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1 Introduction

2 Reducing Residuals

Throughout this paper, when we use the term “reduce a residual”, or “reduce” a DC offset, it really means
“try to eliminate” a residual or DC offset. That is, our strategy is to compute parameter alterations that
would, in theory, completely eliminate the DC offset of a particular residual. But since the theoretical
solutions we compute are not entirely true in practice since there are many factors affecting a particular
residual other than just the one parameter we are altering. However, this failure to completely eliminate the
DC offset is actually a good thing: we know that there are unmodeled forces in our system (for example,
our model has no arms), so we actually do want some small DC offsets to remain for our residuals just to
make us feel like we haven’t eliminated these unmodeled forces.

To reduce a particular residual R with DC offset dR ∈ R by altering a particular parameter p by an
amount ∆p, we must compute ∆p using the following equation:

Rold −Rnew = dR

We require that Rnew and Rold be expressible in terms of inertial parameters and possibly joint variables,
and that Rnew also be expressed in terms of ∆p. Then the above equation can be solved for ∆p in terms
of the inertial parameters and the DC offset dR. It is easier to see why this equation is true if we look at it
this way:

Rnew = Rold − dR

Here, Rold is the original residual with the DC offset dR. If we remove the DC offset from Rold, i.e. if we
subtract the DC offset from Rold, we get Rnew.

2.1 Reducing Forward-Backward Rocking

We will reduce the residual MZ by independently altering two parameters: the torso center of mass x-
coordinate by an amount ∆tx and the lumbar extension angle by an amount ∆le.

2.1.1 Altering the Torso Center of Mass

Here we will compute an amount ∆tx by which to alter the x-coordinate of the torso center of mass in order
to balance the DC offset of the MZ residual. Let m be the mass of the torso and let g denote acceleration
due to gravity. Let dMZ be the DC offset of the MZ residual. Let r0 be the moment arm (lever arm) of
the torso, which we define to be the vector pointing from the pelvis center of mass to the torso center of
mass. Note that r0 varies as the torso position varies, but its magnitude stays fixed. Then we have that the
original value of MZ at any torso position is:

MZold = r0 ×mg
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Let r1 be the torso moment arm after the center of mass has been displaced in the x direction by ∆tx. Note
that r1 may not have the same magnitude as r0. Then the new value of MZ is:

MZnew = r1 ×mg

= (r0 + (∆tx, 0, 0))×mg

= r0 ×mg + (∆tx, 0, 0)×mg

The last step is correct since the cross product distributes over addition. Let dMZ = (0, 0, dMZ), i.e.
dMZ is a vector representation of the DC offset. Now we plus the above expressions into the equation
MZold −MZnew = dMZ:

r0 ×mg − (r0 ×mg + (∆tx, 0, 0)×mg) = dMZ

The r0 ×mg expressions cancel out on both sides, and the value of the remaining cross product is

(∆tx, 0, 0)×mg =

∣∣∣∣∣∣
i j k

∆tx 0 0
0 −mg 0

∣∣∣∣∣∣ = (0, 0,−mg∆tx).

So we are left with
−(0, 0,−mg∆tx) = (0, 0, dMZ)

or looking at just the z-coordinates
mg∆tx = dMZ

∆tx =
dMZ

mg
. (1)

So, in order to reduce the DC offset of the MZ residual, i.e. to reduce the average forward-backward
rocking motions of a walking model, our computation suggests that we should alter the torso center of mass
x-coordinate by an amount dMZ/mg.

2.1.2 Altering the Lumbar Extension Angle

Now we wish to compute an amount ∆le by which to alter the lumbar extension angle (throughout the
entire time interval, not just at the initial time) so that the DC offset for MZ is reduced. We can represent
the alteration of the lumbar extension angle with the following geometry: consider the triangle consisting of
two vectors r0 and r1 with equal length r0 and with a common starting point with an angle ∆le between
them. Suppose the vectors are oriented so that ∆le is drawn in a positive sense (counterclockwise) when it
is drawn from r0 to r1. Let ∆l = r1 − r0. Assuming ∆le is small, we can apply an approximation from
biomechanics which states that the moment arm (lever arm) of a muscle is equal to δl/δθ where δl is the
change in length of the muscle when the joint spanned by the muscle rotates by a small angle δθ. Applying
this approximation to our triangle, we have that

r0 = ∆l/∆le

∆l = r0∆le,

where ∆l = ‖∆l‖. We will show how to compute the (direction of) the vector ∆l later. As before, we define
MZnew = r1×mg and MZold = r0×mg. From the definition of ∆l, we know that r1 = r0 +∆l. Plugging
into the equation MZold −MZnew = dMZ, we have

r0 ×mg − (r0 ×mg + ∆l×mg) = (0, 0, dMZ)

−∆l×mg = (0, 0, dMZ).

If we write ∆l = (∆lx,∆ly, 0), then we have

∆l×mg =

∣∣∣∣∣∣
i j k

∆lx ∆ly 0
0 −mg 0

∣∣∣∣∣∣ = (0, 0,−mg∆lx).
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Subsituting into the previous equation, we have

mg∆lx = dMZ .

Now if we write ∆lx = ∆l cos θ where θ is the angle representing the orientation of the vector ∆l relative to
the positive x-axis (counterclockwise is positive), and since we know the length of the vector is ∆l = r0∆le,
we have that ∆lx = r0∆le cos θ, so substituting into the above equation yields

mgr0∆le cos θ = dMZ

∆le =
dMZ

mgr0 cos θ
.

Let α be the angle representing the orientation of r0, measured in a positive (counterclockwise) sense starting
from the positive x-axis. The angle le is the orientation of r0 as measured in a positive (counterclockwise)
sense starting from the positive y-axis. So α = le + 90◦. Since we assumed that ∆le is small, the vector
∆l is approximately tangent to the circle with radius r0 centered at the pelvis center of mass, i.e. we can
assume that ∆l is just r0 rotated counterclockwise by 90◦ and scaled. Since we defined θ to be the angle
swept counterclockwise from the positive x-axis to ∆l, then we can assume that θ = α + 90◦ = le + 180◦.
Hence we have

cos θ = cos(le + 180◦) = cos le cos 180◦ − sin le sin 180◦ = − cos le

so
∆le = − dMZ

mgr0 cos le
. (2)

2.2 Reducing Left-Right Rocking

We will reduce the residual MX by independently altering two parameters: the torso center of mass z-
coordinate by an amount ∆tz and the lumbar bending angle by an amount ∆lb.

2.2.1 Altering the Torso Center of Mass

Here we will compute an amount ∆tz by which to alter the z-coordinate of the torso center of mass in order
to balance the DC offset of the MX residual. Let dMX be the DC offset of the MX residual. The original
value of MX at any torso position is:

MXold = r0 ×mg

Let r1 be the torso moment arm after the center of mass has been displaced in the z direction by ∆tz. Note
that r1 may not have the same magnitude as r0. Then the new value of MX is:

MXnew = r1 ×mg

= (r0 + (0, 0,∆tz))×mg

= r0 ×mg + (0, 0,∆tz)×mg

Let dMX = (dMX , 0, 0), i.e. dMX is a vector representation of the DC offset. Now we plus the above
expressions into the equation MXold −MXnew = dMX:

r0 ×mg − (r0 ×mg + (0, 0,∆tz)×mg) = dMX

The r0 ×mg expressions cancel out on both sides, and the value of the remaining cross product is

(0, 0,∆tz)×mg =

∣∣∣∣∣∣
i j k
0 0 ∆tz
0 −mg 0

∣∣∣∣∣∣ = (mg∆tz, 0, 0).

So we are left with
−(mg∆tz, 0, 0) = (dMX , 0, 0)
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or looking at just the x-coordinates
−mg∆tz = dMX

∆tz = −dMX

mg
. (3)

So, in order to reduce the DC offset of the MX residual, i.e. to reduce the average forward-backward
rocking motions of a walking model, our computation suggests that we should alter the torso center of mass
z-coordinate by an amount −dMX/mg.

2.2.2 Altering the Lumbar Bending Angle

Now we wish to compute an amount ∆lb by which to alter the lumbar bending angle (throughout the entire
time interval, not just at the initial time) so that the DC offset for MX is reduced. We can represent the
alteration of the lumbar bending angle with the following geometry: consider the triangle consisting of two
vectors r0 and r1 with equal length r0 and with a common starting point with an angle ∆lb between them.
Suppose the vectors are oriented so that ∆lb is drawn in a positive sense (counterclockwise) when it is drawn
from r0 to r1. Let ∆l = r1− r0. Assuming ∆lb is small, we can apply an approximation from biomechanics
which states that the moment arm (lever arm) of a muscle is equal to δl/δθ where δl is the change in length
of the muscle when the joint spanned by the muscle rotates by a small angle δθ. Applying this approximation
to our triangle, we have that

r0 = ∆l/∆lb

∆l = r0∆lb,

where ∆l = ‖∆l‖. We will show how to compute the (direction of) the vector ∆l later. As before, we define
MXnew = r1×mg and MXold = r0×mg. From the definition of ∆l, we know that r1 = r0 +∆l. Plugging
into the equation MXold −MXnew = dMX, we have

r0 ×mg − (r0 ×mg + ∆l×mg) = (dMX , 0, 0)

−∆l×mg = (dMX , 0, 0).

If we write ∆l = (0,∆ly,∆lz), then we have

∆l×mg =

∣∣∣∣∣∣
i j k
0 ∆ly ∆lz
0 −mg 0

∣∣∣∣∣∣ = (mg∆lz, 0, 0).

Subsituting into the previous equation and extracting just the x-coordinates, we have

−mg∆lz = dMX .

Now if we write ∆lz = ∆l cos θ where θ is the angle representing the orientation of the vector ∆l relative to
the positive y-axis, and since we know the length of the vector is ∆l = r0∆lb, we have that ∆lz = r0∆lb sin θ,
so substituting into the above equation yields

−mgr0∆lb sin θ = dMX

∆lb = − dMX

mgr0 sin θ
.

The angle lb is the orientation of r0 as measured in a positive (counterclockwise) sense starting from the
positive y-axis. Since we assumed that ∆lb is small, the vector ∆l is approximately tangent to the circle with
radius r0 centered at the pelvis center of mass, i.e. we can assume that ∆l is just r0 rotated counterclockwise
by 90◦ and scaled. Since we defined θ to be the angle swept counterclockwise from the positive y-axis to ∆l,
then we can assume that θ = lb + 90◦. Hence we have

sin θ = sin(lb + 90◦) = sin lb cos 90◦ + cos lb sin 90◦ = cos lb

so
∆lb = − dMX

mgr0 cos lb
. (4)
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2.3 Residual Reduction Algorithm (RRA)

The following algorithm will attempt to reduce the MX and MZ DC offsets if it is executed after the inverse
kinematics stage of the simulation pipeline and before the CMC stage. We omit implementation details and
present only the essential components of RRA here. For our purposes, the inputs needed are:

1. the musculoskeletal model for the subject whose motion is being simulated,

2. the motion file containing the kinematics and ground reaction data for the subject at a finite set of
discrete time instants t1, t2, . . . , tN ,

3. whether torso x or lumbar extension will be used to reduce the MX DC offset, and

4. whether torso z or lumbar bending will be used to reduce the MZ DC offset.

The first pass of RRA consists of the following steps.

1. Run CMC once on the subject model using the given motion data.

2. Compute the torso x correction amount ∆tx using equation 1.

3. Compute the torso z correction amount ∆tz using equation 3.

4. Create two arrays ∆le and ∆lb that can each hold N real numbers.

5. For each i = 1, . . . , N , compute the lumbar extension correction amount ∆le[i] at the ith time step in
the motion data using equation 2 and the corresponding value le[i] of the model’s lumbar extension
angle at that time step.

6. For each i = 1, . . . , N , compute the lumbar bending correction amount ∆lb[i] at the ith time step in
the motion data using equation 4 and the corresponding value lb[i] of the model’s lumbar bending angle
at that time step.

7. Write the numbers ∆tx and ∆tz and the arrays ∆le and ∆lb to a file. If |∆tx| > 0.1, set ∆tx to zero
before writing it to the file. Do the same for ∆tz. If for any i, |∆le[i]| > 10◦, then set every entry
in the array ∆le to zero before writing its entries to the file. Do the same for the array ∆lb. The
next pass of RRA will automatically apply the values in this file as corrections to the input model and
input motion data. So if any correction amount is listed as zero in the file, the result of applying that
correction amount to the input model or motion data is the equivalent of making no correction at all.
For instance, if ∆tx = 0, then adding ∆tx to the original value of tx in the second pass of RRA is the
same as making no change to the original value of tx.

8. If every correction exceeded the threshold amounts (i.e. if every number in the entire file written in
the previous step was zero), then exit with a message saying that this subject data cannot be corrected
by RRA.

The second pass of RRA consists of the following steps.

1. Read ∆tx, ∆tz, ∆le, and ∆lb from the file created in the first pass of RRA.

2. If the user chose tx as the parameter to alter in order to reduce the MX DC offset, add ∆tx to the
model’s torso x coordinate.

3. If the user chose tz as the parameter to alter in order to reduce the MZ DC offset, add ∆tz to the
model’s torso z coordinate.

4. If the user chose le as the parameter to alter in order to reduce the MX DC offset, then for each
i = 1, . . . , N , add ∆le[i] to le[i].

5. If the user chose lb as the parameter to alter in order to reduce the MZ DC offset, then for each
i = 1, . . . , N , add ∆lb[i] to lb[i].

6. Run CMC on the subject model using the given motion data.
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