mesh, starting with those with faces in ∂B0 and moving inward. More precisely, since [[u]] = 0
on Γ, it follows that u = 0 on Γd ∪ Γτ . Then, from equation (63), it follows that u = 0 in any
element in S0 = {E ∈ B0 | |∂E ∩ ∂B0| > 0}, and hence u = 0 in γ0 = ∪E∈S0∂E. Similarly,
for n ∈ N, let Sn = {E ∈ B0 | |∂E ∩ γn−1| > 0} and γn = ∪E∈Sn∂E. It follows by induction
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that u = 0 in Sn, for any n ∈ N. Since the interior of B0 was assumed to be connected, any
element E ∈ Sn for some n large enough, and hence u = 0 for all E ∈ Th. Equation (62) is
therefore satisfied, the only nontrivial result to show that ||| · |||F,s is a norm in V d

h +[H1
∂(B0)]d.

Likewise, from |||u|||F = 0 we get that u ∈ [H1
∂(B0)]d. Since F and F−1 are bounded in B0 we

conclude that there exist constants C+, C− > 0 such that C−|||u|||F ≤ ‖u‖1,B0 ≤ C+|||u|||F for
all u ∈ [H1

∂(B0)]d, from where it follows that ||| · |||F is a norm in V d
h + [H1

∂(B0)]d.
It remains to prove equation (61), which cannot be strictly obtained from the results in [25],

because F is not continuous in B0. However, the result is readily obtained by using Corollary
4.7 in [25] and the fact that ||| · |||F,s is a norm in [H1

∂(B0)]d in the proof of Theorem 4.10 in the
aforementioned reference. For completeness, we detail it below.

We proceed in a standard way, by contradiction. Assume that there exists a sequence
un ∈ [H1

∂(B0)]d such that

‖un‖1,B0 = 1, but |||un|||F,s −→ 0

By the Rellich compact embedding theorem there exists a subsequence again denoted un and
u ∈ [H1

∂(B0)]d such that un ⇀ u in [H1(B0)]d, un → u in [L2(B0)]d. The convexity of the
map U 7→ |U · F−1 + F−T ·UT|2, for any U ∈ Rd×d at any X ∈ B0, implies the weak lower
semicontinuity of ||| · |||F,s and therefore

0 = lim inf
n→∞

|||un|||F,s ≥ |||u|||F,s,

from where it follows that u = 0.
Corollary 4.7 in [25] asserts that because F−1 is continuous in each element E ∈ Th then

‖∇F,su‖20,E + ‖u‖20,E

is a norm on [H1(E)]d equivalent to the ‖ · ‖1,E norm. From

|||un − um|||F,s + ‖un − um‖0,B0 =
∑

E∈Th

(
‖∇F,s(un − um)‖20,E + ‖un − um‖20,E

)
≤ |||un|||F,s + |||um|||F,s + ‖un − um‖0,B0

we obtain that un is a Cauchy sequence in [H1(B0)]d. Consequently, un → u strongly in
[H1(B0)]d and ‖u‖1,B0 = 1, in contrast to u = 0.

Since C−|||un|||F ≤ ‖un‖1,B0 , it follows that there exists a constant k1 > 0 such that

k1|||u|||F ≤
k1

C− ‖u‖1,B0 ≤ |||u|||F,s

Proof. [Theorem 4.1]
We prove first the linear stability of the continuous problem, equation (57). This is

straightforward, namely, for u ∈ [H1
∂(B0)]d

〈δ2Ih[ϕ],u,u〉 ≥ C1

∑
E∈Th

‖∇F,su‖20,E − C2

∑
E∈Th

‖∇Fu‖20,E (64)

≥ (k1C1 − C2)|||u|||2F, (65)
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and since by hypothesis k1C1 − C2 > 0, equation (57) follows.
For the discrete stability we will need the following inequalities. First, a consequence of

equation (34),

β

h

∑
e∈Γ

∫
e

[[u]] · [[u]] dS ≥ β k3

∑
e∈Γ

‖Re([[u]])‖20,B0
≥ β k4

∑
e∈Γ

‖re([[u]])‖20,B0
, (66)

for some constants k3 > 0 and k4 > 0, and where we used the fact that F is invertible. The
second inequality is for tensor fields A,B : E 7→ Rd×d,

‖A + B‖20,E =
∫

E

(A + B) : (A + B) dV = ‖A‖20,E + ‖B‖20,E +
∫

E

2A : B dV

≥ ‖A‖20,E + ‖B‖20,E −
∫

E

(
ξA : A +

1
ξ

B : B
)

dV

≥ (1− ξ)‖A‖20,E + (1− 1
ξ
)‖B‖20,E

(67)

for any ξ > 0, and any element E. In this derivation we used Young’s inequality, namely,
2|ab| ≤ ξa2 + b2/ξ, for all a, b ∈ R.

Let C2 = max{C2, 0}. Next, by taking gij = ui,j + rij([[u]]) for all X ∈ ∪E∈Th
E, and

integrating inequality (56) over every element we obtain

〈δ2Iβ
h [ϕ],u,u〉 ≥

≥ C1

∑
E∈Th

‖∇F,su +
∑

e∈∂E

re,s([[u]])‖20,E − C2

∑
E∈Th

‖∇Fu +
∑

e∈∂E

re([[u]])‖20,E (68)

+ β k4

∑
e∈Γ

‖re([[u]])‖20,B0

≥ C1

∑
E∈Th

[
(1− ξ)‖∇F,su‖20,E +

(
1− 1

ξ

)
‖

∑
e∈∂E

re,s([[u]])‖20,E

]
(69)

− C2

∑
E∈Th

[
‖∇Fu‖20,E + ‖

∑
e∈∂E

re([[u]])‖20,E

]
+ β k4

∑
e∈Γ

‖re,s([[u]])‖20,B0

≥ C1

[
(1− ξ)

∑
E∈Th

‖∇F,su‖20,E +
(

1− 1
ξ

+ β
k4

C1

) ∑
e∈Γ

‖re,s([[u]])‖20,B0

]
− C2|||u|||2F (70)

≥ C1 min
{

(1− ξ),
(

1− 1
ξ

+ β
k4

C1

)}
|||u|||2F,s − C2|||u|||2F (71)

≥
[
k1hC1 min

{
(1− ξ),

(
1− 1

ξ
+ β

k4

C1

)}
− C2

]
|||u|||2F. (72)

Equation (67) was used in (69), together with equation (66) and the triangle inequality. The
latter was also used to obtain equation (70), while equation (45) was instrumental in obtaining
(72).

Let α = (C2/(C1k1h), clearly 0 ≤ α < 1 by hypothesis. Then, if ξ < 1− α and

β >

(
α− 1 +

1
ξ

)
C1

k4
(73)
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it is simple to check that the resulting bilinear form is coercive. Equivalently, if

β > inf
ξ∈(0,1−α)

(
α− 1 +

1
ξ

)
C1

k4
=

(
α− 1 +

1
1− α

)
C1

k4
, (74)

then the bilinear form is coercive in V d
h , and the theorem is proved.

Some remarks are pertinent here. We first note that the value of the coercivity constant in
theorem 4.1 is a lower bound and not a tight estimate of the stability limit of the method.
A simple modification of the derivation above leads to a larger lower bound for β when
C2 < 0. Anyhow, the theorem provides a way to estimate a sufficient value for the stabilization
parameter β. Unfortunately, it appears to be a rather computationally expensive procedure,
since all necessary constants C1, C2, k4 and k1 depend on the configuration ϕ at which the
linearization is performed. It is perhaps useful to detail what the lower bound on β is for
small departures from the stress–free configuration. In this case the geometric changes can be
neglected, and hence consider k1h as a constant, while the elastic moduli c remain positive
definite for all symmetric tensors if the departures are small enough. For simplicity, we consider
c constant as well. In this case −C2 can be taken to be equal to the smallest eigenvalue −tmax

of τ , the Kirchhoff stress. Therefore, when the maximum compressive stress tmax is small
compared to the minimum stiffness of the material k1C1, we have from equation (74)

β ' 2tmax/(k1hk4),

which indicates that in this case β should be scaled with the maximum compressive stress
tmax, whenever tmax > 0.

Finally, back to the example with a neohookean material in equation (51). Assume, for
simplicity, that µ/λ < 3/2 and let α be such that (log α)/(α2/3 − 1) = µ/λ. It is simple to
see that if µ/λ < 3/2 then α > 1 . For the hydrostatic deformation case in equation (54) the
optimal values of C1 and C2 satisfy

C1 − C2 = µ(1 + α2/3)− λ log α

C2 = µ(1− α2/3) + λ log α,
(75)

or C1 = 2µ > 0 for any α. However, if 1 < α < α then C2 > 0, which demonstrates that the
stability condition k1C1 − C2 > 0 allows a in equation (54) to have negative eigenvalues and
still have a linearly stable problem.

5. REMARKS ON IMPLEMENTATION

The complexity of implementation inherent to discontinuous Galerkin methods has been one
of the major factors deterring their utilization. It is the objective of this section to outline
basic considerations associated to the implementation of the class of methods described here,
and to partially dismiss its apparent complexity.

The solution of nonlinear elasticity problems frequently involves, and requires, the solution
of the sequence of configurations of the body under a prescribed loading path, also known
as a quasistatic evolution. Given that multiple solutions for a given load are ubiquitous in
these problems, the consideration of a loading path very often determines a natural sequence
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of deformations for the body. We solve the nonlinear system of equations at each step with
a Newton-Raphson method. Throughout this section the primary concern is to minimize the
number of extra operations needed at each loading step and iteration of a nonlinear solver.

We consider a conforming finite element implementation as a baseline, and comment on
the essential modifications to obtain the discontinuous Galerkin one. These include the pre–
computation of the lifting operators and stabilization terms, and accounting for the larger
elemental stiffness matrices and force vectors stemming from the use of the lifting operators.

A chief contribution to the computational complexity and cost of discontinuous Galerkin
methods emanates from the need to loop over both elements and faces in the mesh; terms
involving the numerical fluxes are computed during the latter. We circumvent this difficulty
by regarding the lifting operators R as linear operators on Vh, and hence pre–computing their
associated matrix representations. The loop over faces in the mesh is hereafter unnecessary;
lifting operators needed for DDG can be now computed at gauss points inside each element
through the use of these matrices, see section 5.1. What makes this idea feasible is the size
of the matrix representation of Re, which, due to the compact support of the operator, is a
small constant independent of the dimension of Vh; see section 5.1. This practical consideration
emboldens the use of a one–field formulation through the DG–derivative.

Likewise, a loop over faces is apparently needed when using the stabilization term in equation
(35). Nonetheless, since the stabilization term is independent of the deformation of the body,
it can easily be pre–computed as well, stored and just assembled into the stiffness matrix at
each iteration of the nonlinear solver. A similar consideration holds for contributions stemming
from Dirichlet boundary conditions, R([[v̂∂(ϕ)]]).

One of the most substantial deviations from traditional concepts in the implementation of
the methods herein is the need for larger elemental stiffness matrices and force vectors, as also
discussed in [9]. This originates in the dependence of the lifting operator inside an element on
degrees of freedom in neighboring elements, a fact that can be checked by simple inspection.
This is best illustrated in figure 1, where a discontinous Galerkin mesh of linear triangles is
shown. To compute the lift of the inter–element jumps at any point inside the element shown
in gray, we need the degrees of freedom in Vh at nodes 1, 2 and 3 and those at nodes 4 to 9.
Hence the increased size of the elemental contributions to the global stiffness matrix and force
vector. In practice, this results in modified elements with a larger connectivity, a rather simple
way to merge these formulations into standard finite element codes. For example, in the case
depicted in figure 1 the connectivity of the gray element includes nodes 1 to 9. It is noteworthy
that, even though possibly different spaces Vh and Wh are considered, the presence of Wh is
only encountered at the elemental level and never permeates to global operations, as reflected
by the size of the elemental contributions.

Among other less important features, but still worth mentioning, we note that the stiffness
matrix of each linearized problem is extremely sparse, with a fixed number of maximum nonzero
entries per row; a brisk glance at figure 1 reveals that these only appear relating degrees of
freedom of an element and those of any neighbor sharing a face. In conforming formulations
it is enough for two elements to share at least a node to have nonzero entries relating their
degrees of freedom. One of the downsides of the proposed implementation is that, with all the
bookkeeping for pre–computed quantities and the possibility of using different shape functions
for Vh and Wh, a larger amount of memory per degree of freedom needs to be allocated.
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6
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8 9

Figure 1. Example of a discontinuous Galerkin mesh composed of linear triangles. The degrees of
freedom associated with the same node in the mesh, but different elements, have been depicted in

different spatial positions to highlight the nature of the discretization.

5.1. Computation of the lifting operators

The formulation of a computationally efficient one–field discontinuous Galerkin method is
feasible due to the use of the lifting operators. In the following we show how their matrix
representation are constructed a priori and used within elemental calculations; these are pivotal
tools to avoid unnecessary loops over all faces in the mesh.

The representation of the lifting operators with small matrices independently of the
dimensions of Vh and Wh relies heavily on the choice of basis functions for these spaces. An
appropriate choice in this case is provided by the standard basis functions for discontinuous
Galerkin, which are constructed as follows. Let QE be an elemental basis function in V E

h , the
global basis function Q ∈ Vh is such that Q = QE in E and Q = 0 otherwise. Likewise for L,
a basis function in Wh.

We next note that the lifting operator can be decomposed as R =
∑

E∈Th
RE , where

RE is the restriction of R to element E. The action of the restricted lifting operator
RE : L2(Γ) 7→ [WE

h ]d on functions in Vh is succinctly summarized through its matrix
representation in the chosen bases for Vh and WE

h , namely,

RE(vaQa) = vaRE(Qa) = vaeiL
E
b RE

abi, (76)

where the matrix representation of RE is given by RE
adi, Qa and LE

b are basis functions in Vh

and WE
h , respectively, va are the components of a function in Vh, and ei is a Cartesian basis

in R3. Here and henceforth, the range of the summation over each repeated index is tacitly
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understood. For example, in equation (76) sums over i range from 1 to d and a and b range
through the number of degrees of freedom in Vh and WE

h , respectively.
We show next that the number of nonzero entries in RE

abi is a constant independent of the
dimension of Vh. We recall that the support of Re is included in the two elements that share
face e. Therefore, RE =

∑
e∈∂E Re and RE(Qa) = 0 if a 6∈ CE , where CE denotes the set

of degrees of freedom of Vh in element E or any of its face–sharing neighbors. Accordingly,
the only relevant entries of RE

abi can be summarized in a matrix with dimensions of at most
#CE × dim WE

h × d, a constant value independent of how large the space Vh is. For example,
in the case shown in figure 1 in which linear triangles are used, the value of CE for the gray
element can be further reduced to include the degrees of freedom at nodes 1 to 9 only, i.e.,
from 12 to 9.

The values of RE
adi effortlessly ensue from equation (15) by taking v = Qa, a ∈ CE , and

z = eiL
E
f , i.e.,∫

E

LE
d (X)LE

f (X) dV︸ ︷︷ ︸
ME

fd

RE
adi = −

∫
Γ

QaN · ei{LE
f } dS = −

∫
∂E

QaN · ei{LE
f } dS, (77)

where ME is the mass matrix in WE
h . Equation (77) possesses the remarkable property of

involving only the inversion of an elemental mass matrix with a number of different right hand
sides to compute the matrix representation of RE . The underlying reason for this is the block
diagonal nature of the mass matrices for standard discontinuous Galerkin bases.

6. NUMERICAL EXAMPLES

We proceed next to study the performance of one of the proposed numerical methods through
selected examples. Throughout this section we adopt the numerical fluxes in equation (22)
and piecewise linear triangles and tetrahedra as elements. Also, for some of the examples we
consider a non–polyhedral B0, which is approximated with a polyhedral mesh when discretized.

6.1. Behavior of the jumps

The first numerical example consists of an unstressed square elastic block with sides of length
10 m under plane strain. The material of the block is neohookean, i.e., its strain energy density
is given in equation (51). Dirichlet boundary conditions are imposed on the top and bottom
surface of the square, effectively displacing the upper surface up and to the right exactly one
half its length, while keeping the bottom surface fixed. The vertical sides remain stress–free.
The material properties are λ = 1.43 Pa and µ = 0.36 Pa. It is also useful to define E and
ν such that λ = νE/((1 + ν)(1 − 2ν)) and µ = E/(2(1 + ν)). At the linearized stress–free
configuration E is the Young modulus of the material, and ν its Poisson ratio. For later use,
we recall that if ν → 0.5− the material becomes nearly incompressible, since λ/µ → ∞. For
this case, E = 1 Pa and ν = 0.4.

The results of the simulations are shown in figure 2. To our surprise, no stabilization was
needed here, i.e., β = 0. A close look at the results in the figure reveals that the solutions are
effectively discontinuous, and the jumps are located predominantly in the areas with high shear.
This is an interesting and, to some extent, expected result; linear triangles are incapable of
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(a) Solution, 24 nodes (b) Solution, 96 nodes (c) Solution, 486 nodes

Figure 2. Deformation of a neohookean elastic block. Note that as the mesh is refined, the magnitude
of the discontinuities steadily decreases.

bending, and therefore the best way for the method to approximate the deformation is through
the presence of jumps. In addition, note that the magnitude of the discontinuities decreases as
more degrees of freedom are used. In the stress–free linear elasticity case [22] it is seen that if
the exact solution is smooth, then the jumps across element boundaries should asymptotically
vanish as the mesh is refined. A similar statement is apparently valid in the nonlinear elastic
case, as shown later in section 6.4. This type of situations are perhaps the most convenient
tests for discontinuous Galerkin approximations, since the kinematic constraints imposed by
the mesh can be easily relaxed through discontinuities. We discuss more about this in the next
section.

6.2. Mesh-based kinematic constraints

In the following we study the square block of the previous section but under compression, the
top boundary is quasistatically displaced downward. For this example we changed ν to be 0.45,
and the mesh is composed of 216 nodes and 72 elements. In the absence of perturbations, the
resulting deformation is expected to be completely symmetric with respect to a vertical axis
through the center of the square. From figure 3(a), this is certainly the case for discontinuous
Galerkin. Stabilization is needed in this situation; we adopted the value of β = 5E. Because
of the relatively high Poisson ratio, material is forced to ’spill’ out from the vertical sides
below and above the bottom and top boundaries, respectively. Fairly large jumps appear near
the corners to accommodate this deformation; the discontinuous approximation once more
relaxes the rigid kinematic constraints imposed by the mesh. The performance of discontinuous
Galerkin is in stark contrast with that of conforming piecewise linear approximations, see figure
3(b). A quick glance evinces that the conforming elements definitively encounter difficulties at
the corners, and that these end up polluting the entire solution. The main evidence is that the
symmetry of the problem has been broken, in no doubt caused by the particular structure of
the mesh at the corners. In this case, no amount of recursive subdivision of the mesh will give a
symmetric solution, the mesh must be restructured. This example suggests a clear advantage of
the discontinuous Galerkin methodology; the solution is much less prone to feel the accidental
kinematic constraints imposed by the mesh, as opposed to conforming methods, which in this
case do not give a realistic solution.
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(a) Snapshots for the discontinuous Galerkin solution

(b) Snapshots for the conforming approximation solution

Figure 3. Vertical compression of the square block. Comparison between the stabilized discontinuous
Galerkin solution and the one obtained using conforming piecewise linear approximations. Because of
the mesh, the symmetry of the problem is not preserved by the latter, rendering a solution that is
basically very far from the exact one. Notice that a recursive subdivision of the mesh will not solve this
problem, regardless of how fine the mesh becomes. This illustrates and suggests a powerful advantage
of the discontinuous Galerkin approach, by substantially reducing the dependence of the solution on

accidental kinematic constraints imposed by the mesh.

6.3. Stability studies

The discussion in section 4 showed that if some material and geometric conditions are met
during the quasistatic evolution, the spurious appearance of buckling modes in the discrete
solution can be prevented provided the stabilization parameter is large enough. In the following
example we demonstrate that stabilization is very often needed, and how it affects the solutions.

The expansion example in section 6.1 shows that occasionally stabilization is not necessary,
in contrast to the compressed square block example in the same section. We show next a more
comprehensive study of the effect of stabilization in this last case. For this test, the square
block was quasistatically loaded in 1000 steps until it reached half of its original height. At each
step the position of the top surface of the block was displaced by a fixed amount. The value
of the stabilization parameter was uniformly increased with the loading step, i.e., β(i) = i∆β,
where i is the loading step number and ∆β ≥ 0. Three different values for ∆β were considered,
10−2 Pa/step, 10−3 Pa/step and 10−4 Pa/step. Figure 4 shows the evolution of the smallest
eigenvalue of the matrix that represents the discrete second variation, equation (37), in V d

h .
Consistent with the analysis in section 4, the amount of stabilization changes with the loading,
and for the compressive case, grows as the material becomes more stressed. This is reflected in
that the larger the stabilization rate ∆β, the farther the loading path can be traveled. Another
important conclusion from this figure is that the discrete linearized problem may in fact be
unstable with no stabilization, and in this case it is possible to stabilize it. We have yet to find
a case in which the exact linearized elasticity problem is stable, but for which no value of β
would help stabilize its discrete counterpart. This may occur if k1 > k1h.

For completeness, figure 5 shows snapshots of the deformed configuration either at the end of
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Figure 4. Evolution of the smallest eigenvalue of the matrix that represents the discrete second
variation, equation (37), in V d

h as a function of the loading step. The value of the stabilization
parameter β grows by ∆β at each loading step, and three different values of ∆β are shown. While the
two cases with lower ∆β become artificially unstable before the loading path is completed, the third

case has enough stabilization to remove this pathology.

the loading path, figure 5(a), or at the onset of instability, figures 5(b) and 5(c). The instability
highlights the effects of weakly enforcing Dirichlet boundary conditions, as clearly evidenced
at the bottom and top surfaces of the block in figures 5(b) and 5(c); these surfaces are no
longer straight.

(a) ∆β = 10−2 Pa/step (b) ∆β = 10−3 Pa/step (c) ∆β = 10−4 Pa/step

Figure 5. Snapshots of the deformed configuration of the block at the end of the loading path, figure
5(a), and at the onset of instability, figures 5(b) and 5(c).
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6.4. Convergence rates

As mentioned in the introduction, one of the gratifying surprises we found in evaluating
the performance of the proposed discontinuous Galerkin method is that, against established
conceptions, the method is computationally efficient when compared with a same order
conforming one. A similar result has been shown in [16]. This section presents the results
supporting such assertion through two qualitatively different examples.
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Figure 6. Plot of the L2–norm over B0 of the error in the displacement field as a function of the
total number of degrees of freedom for the test in section 6.1. Curves are shown for the discontinuous
Galerkin method as well as for the conforming one. Remarkably, the two curves overlap, indicating
that both methods provide the same accuracy for the same computational cost, i.e., for this example

they are equally efficient.

We first studied the convergence of solutions for the example in section 6.1, where an elastic
square block is pulled from its top surface. Only ν was changed for this test, to be ν = 0.45,
and again no stabilization was needed. Solutions were obtained with both the discontinuous
Galerkin and the conforming method for a number of different meshes. To compute the errors,
we used a very fine numerical solution calculated with 79,202 conforming linear triangles in
lieu of an apparently nonexistent exact analytical solution. Figure 6 shows the L2–norm of the
error as a function of the total number of degrees of freedom. It should be noted that numerical
solutions with the same number of degrees of freedom furnished by each one of the methods
were necessarily computed with different meshes; the discontinuous Galerkin mesh is coarser
than the conforming one. The use of the total number of degrees of freedom is consequently a
fair measure of the computational cost involved in each calculation. It is remarkable that both
curves are essentially on top of each other; both methods are equally efficient in computing
these solutions.

Two observations are nevertheless pertinent. The discontinuous Galerkin method needs at
least 3 gauss points in each element to integrate the piecewise linear DG–derivatives, in contrast
to the single gauss point per element needed for conforming cases. There is no clean and simple
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way to account for this factor within the computational cost in figure 6; however, for the
neohookean material model only a small correction to the above results can be expected, with
the core computational cost accounted for in the solution of the linear systems of equations.
A second and to some extent obvious remark is that there are numerous instances where
conforming methods have a clear advantage over discontinuous Galerkin. For example, if the
exact solution is linear, no gain can be expected from allowing discontinuities to appear. A
similar behavior can be anticipated when the exact solution is very smooth, since for fine
enough meshes the approximated field will be nearly linear at the length scale of the mesh;
we discuss more about this at the end of this section. In any event, these observations should
not lessen the very desirable fact that the discontinuous Galerkin method is likely to be more
computationally efficient than a conforming one when coarser meshes are used.

Figure 7. Snapshots of the elastic block fixed at the bottom surface and steadily loaded on its upper
surface with horizontal tractions.

We now examine a deformation where the selection of the stabilization parameter strongly
influences the performance of a discontinuous Galerkin solution. In this test we used the same
elastic square block of section 6.1, but changed ν to be 0.15. The bottom surface of the
block was held fixed and a traction of 0.02 Pa was applied parallel to the top surface. The
resulting deformations have predominantly shear and bending efforts. For the first example
in this section stabilization was unnecessary and no compressive stresses were present; this
test however, displays strong compressive stresses, and stabilization is critical. The loading
path consisted in 250 incremental loading steps in which the traction on the upper surface was
uniformly varied. Snapshots of the deformed configuration during the loading path are shown
in figure 7.

As in the previous example, a highly refined numerical solution with a conforming
discretization served the role of the exact field for the computation of errors. The stabilization
parameter was uniformly varied with the loading step. The resulting convergence plots are
shown in figure 8, with curves for ∆β = 10−3 Pa/step and ∆β = 10−2 Pa/step, together
with the errors for the piecewise linear conforming solutions. Notably, the discontinuous
Galerkin method outperforms the conforming one for coarse meshes, provided the stabilization
parameter is not too large. Naturally, when the value of β is increased, discontinuities are more
strongly penalized and the discontinuous Galerkin method resembles more to a conforming one.
As a consequence, a loss in efficiency for the discontinuous Galerkin method is evidenced in
the choice of ∆β = 10−2 Pa/step.
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Figure 8. Plot of the L2–norm over B0 of the error in the displacement field as a function of the
total number of degrees of freedom used for the second example in section 6.4. In this compression
and bending dominated deformations, stabilization becomes essential. An adequate choice of the
stabilization parameter shows that discontinuous Galerkin is more efficient than the conforming
method for rather coarse meshes. However, too much stabilization forces the discontinuous Galerkin

method to resemble more to a conforming one, with an evident loss in efficiency.

Back momentarily to section 6.1, it was mentioned there that, by a direct extrapolation from
the linear elastic case, the size of the jumps should asymptotically vanish when approximating
smooth solutions as finer meshes are considered. This is true for the second example in this
section. Figure 9 shows the L2–norm of the lift of the jumps, ‖R([[ϕh − v̂(ϕh)]])‖0,B0 , as a
function of the number of degrees of freedom in the mesh for two values of the stabilization
parameter. Here ϕh is the numerical solution obtained with a mesh of characteristic element
size h. Regardless of the stabilization parameter, ‖R([[ϕh − v̂(ϕh)]])‖0,B0 steadily decreases
with h. Moreover, note that ‖[[ϕh − v̂(ϕh)]]‖0,Γ diminishes with h as well, a direct consequence
of the relation ‖[[vh]]‖0,Γ ≤ C+h1/2R([[vh]]) for any vh ∈ V d

h in equation (34), despite the
fact that the number of faces in Γ, and its total area, grows as h wanes. Notice that the
presence of the numerical flux inside the jump operator implies that the Dirichlet boundary
conditions, weakly imposed here, become better satisfied for finer discretizations. In summary,
the discontinuous Galerkin method is converging toward the smooth solution; however, at
some level of mesh refinement any computational advantage for discontinuous Galerkin over a
conforming method usually subsides.

6.5. A note about stresses

The stresses generated at the final configuration of the second example in section 6.4 are
depicted in Figure 10. Shown there is a contour plot for the PXX component of the first Piola–
Kirchhoff stress tensor, where X is the horizontal direction to the right in the picture. The
stress components were computed by using the equivalent three–field variational principle,
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Figure 9. Evolution of ‖R([[ϕh − v̂(ϕh)]])‖0,B0 , a measure of the size of discontinuities, as a function
of the number of degrees of freedom in the solution ϕh for the second example in section 6.4. Like in
the linear elastic case, the discontinuities in the discrete approximations asymptotically vanish as the

mesh if refined, regardless of the value of the stabilization parameter.

equation (26). It was seen in [22] that in the stress–free linear elastic case the hitherto defined
stresses converge. The resulting stress field is rather smooth; this, however, was not occasionally
the case for some other examples. Even though for this nonlinear case stresses may eventually
converge in L2–sense as well, a better method to compute them might be worth exploring.

6.6. Incompressible limit

We proceed next to explore the properties of the current discretization on near incompressible
situations. For the stress–free linear elastic case several authors [40, 16] have proposed low–
order discontinuous Galerkin methods that do not lock in near incompressible situations. When
compared to mixed formulations, discontinuous Galerkin methods in their primal formulation
[16] possess the clear advantage of being computationally efficient and not needing to carry
the additional pressure field.

In the nonlinear elasticity large deformation regime, however, the situation is more dire, but
some of the same ideas from the linear case still apply. The fundamental difference with the
linear elastic case is that the constraint is now nonlinear. More precisely, detF = 1 everywhere
in the body, instead of a divergence free condition. The most elegant solution is perhaps the
use of mixed formulations, see, e.g., [36], but selective reduced integration, with its associated
loss in accuracy, is also an often used alternative. We show here that numerical results suggest
that the proposed discontinuous Galerkin method using low–order elements does not lock in
near incompressible situations for the nonlinear elasticity, large deformation regime.

The numerical example to consider consists of a thick–walled cylindrical tube with imposed
displacements at the inner wall and stress–free at the outer wall, with no axial strain.
This example benefits from having an exact analytical solution, see e.g., [15], which follows
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Figure 10. Contour plot depicting the PXX component of the first Piola–Kirchhoff stress, where X is
the horizontal direction to the right, for the final configuration of the second example in section 6.4.

Stresses were computed through the equivalent three–field variational principle, equation (26).

easily from requiring the deformation mapping to be axysymmetric and to satisfy the
incompressibility constraint. The analytical solution is

r(R) =
√

r2
0 + R2 −R2

0, (78)

where r(R) is the radius of a deformed circle originally of radius R in the undeformed tube,
and r0 and R0 are the deformed and original inner radius of the tube, respectively. For a
neohookean material the first Piola–Kirchhoff stress is

P = λ log(detF)F−T + µ
(
F− F−T

)
, (79)

which in the incompressible limit has λ → ∞ with fixed E and hence λ log(detF) → p, the
value of a partial pressure, defined up to a free additive constant that is determined solely by
the boundary conditions. The exact distribution of the normal component of the traction per
unit undeformed area on a cylindrical surface of undeformed radius R is given by

TR(R) = eT
R ·P · eR = p

r

R
+ µ

(
R

r
− r

R

)
, (80)
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Figure 11. Evolution of the traction at the inner wall of the tube as a function of the relative expansion
of the inner radius. Results computed with conforming and discontinuous Galerkin methods are shown,
for two near incompressible cases, ν = 0.499, 0.4999. The exact solution is also shown for comparison.

It is apparent from these results that the discontinuous Galerkin method is locking–free.

DG
Conforming

Figure 12. Comparison of the deformed configuration of the tube computed with the two methods at
the final configuration, after 20,000 loading steps. Locking in the conforming case is evidenced by the
highlighted bump on the outer wall shown in the augmented view on the right, a consequence of high
stresses and the kinematic constraints of the mesh. In contrast, a smooth outer wall is predicted by
the discontinuous Galerkin method. The enlarged image on the left shows the presence of jumps in

the discontinuous Galerkin solution to accommodate the incompressibility constraint.

where eR is a unit vector in the radial direction from the axis of the cylinder. For a cylinder
with an undeformed outer radius R1 > R0, the condition TR(R1) = 0 and the equilibrium
equations determine the value of p(R), given by

p(R) = µ

[
(r2

0 −R2
0)

r2
1

(
R2

1 −R2

2r2
+ 1

)
− log

(
r/R

r1/R1

)]
, (81)

where r1 = r(R1). In the current example R0 = 1 m and R1 = 1.25 m, while E = 1 Pa.
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Locking examples generally consist of a discretized body loaded with some force distribution.
As the incompressibility limit is approached the deformation induced by the force distribution
tends asymptotically to zero, it “locks”, while the exact solution does show a deformed body
in the same limit. In contrast, we impose the displacements at the inner wall of the cylinder,
and consequently locking of the numerical solution is manifested with the magnitude of the
forces imposed on the inner wall to attain the prescribed displacement diverging to infinity
as the incompressibility limit is approached. The precise quantity we monitor is the radial
component of the traction per unit deformed area at the inner wall, to wit

tinner = eT
R · σ(R0) · eR = TR(R0)

R0

r0
.

The cross–section orthogonal to the axis of the hollow cylinder was discretized with 1677
linear triangles, and solutions with ν = 0.499 and ν = 0.4999 for both discontinuous Galerkin
and conforming methods were obtained. Of course, the latter is known to lock under these
conditions, so it only serves for the purpose of comparison. The quasistatic loading path
consisted on varying the inner radius of the tube by a fixed amount at each loading step. A
total of 20,000 loading steps were used to get to a maximum inner radius r1 = 1.1R1; the large
value of λ makes it difficult to take large loading steps. As in section 6.3, the stabilization
parameter β was uniformly varied with the loading step, with ∆β = 10−4 Pa/step.

The results for these tests are shown in figure 11, where the computed evolutions for tinner
as a function of r0/R0 are plotted together with the exact one, for up to 10% inner radial
expansion. As expected, the value of tinner returned by the conforming approximation worsens
as the material becomes more incompressible. In contrast, discontinuous Galerkin solutions
remain close to the exact one for the two values of ν; this demonstrates that the discontinuous
Galerkin approximation is pretty insensitive to the specific value of ν ≈ 0.5. A comparison
of the deformed configurations of the tube for the two methods is shown in figure 12, with
ν = 0.4999. The locking of the conforming solution is manifested through the formation of
a small bump on the outer wall of the tube; the discontinuous Galerkin solution predicts a
smooth outer wall. A more insightful perspective is obtained from the plot of the error in
tinner as a function of r0/R0, in figure 13, showing only the discontinuous Galerkin solutions
with ν = 0.499 and ν = 0.4999 with ∆β = 10−4 Pa/step, and ν = 0.4999 with ∆β = 10−5

Pa/step. In a comparison between the first two cases, the most noticeable feature is that the
error in the solution increases slightly as the material becomes more incompressible, albeit
at a substantially slow rate when compared to the conforming approximation. Fears that the
discontinuous Galerkin method may eventually lock as ν gets closer to 0.5 are somewhat
placated by the comparison between the second and third cases, which have essentially the
same error for the two different values of ν, at the cost of reducing the value of the stabilization
parameter. These results strongly suggest the absence of locking for the discontinuous Galerkin
method in the large deformation regime. From a practical perspective, the performance of the
discontinuous Galerkin method with low–order elements is effectively free of locking.

6.7. Three–dimensional examples

Thus far, all simulations presented have been restricted to two dimensional examples, for their
lower computational cost makes them more convenient to study the numerical properties of the
method. We now illustrate the behavior of the method through a couple of three–dimensional
examples.
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Figure 13. Error in the computed traction on the inner wall of the deformed tube as a function of
the relative change of the inner radius, r0/R0, for three different cases. Notice that the error grows
very slowly when ν gets closer to 1/2 with constant ∆β, at a much lower pace than the error for
the conforming solutions; compare with figure 11. In fact, by relaxing the value of the stabilization
parameter virtually the same error is obtained for the two values of ν. This demonstrates that from
a practical perspective, discontinuous Galerkin is effectively locking free in the large deformations

regime.

The first case consists of a deforming cylinder under compression. The cylinder is made of
the neohookean material extended to the compressible range in equation (51), with E = 30
GPa and ν = 0.45. In this test the stabilization parameter β has been held constant for
each loading increment and equal to 100 GPa. The diameter and height of the cylinder are
1m and 2m, respectively, and it has been discretized into 191 linear tetrahedra. The cylinder
is deformed such that its bottom face is held fixed, while the top face is translated both
vertically and horizontally at a uniform rate per loading step, up to a maximum of 1m and
0.14m, respectively. The resulting deformations in the cylinder can be roughly described as
predominantly compressive with some shear, as revealed in the snapshots in figure 14 showing
the deformed configuration of the cylinder throughout the loading path. Notice that once
the cylinder has reached the halfway point of the loading path, the solution displays strong
discontinuities, as well as an emerging localization of the deformation, a possible sign for
buckling. This demonstrates the method is capable of predicting configurations with very
large deformations.

The purpose of the second example is to demonstrate the use of the method in more
complex three–dimensional geometries with a wide range of material properties and boundary
conditions. Inspired by the surgical procedure of stent angioplasty, we have chosen an example
that is representative of a stent expanding inside a diseased artery. Figure 15 shows an idealized
version of a section of the actual geometry. The inner dark section represents a stent, the light
section represents the atherosclerotic plaque, and the outer dark section represents the blood
vessel wall. For the illustrative purposes in this paper and to show the feasibility of using
discontinuous Galerkin to model the expansion of the stent, it is enough to consider very
simple material models for the three regions; in this case all regions have been assumed to
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Figure 14. Sequence of snapshots for the compressed cylinder.

have the neohookean behavior given in equation (51). Of course, any predictive model for this
situation has to necessarily include more complex constitutive behaviors, such as the anisotropy
induced in the arterial wall by collagen fibers, see e.g., [17]. Similarly, the dimensions of the
stent have been assumed to be much larger than the real ones, only for simplicity. All relevant
dimensions and material properties for this example are given in table I. One of the interesting
features of this example is the use of radically different material properties for each region.

Section Inner Radius Outer Radius (cm) ν E (Pa)
Stent 0.40 0.50 0.33 105

Plaque 0.50 0.75 0.25 10−2

Wall 0.75 0.90 0.46 102

Table I. Geometric and material properties of the idealized stent angioplasty model

Only one–third of the stent has been simulated, and for simplicity traction free boundary
conditions have been used on the two resulting lateral sections. Figure 16(a) shows the mesh
in the undeformed configuration. Notice that the plaque occupies a large section of the artery,
but not its entire length. Compressive tractions have been imposed along the radial direction in
both the radially innermost surface of the stent and the outer cylindrical surface of the artery,
equal to 1 Pa and 10−3 Pa, respectively. Rigid body displacements have been prevented by
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Figure 15. Idealized geometric arrangement of a diseased artery and contracted stent. The vessel and
plaque are cylinders, but a pie–shaped part has been removed for the illustration. The outer gray
cylinder represents the artery, the inner white cylinder the plaque, on top of which lies the stent, also

in gray.

holding the outermost edges on the cross–sections orthogonal to the axial direction fixed. The
stabilization parameter was uniformly increased by ∆β = 104 Pa/step, through a total of 360
loading steps that steadily augmented the imposed tractions to their stated value. No efforts
have been made to optimize ∆β for this example.

The resulting deformed configuration is shown in figure 16(b), while figure 17 shows the
evolution of radial displacements during the loading path through a sequence of contour plots.
At the final configuration the inner radius of the stent has increased over 40%, and it has been
completely absorbed into the soft plaque. In this example, highly compressive deformations
are present and are gracefully handled by the proposed stabilized method.

7. SUMMARY AND CONCLUSIONS

We proposed a framework to generate very efficient discontinuous Galerkin methods for
nonlinear elasticity, based on the utilization of the lifting operators and the DG–derivative.
The resulting methods are singled out by the particular choice of finite element spaces and
numerical fluxes. Regardless, all methods have a variational structure and can be equivalently
formulated into three–field variational principles involving stresses, strains and displacements
as independent variables. As often done for linear problems, some form of stabilization is
needed, and a standard one was considered for the specific choice of Bassi and Rebay numerical
fluxes. In this context, we discussed the concept of linearized stability, and proposed a sufficient
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(a) Undeformed stent and artery

(b) Deformed stent and artery

Figure 16. Idealized stent angioplasty simulations with discontinuous Galerkin
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Figure 17. Sequence of snapshots during the loading of the stent from the undeformed configuration.
The contour plots show the magnitude of the radial displacements.

condition that involves both material and geometric parameters. We proved then that if this
condition is satisfied, the discontinuous Galerkin method provides linearly stable configurations
as long as the stabilization parameter is large enough; a lower bound for the latter was
computed. We then discussed some general features of the implementation of these methods,
attempting to dismiss their apparent complexity. By pre–computing a number of quantities,
such as the lifting operator and the stabilization term, only a loop over the elements in the
mesh needs to be performed at each iteration for the nonlinear solver; no loop over the
element faces is needed. We demonstrated the performance of the method with the Bassi
and Rebay numerical fluxes through a number of numerical examples. We found that jumps
in fact appeared in the discrete solution even when the exact one was smooth, and that
these gradually waned as finer meshes were considered. Stabilization may occasionally not be
needed, but it plays an important role whenever compressive stresses are present, at least for
the neohookean material model used in these examples. The discontinuous Galerkin method
has been found to outperform conforming approximations in the presence of some mesh–
based kinematic constraints, elegantly sidestepping the latter through discontinuities between
elements. We showed the very often the discontinuous Galerkin method is more efficient than a
conforming one, with this relative advantage vanishing as the stabilization parameter grows or
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the meshes become too fine. When confronted with near incompressible situations, numerical
examples suggest that the discontinuous Galerkin method with piecewise linear elements is free
of locking in the large deformation regime, with no need of a separately interpolated pressure
field characteristic of mixed methods. Finally, we demonstrated the performance of the method
for two three–dimensional examples.

An important yet unresolved problem that emerges from this work is the automatic and
efficient selection of the stabilization parameter. This has crippled past attempts to make
discontinuous Galerkin methods competitive, but it is worth taking a fresh look. For these
examples the choice of β was never a substantial problem, since we have generally adopted
values in the same order of the prevailing stresses.

Likewise, the computation of stresses through L2 projections as in equation (26) often
provides non–smooth stress fields, even though in the linear elastic case, for example,
stresses have been proved to converge in L2–sense. Perhaps a smoother approximation can
be constructed.
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die keinen randbedingungen unterworfen sind. In Abh. Math. Sem., volume 36, pages 9–15, Univ.
Hamburg, 1971.

27. P. Percell and M. F. Wheeler. A local residual finite element procedure for elliptic equations. SIAM J.
Numer. Anal., 15:705–714, 1978.

28. P. Pinsky, D. van der Heide, and D. Chernyak. Computational modeling of mechanical anisotropy in the
cornea and sclera. Journal of Cataract and Refractive Surgery, 31(1):136–145, 2005.

29. M. Pitteri and G. Zanzotto. Continuum models for phase transitions and twinning in crystals. Chapman
& Hall/CRC, 2003.

30. B. Rivière and M. F. Wheeler. Optimal error estimates for discontinuous Galerkin methods applied
to linear elasticity problems. Technical Report 00-30, Texas Institute for Computational and Applied
Mathematics, 2000.

31. J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. In Ciarlet P. .G. and J. L. Lions, editors,
Handbook of Numerical Analysis, volume II. Elsevier Science Publishers B.V. (North-Holland), 1991.

32. G. Romano, F. Marotti de Sciarra, and M. Diaco. Well–posedness and numerical performances of the
strain gap method. International Journal for Numerical Methods in Engineering, 51:103–126, 2001.

33. J.C. Simo and F. Armero. Geometrically non–linear enhanced strain mixed methods and the method of
incompatible modes. Computer Methods in Applied Mechanics and Engineering, 33:1413–1449, 1992.

34. J.C. Simo and T.J.R. Hughes. On the variational foundations of assumed strain methods. Transactions
of the ASME Journal of Applied Mechanics, 53:51–54, 1986.

35. J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer, 1997.
36. P. Le Tallec. Incompressibility in finite elements. In L.P. Franca, T.E. Tezduyar, and A. Masud, editors,

Finite Element Methods: 1970’s and Beyond, pages 33–45. CIMNE, Barcelona, 2004.
37. P. Thoutireddy and M. Ortiz. A variational r–adaption and shape–optimization method for finite–

deformation elasticity. International Journal for Numerical Methods in Engineering, 61:1–21, 2004.
38. L.R.G. Treloar. The physics of rubber elasticity. Oxford: Clarendon Press, 1975.
39. M. F. Wheeler. An elliptic collocation-finite element method with interior penalties. SIAM J. Numer.

Anal., 15:152–161, 1978.
40. T.P. Wihler. Locking–free dgfem for elasticity problems in polygons. IMA Journal of Numerical Analysis,

24:45–75, 2004.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls


