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Stabilisation of walking by intrinsic muscle properties revealed in a three-dimensional
muscle-driven simulation
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aDepartment of Computer Science, Clark Center, Room S-324, Stanford University, Mail Code 5449, 318 Campus Drive, Stanford,

CA 94305-5449, USA; bDepartment of Bioengineering, Clark Center, Room S-321, Stanford University, Mail Code 5450, 318 Campus
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Newark, DE 19716, USA; dDepartment of Mechanical Engineering, Clark Center, Room S-321, Stanford University, Mail Code 5450,

318 Campus Drive, Stanford, CA 94305-5450, USA

(Received 21 September 2011; final version received 24 September 2011)

A fundamental question in movement science is how humans perform stable movements in the presence of disturbances
such as contact with objects. It remains unclear how the nervous system, with delayed responses to disturbances, maintains
the stability of complex movements. We hypothesised that intrinsic muscle properties (i.e. the force–length–velocity
properties of muscle fibres and tendon elasticity) may help stabilise human walking by responding instantaneously to a
disturbance and providing forces that help maintain the movement trajectory. To investigate this issue, we generated a 3D
muscle-driven simulation of walking and analysed the changes in the simulation’s motion when a disturbance was applied to
models with and without intrinsic muscle properties. Removing the intrinsic properties reduced the stability; this was true
when the disturbing force was applied at a variety of times and in different directions. Thus, intrinsic muscle properties play
a unique role in stabilising walking, complementing the delayed response of the central nervous system.

Keywords: biomechanics; simulation; muscle; walking; stability

1. Introduction

Stable walking requires maintaining a repetitive motion

and responding to disturbances that threaten the execution

of that motion. Humans are able to maintain a repetitive

walking motion in the presence of disturbances including

variations in terrain and contact with objects. An important

goal of movement science is to elucidate the mechanisms

that enable stable locomotion.

One of the most intriguing unresolved questions in

movement science is how the central nervous system

maintains stable locomotion despite delayed feedback

from sensors. Delays are detrimental to stability, yet

humans and animals are able to generate a wide variety of

stable movements even though conduction of neural

signals incurs substantial time delays. Reflexes are

important mechanisms that maintain movement stability,

yet most reflex responses occur after a delay of

approximately 40–100 ms (Reis 1961; Shahani and

Young 1971; Roby-Brami and Bussel 1987; Kimura et al.

1994; Schillings et al. 1999; Brown and Loeb 2000).

Muscle forces may change with no delay in response to

disturbances, before reflexes or other active control

mechanisms can come into play (Brown and Loeb

2000). The force generated by a muscle depends not

only on the pattern of activation arriving from the central

nervous system, but also on the length and contraction

velocity of the muscle’s fibres (known as ‘force–length’

and ‘force–velocity’ properties). The dependence of

tendon force on tendon length (‘tendon elasticity’) also

affects the muscle force. It has been thought that the

nonlinear dependence of muscle forces on length and

velocity might make the central nervous system’s job more

difficult, requiring mechanisms to compensate for these

complexities (Dyhre-Poulsen et al. 1991). However, the

intrinsic stiffness (dependence of force on length) and

damping (dependence of force on velocity) of muscles

may help stabilise movement trajectories (i.e. resist

disturbances) without active control by the central nervous

system. Thus, muscle properties may play an important

role in stabilising movement.

It has been difficult to examine the role of muscle

stiffness and damping in stabilising walking, in part,

because the relationships between patterns of muscle

activation, muscle lengths and velocities and the resulting

muscle forces are poorly understood. Experimental

methods alone cannot elucidate these relationships

because important variables, such as muscle forces and

their dependence on length and velocity, are generally not

measurable during movement. It is especially difficult to

examine the effects of muscle stiffness and damping

during complex movements that involve activation of

many muscles and movement of many joints. A change in
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the force of a single muscle can affect the motions of many

joints (Zajac and Gordon 1989), so even if muscle

properties stabilise one joint in response to a disturbance,

they could destabilise other joints. Thus, it has been

challenging to examine the effects of intrinsic muscle

properties in the context of complex 3D movements such

as walking.

Muscle-driven simulations are powerful tools for

investigating the control of human movement. Recent

simulations of walking, for example, have enabled

researchers to examine how muscle forces are developed

and contribute to body weight support, forward propulsion

and body segment motions (Anderson and Pandy 2001,

2003; Neptune et al. 2001, 2004, 2008; Anderson et al.

2004; Goldberg et al. 2004; Arnold et al. 2005;

Higginson et al. 2006b; Liu et al. 2006, 2008). Muscle-

driven simulations complement experimental approaches

by enabling one to eliminate the dependence of muscle

force on its length and velocity to examine the effects of

these intrinsic muscle properties on the stability of

walking.

We present here a 3D muscle-driven simulation of

human walking. We generated a simulation of a walking

man using a model of human musculoskeletal dynamics

driven by 92 muscle-tendon compartments (Delp et al.

1990). We verified the accuracy with which the simulation

reproduced the motions, joint moments and muscle

activation patterns of human walking. We then analysed

this simulation to examine whether intrinsic muscle

properties help stabilise the body during walking. The

walking simulation and OpenSim (Delp et al. 2007), the

software used to create and analyse it, are freely available

at https://simtk.org, enabling others to reproduce, modify

and analyse this simulation. This study contributes an

accurate physics-based simulation of human walking and

reveals that intrinsic muscle properties help stabilise

human walking.

2. Materials and methods

We generated a muscle-driven simulation of walking, as

shown in Figure 1. In an experiment, we recorded the

positions of a subject’s body segments and the forces and

moments with which his feet contacted a treadmill. We

collected data from an unimpaired man (height, 1.83 m;

body mass, 65.9 kg) walking at a self-selected speed

(1.36 m/s) on a treadmill (Bertec Corporation, Columbus,

OH, USA) with split belts (one belt for each foot). A force

plate under each belt measured the force and moment

each foot applied to the treadmill during movement at

1/600 s intervals. Fourty-nine reflective markers were

placed on the subject. A six-camera system (Motion

Analysis Corporation, Santa Rosa, CA, USA) recorded

the positions of the markers every 1/60 s intervals. We

created a 3D musculoskeletal model (Delp et al. 1990;

Thelen and Anderson 2006) of the subject consisting of 12

rigid body segments, 19 degrees of freedom and 92

muscle–tendon compartments. Of the 19 degrees of

freedom, 16 are the joint angles (including three

orientation angles of the pelvis) and the remaining three

specify the position of the pelvis. Each degree of freedom

(i.e. joint angle or pelvis position coordinate) is

represented as a coordinate of the model.

We scaled the model with 49 markers to match the size

and mass of the subject. We then removed eight markers

from the subject. We computed joint angles for the model

at every time frame for which marker data were recorded

(i.e. every 1/60 s) that minimised the sum of squared

distances between the remaining 41 markers on the subject

and the corresponding markers on the model. We

computed the forces and moments acting at the joints

that drove the model to follow the motions we recorded

(see Appendix, Inverse dynamics). Two of the quantities

computed in this inverse dynamics process, namely the

residual force and residual moment acting on the model’s

pelvis, are non-physical forces (Kuo 1998) that are

Figure 1. 3D muscle-driven simulation of walking. The frames from the animation show the skeletal motion and muscle activation
patterns (muscles with high activation are shown in red and muscles with low activation are shown in blue) for a portion of the simulation.

C.T. John et al.2
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typically ignored in inverse dynamics calculations. We

reduced the magnitudes and averages of the residual force

and moment by making small adjustments to the model’s

motion (e.g. 1–28, see Appendix, Improving dynamic

consistency). Finally, we used the computed muscle

control algorithm (Thelen and Anderson 2006) to compute

muscle activations that, when transformed via intrinsic

muscle properties into muscle forces, resulted in close

agreement between the model’s motion and the adjusted

joint angles. The result was a 3D muscle-driven simulation

of the subject walking for 10 complete gait cycles

(supplemental Video S1).

After generating the simulation, we performed a

forward dynamics analysis in which we positioned the

model at an arbitrary time in the simulation and advanced

the model using the muscle activations determined by

computed muscle control, while we simultaneously

applied a constant 400-N downward disturbance to the

mass centre of the model’s pelvis for 50 ms. Since we

expect reflexes to respond only after 40 ms and muscle

force generation and excitation-contraction coupling to

require at least another 10 ms (Zajac 1989), this 50-ms

analysis represents the intrinsic human muscle response to

a disturbance without the assistance of reflexes. We chose

this force and time period so that the impulse of the

disturbance (20 Ns) would be comparable to the impulses

applied (e.g. approximately 32 Ns) in experimental studies

investigating human stability during platform pertur-

bations (Mille et al. 2003). To account for changes in the

ground reaction force due to the disturbance we included a

spring-damper unit to apply a restoring force in response to

any deviation in position or velocity of the foot from its

position and velocity in the original simulation. The

muscle forces in the model were allowed to vary due to the

effects of the intrinsic muscle properties, including fibre

force–length and force–velocity properties and tendon

elasticity (see Appendix, Muscle model). We then

removed the intrinsic properties of the model’s muscles

and re-ran this 50-ms forward dynamics analysis, but with

the muscle forces from the undisturbed simulation. We

then repeated these two forward dynamics analyses with

the original model (‘model (i)’) and the model without

intrinsic properties (‘model (ii)’) while applying 400-N

disturbances in the forward, backward, upward, rightward

and leftward directions. Note that although we drove

model (ii) with muscle forces originally generated using

intrinsic muscle properties, our use of model (ii) in this

analysis is appropriate. Our goal was to create a reference

set of muscle forces exhibiting physiologic realism (by

virtue of the muscle activations reproducing major

features of typical muscle activity for walking) so we

could compare how adjustments to these muscle forces by

intrinsic muscle properties would affect the response of

model (i) versus model (ii) to the disturbances. We

compared the amount by which the model’s motion

diverged from the simulation (i.e. the simulation generated

using computed muscle control) in each forward dynamics

analysis. At the end of each 50-ms analysis, we computed

the absolute value of the difference between each model

coordinate’s value in the forward dynamics analysis and

the same coordinate’s value in the simulation. These

absolute values indicate the amount by which each

coordinate deviated from its value in the simulation due to

the applied disturbance. We measured the stabilising

effects of intrinsic muscle properties by comparing these

deviations between the models with and without intrinsic

muscle properties. We characterise motion A as more

stable than motion B if a majority of the model’s 19

coordinates deviates less in motion A from the original

walking motion than in motion B and the root mean square

(RMS) deviation of the coordinates in motion A is less

than the RMS deviation in motion B. Note that we do not

define a motion as stable or unstable; we only define one

motion as being more stable or less stable than another

motion with respect to a reference walking motion.

Running a forward dynamics analysis without a

disturbance over 50 ms resulted in negligible deviation

(e.g. 0.0028) from the simulation. This is important since

driving a model using muscle activations without any

feedback can result in accumulation of numerical error,

which can lead to deviation in the model’s motion. We

also wished to determine whether the deviation we

observed in any forward dynamics analysis with a

disturbance was due to the disturbance or due to the

accumulation of numerical error. In a forward dynamics

analysis with no disturbance where the model did have

intrinsic muscle properties, only after approximately 2 s of

movement did enough numerical error accumulate to

cause substantial deviation (e.g. 48 on average) in the

model’s motion. This suggests that in the forward

dynamics analysis with a disturbance, the deviation we

observed was due to the disturbance and not due to the

accumulation of numerical error.

3. Results

3.1 Evaluation of 3D walking simulation

The simulation closely followed the joint angles that were

measured in the experiment (Figure S1), with a maximum

RMS deviation over all joint angles of 18 (Table S1).

The averaged joint angles from the simulation over the 10

gait cycles are consistent with previous experimental

measurements of walking motions (Murray et al. 1985;

Kadaba et al. 1989, 1990, see Appendix for detailed

quantitative comparisons).

The net moments generated by the simulated muscles

about the hip, knee and ankle joints closely match the

moments computed (see Appendix, Inverse dynamics)

from the experimental data (Figure S2). The moments

Computer Methods in Biomechanics and Biomedical Engineering 3
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about the lumbar joint agree with the values typically

reported for walking (Figure S3).

Muscle activations generated by the computed muscle

control algorithm include important features of exper-

imentally measured electromyography (EMG) data

(Figure 2). For example, gluteus maximus and vasti are

active in early stance, gluteus medius is active in mid-

stance and soleus and gastrocnemius are active in late

stance (Perry 1992). However, the computed muscle

control algorithm failed to activate the muscles in

anticipation of future events. For example, EMG

recordings show that gluteus maximus, gluteus medius

Gluteus maximus upper compartments Gluteus maximus lower compartment

Gluteus medius anterior, intermediate, posterior Iliacus

Sartorius Tensor fasciae latae

Vastus medialis Vastus intermedius

vastus lateralis Rectus femoris

Semitendinosus Biceps femoris short head

Biceps femoris long head Adductor magnus upper, middle, lower

Adductor longus Gracilis

Gastrocnemius medial head Gastrocnemius lateral head

0

50

0 20 40 60 80 100
0

1
Soleus

Percent gait cycle

0 20 40 60 80 100

Percent gait cycle

A
ct

iv
at

io
n

E
M

G

0

80

0

1

A
ct

iv
at

io
n

E
M

G

0

60

0

1

A
ct

iv
at

io
n

E
M

G

0

60

0

1

A
ct

iv
at

io
n

E
M

G

0

50

0

1

A
ct

iv
at

io
n

E
M

G
0

20

0

1

A
ct

iv
at

io
n

E
M

G

0

40

0

1

A
ct

iv
at

io
n

E
M

G

0

10

0

1

A
ct

iv
at

io
n

E
M

G

0

20

0

1

A
ct

iv
at

io
n

E
M

G

0

20

0

1
A

ct
iv

at
io

n

0

120

0

1

A
ct

iv
at

io
n

E
M

G

0

50

0

1

A
ct

iv
at

io
n

E
M

G

0

1

A
ct

iv
at

io
n

0

1

A
ct

iv
at

io
n

0

1
A

ct
iv

at
io

n

0

20

0

1

A
ct

iv
at

io
n

E
M

G

0

1

A
ct

iv
at

io
n

0

10

0

1

A
ct

iv
at

io
n

E
M

G

0

10

0

1

A
ct

iv
at

io
n

E
M

G

0

1

A
ct

iv
at

io
n

E
M

G

Tibialis anterior

Figure 2. Muscle activations vs. literature EMG data. The red curves represent the mean muscle activations from the simulation on a
scale of 0–1, where 0 denotes no activation and 1 denotes the maximum mean activation of each muscle during the simulation, across 10
gait cycles for the left leg. In any graph with multiple red curves, the solid curve represents the activation of the first muscle compartment,
the dotted curve represents the second compartment and the dashed curve represents the third compartment. The grey curve represents the
EMG data in microvolts (mV) reported for adults walking at a comparable speed by Cappellini et al. (2006). The maximum activation for
each muscle was plotted at the same height as the maximum EMG value of the muscle reported by Cappellini et al. (2006). The black bars
represent the times during which a muscle is expected to be activated as reported by Perry (1992).
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and the vasti are active slightly before the stance phase in

anticipation of contact of the foot with the ground. Instead,

in the simulation these muscles only become active

slightly after the stance phase begins (see Appendix for

detailed comparisons).

3.2 Stabilising effects of intrinsic muscle properties

The intrinsic properties of muscle played an important role

in the stabilisation of walking. For example, when we

applied a 400-N downward disturbance to the pelvis of the

original musculoskeletal model, the right knee flexion

angle deviated by 2.98 from the simulation’s motion after

50 ms. When we removed the intrinsic properties from the

model’s muscles, the right knee flexion angle deviated by

5.38 (Figure 3).

Removing the intrinsic muscle properties increased

deviations in the joint angles (Table 1). For instance, when

we applied a 400-N downward disturbance to the pelvis of

the model with intrinsic muscle properties, the sum of the

deviations of the joint angles from the simulation’s motion

after 50 ms was 14.88 (RMS deviation over all joint angles

was 1.18). When we removed the intrinsic muscle

properties, the sum of the deviations was 55.88 (RMS

deviation was 3.68). Removing the intrinsic properties

caused 18 out of 19 coordinates to deviate more from the

simulation’s motion than when including the intrinsic

properties. The remaining coordinate (right hip adduction

angle) deviated less than when intrinsic properties were

included, but only by 0.18 (Table S3).

The deviations of coordinates in the presence and the

absence of intrinsic muscle properties were similar

regardless of the direction of the disturbance (Table 1).

While the differences in deviations were slightly lower for

fore-aft and mediolateral disturbances, deviations were

consistently lower when intrinsic muscle properties were

included than when intrinsic properties were absent

regardless of the disturbance direction. For example, when

a forward disturbance was applied, the sum of joint angle

deviations after 50 ms was 14.78 when intrinsic muscle

properties were included, while the sum of deviations was

34.18 without intrinsic muscle properties. When a right-

ward disturbance was applied, the sum of joint angle

deviations was 9.18 when intrinsic muscle properties were

included, while the sum of deviations was 23.08 when

intrinsic properties were absent.

Our results did not depend substantially on the starting

time of the 50-ms forward dynamics analyses. The above-

mentioned analysis was performed during the double

support phase of walking, but our results remained valid

for other phases of the gait cycle. To show this, we

performed the same 50-ms forward dynamics analyses

starting at several different phases (Figure S5) of the gait

cycle and found that the deviations did not exhibit major

changes when the analyses were started at different times

(Table S4). The deviations are shown in Table 1, Figure 3

and Table S3.

The stabilising effect of intrinsic muscle properties

was present regardless of the magnitude of the disturbance.

Table S5 shows that for smaller disturbances, such as 200

and 100 N, the stabilising effect of intrinsic muscle

properties was still present, albeit with smaller joint angle

deviations for both the model with intrinsic muscle

properties and the model without intrinsic muscle properties.

4. Discussion

We have produced a 3D muscle-driven simulation of

human walking that accurately reproduced the joint

angles, joint moments and muscle activations typical of

human walking. Analysis of the simulation revealed that,

with a few exceptions (Table S3), the joint angles of the

model deviated less in response to a disturbing force when

the intrinsic properties of muscle were included in the

model. These results support the hypothesis that intrinsic

muscle properties play an important role in stabilising

walking by providing stabilising forces before reflexes

come into play.

Brown and Loeb (2000) also noted that intrinsic

muscle properties respond without delay to disturbances,

before active control mechanisms can respond. Using a

planar arm model with three segments and six muscles,
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Figure 3. Right knee flexion angle deviations vs. time during a
disturbance. The red curve represents the deviation in knee
flexion angle as a 400-N downward disturbance is applied to the
mass centre of the pelvis over a 50-ms period during the left-to-
right double support phase; the model’s muscles have intrinsic
properties. The blue curve represents the deviation in knee
flexion angle during the same disturbance, but with the muscles’
intrinsic properties removed. The knee flexion angle deviates
more from its values in the simulation when the muscles lack
intrinsic properties.
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they applied disturbing forces to the endpoint of the arm

and found that intrinsic muscle properties were important

in responding to disturbances. They coined the term

‘preflex’ to refer to the pre-reflex response of intrinsic

muscle properties to disturbances.

The results of previous studies and our analysis support

the assertion that intrinsic muscle properties help stabilise

human gait. Gerritsen et al. (1998) used a 2D model of the

human body to examine the roles of intrinsic muscle

properties in stabilising walking. They showed that the

intrinsic force–velocity property of the muscle fibres

resists an impulsive downward disturbance applied to the

mass centre of the model’s trunk while the force–length

property of the muscle fibres resists increased gravity.

However, Kuo (1999) showed that corrective muscle

forces are needed to stabilise mediolateral motion, which

cannot be captured by the planar model of Gerritsen et al.

(1998). Daley et al. (2009) showed that intrinsic muscle

properties play a major role in stabilising the motion of a

running guinea fowl. They noted that reflexes require 30–

40 ms to respond to a disturbance and that the immediate

response to a disturbance is due solely to intrinsic muscle

properties. Yakovenko et al. (2004) used a planar bipedal

model to show that the intrinsic stiffness of leg muscles

activated by a pre-determined pattern with no sensory

feedback can produce a stable walking motion. Higginson

et al. (2006a) showed that intrinsic muscle properties

reduce abnormal knee motion due to equinus foot

placement (i.e. abnormally high ankle plantarflexion)

during walking using a planar bipedal model. Unlike these

previous studies, however, our analysis used an anatomi-

cally accurate musculoskeletal model (Delp et al. 1990;

Thelen and Anderson 2006) based on experimental

measurements of muscle architecture (Wickiewicz et al.

1983; Friederich and Brand 1990) to show how intrinsic

muscle properties influence walking stability in three

dimensions in the presence of disturbances applied in a

variety of directions, independent of the phase of the gait

cycle.

A few muscles generated passive force in addition to

active force, but overall the passive component produced

only a small fraction of the total force applied by the

muscles. For example, in the analysis with a 400-N

downward disturbance applied for 50 ms, the average

passive fibre force exerted by all muscles remained less

than 3 N per muscle–tendon compartment, while the

average total (tendon) force exerted by all muscles reached

almost 96 N per muscle–tendon compartment. Thus, we

infer that passive muscle forces play a small role compared

to active muscle forces in stabilising the body during

walking.

We have presented a 3D muscle-driven simulation that

reproduced major features of unimpaired walking for 10

gait cycles. Previous simulations of walking (e.g.

Anderson and Pandy 2001) have enabled researchers to

examine how muscles contribute to vertical support,

forward propulsion and leg motions (Neptune et al. 2001,

2004, 2008; Anderson and Pandy 2003; Anderson et al.

2004; Goldberg et al. 2004; Arnold et al. 2005; Higginson

et al. 2006b; Liu et al. 2006, 2008). However, these

simulations have been shorter in duration, typically less

than a gait cycle; in our study, we needed a simulation of

more than 2 s of walking to separate the destabilising

effects of disturbing forces from the destabilising effects

of numerical error during forward dynamics analyses.

Other simulations of longer-duration walking movements

have not been effectively compared to experimental data

in the literature (Taga 1995; Hase et al. 2003) or have not

been driven by muscles (Raibert and Hodgins 1991). The

simulation in this study accurately reproduced the

subject’s motion and joint moments from the experiment.

The computed muscle control algorithm reproduced some

muscle activation patterns well, although it failed to

produce anticipatory muscle activations known to occur in

humans.

Our results should be interpreted in light of several

limitations. First, our musculoskeletal model is inherently

unstable to a certain extent: after 2 s in an open-loop

forward dynamics analysis, the model begins to deviate

Table 1. Deviations of model coordinates from the simulation after a 50-ms forward dynamics analysis with a 400-N disturbance
applied throughout the 50 ms to the mass centre of the pelvis.

Forward Backward Upward Downward Rightward Leftward

# worse (no props) 14/19 14/19 17/19 18/19 16/19 14/19
Sum (with props) 14.7 14.2 15.2 14.8 9.1 9.2
Sum (no props) 34.1 36.2 62.6 55.8 23.0 22.7
RMS (with props) 1.1 1.0 1.0 1.1 0.7 0.7
RMS (no props) 2.5 2.7 4.0 3.6 1.7 1.8

Note: Deviations were computed for disturbances in six different directions: forward, backward, upward, downward, rightward and leftward. The ‘# worse (no props)’ row shows
the number of coordinates (out of 19 total) for which the model with no intrinsic muscle properties deviates as much or more from the simulation than the model with all intrinsic
muscle properties. The remaining four rows represent sums of deviations and RMS deviations of the 16 joint angles (including the three pelvis orientation angles) during forward
dynamics analyses using the model with all intrinsic muscle properties ‘(with props)’ and the model with no intrinsic muscle properties ‘(no props)’. See Table S3 for the
deviations of each model coordinate. This table pertains to the forward dynamics analyses shown in this paper, which are during the left-to-right double support phase starting at
62% of the gait cycle from 83 to 33 ms before left toe-off (Figure S5B).
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from the simulation’s original trajectory due to the

accumulation of numerical error (see Materials and

methods). However, the model’s motion deviates much

more rapidly in the presence of a disturbing force (e.g.

400 N) applied over a small time scale (e.g. 50 ms). Thus,

due to the large difference in time scale during which the

model remains close to the original walking motion with

and without a disturbance, we believe that our study

accurately captures the effect of the disturbance on the

model’s motion and that the coordinate deviations we

measured in the presence of disturbances were not due to

the accumulation of numerical error. Although our study

does not measure the overall stability of a model, we do

compare the deviations of each model from a reference

motion to show that intrinsic muscle properties resist the

deviation of a model from a typical walking movement

due to disturbances applied in a variety of directions.

Second, the Hill-type muscles (Thelen 2003) used in

this study include intrinsic force–length and force–

velocity properties of muscle fibres and elasticity of

tendon, but lack other intrinsic properties of real muscles

that could influence stability. For example, Daley et al.

(2009) showed that after an unexpected drop in terrain,

history-dependent changes in force production, not

captured by Hill-type muscle models, played a role in

stabilising the motion of a running guinea fowl. Also,

short-range muscle stiffness (Rack and Westbury 1974)

causes muscles to resist lengthening with a sharp rise in

stiffness at the beginning of a movement. While the

inclusion of additional properties of muscles, such as

short-range stiffness, may increase stabilisation, we have

shown that force–length–velocity properties of muscle

fibres and tendon elasticity make important contributions

to stability. Note that our study does not separate out the

effects of force–length–velocity properties of fibres and

tendon elasticity on stabilisation. Fibre–tendon interaction

can have notable effects on muscle function (Roberts and

Azizi 2010), although tendon elasticity plays a smaller role

in walking than in running (Cavagna and Kaneko 1977).

The precise effects of short-range stiffness, history-

dependent force changes and other properties on stability

could be investigated in future studies.

Third, our results have been determined based on only

one subject. In other subjects, we would expect some small

differences in the magnitudes of joint angle deviations and

muscle activations due to differences in quantities such as

the sizes and walking speeds of the subjects, but these

changes would not alter the conclusions of the study.

Finally, we did not explicitly simulate arm motion.

External forces and moments applied to the model (see

Appendix) are intended, in part, to represent the

mechanical effects of arm motion. Additional work is

needed to better understand how arm motion affects the

stability of walking.

In general, it has not been possible to reproduce the

results of biomechanical simulation studies because few

studies have made available the software and models used

to generate their simulations. Generating accurate

simulations requires substantial effort, and the lack of

available simulations has severely limited the use of

simulations to investigate a variety of fundamental

questions related to control and coordination of walking.

The simulation of 10 complete gait cycles presented in this

study is available for analysis in OpenSim, a freely

available software system, so that others can reproduce our

results and perform additional analyses (Delp et al. 2007).

This simulation can serve as reference data for a variety of

future studies of normal and pathological walking.
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Appendix

Evaluation of the motion of the simulation

The average simulated pelvic tilt angle (i.e. the pelvic tilt angle
during the simulation) was within one standard deviation of the
values reported in Kadaba et al. (1989). The average simulated
pelvic list angle was within the range of values determined by the
mean^one standard deviation of the values reported by Kadaba
et al. (1989, 1990) for 56% of the gait cycle; the simulated angle
deviated from Kadaba et al. (1989) by at most 3.6 standard
deviations. The average simulated pelvic rotation angle was
within the range of values determined by the mean ^ one
standard deviation of the values reported by Kadaba et al. (1989,
1990) for 77% of the gait cycle; the simulated angle deviated
from Kadaba et al. (1989) by at most 2.1 standard deviations. The
average simulated right hip flexion angle remained within the
range of values determined by the mean ^ one standard
deviation of the values reported by Kadaba et al. (1989, 1990)
for 100% of the gait cycle, while the left hip flexion angle did so
for 98% of the gait cycle. The average simulated right hip
adduction angle remained within the range of values determined
by the mean ^ one standard deviation of the values reported by
Kadaba et al. (1989, 1990) for 100% of the gait cycle, while the
left hip adduction angle did so for 65.5% of the gait cycle; the
simulated left hip adduction angle deviated from Kadaba et al.
(1990) by at most 1.8 standard deviations. The average simulated
right hip rotation angle remained within the range of values
determined by the mean ^ one standard deviation of the values
reported by Kadaba et al. (1989, 1990) for 83% of the gait cycle,
while the simulated left hip rotation angle did so for 71% of the
gait cycle; the simulated right hip rotation angle deviated from
Kadaba et al. (1989) by at most 3.1 standard deviations, while the
simulated left hip rotation angle deviated by at most 3.4 standard
deviations. In the simulation, the knee did not fully extend in
mid-stance (Figure S1), as was reported by Crowninshield et al.
(1978); the average simulated right knee flexion angle deviated
from Kadaba et al. (1990) by at most 3.6 standard deviations,
while the simulated left knee flexion angle did so by at most 2.6
standard deviations. The average simulated right ankle
dorsiflexion angle deviated from Kadaba et al. (1990) by at
most 2.9 standard deviations, while the simulated left ankle
dorsiflexion angle did so by at most 3.5 standard deviations.

Evaluation of the joint moments of the simulation

Joint moments from the simulation generally agreed with hip
flexion moments (Cappozzo et al. 1975; Crowninshield et al.
1978; Inman et al. 1981), hip adduction and rotation moments
(Crowninshield et al. 1978; Patriarco et al. 1981), knee flexion
and ankle plantarflexion moments (Cappozzo et al. 1975; Inman
et al. 1981) and lower back moments (Cappozzo 1983) from the
literature. A few differences between the simulated moments
and the literature are noted here. The hip flexion moment
(Figure S2) in the simulation was higher in late stance than what
has been reported in the literature. The hip flexion moment also
reaches a maximum at an earlier time in the gait cycle than what
has been reported in some sources (Cappozzo et al. 1975; Inman
et al. 1981). However, the timing of the maximum hip flexion
moment agrees well with Crowninshield et al. (1978). The knee
extension moment (Figure S2) is low in push-off compared to
the literature (Cappozzo et al. 1975; Patriarco et al. 1981), but
the knee also did not extend fully from mid-stance through push-
off, unlike typical literature values (see the section on
Evaluation of the motion of the simulation). The ankle
dorsiflexion moment (Figure S2) exhibits more dorsiflexion

than typical literature values during early stance, but has a
plantarflexion moment during late stance that agrees with the
literature (Cappozzo et al. 1975; Patriarco et al. 1981). The
lower back moments (Figure S3) generally agree with the
literature (Cappozzo 1983).

Some asymmetry is apparent in the joint moments in this
simulation. The hip abduction moment, hip rotation moment and
knee extension moment are at times higher on the left leg than on
the right leg (Figure S2). However, the asymmetry in the knee
extension moment did not appear to substantially affect the
activation of the knee extensor muscles. Asymmetry in muscle
activations is discussed further in the section below.

Evaluation of the muscle activations of the simulation

Gluteus maximus and gluteus medius activation patterns agreed
with Perry (1992) and Cappellini et al. (2006). The anterior
compartment of the gluteus medius was activated not only during
early stance, but also during late stance, which disagrees with
Perry (1992) and Cappellini et al. (2006), but is similar to
activations modelled by Anderson and Pandy (2001). Iliacus,
psoas and tensor fasciae latae are activated during late stance.
The activations of sartorius and tensor fasciae latae otherwise
agree well with the literature.

The activations of muscles spanning the knee joint were
slightly atypical, but were consistent with the joint moments in
the simulation. Experimental EMG measurements (Perry 1992;
Cappellini et al. 2006) demonstrate that the vasti become
activated starting in terminal swing and remain activated
through early stance. However, in our simulation, the vasti do
not become activated until about 5–10% into each gait cycle,
which is consistent with a knee extension moment not being
generated until 5–10% into each gait cycle; this knee extension
moment pattern is consistent with Cappozzo et al. (1975). The
activations of the hamstrings muscles generally agree with the
literature (Perry 1992; Cappellini et al. 2006), with semi-
membranosus and semitendinosus becoming activated in late
swing and remaining activated through early stance. As
reported in Perry (1992), the short head of the biceps femoris
muscle becomes activated only in swing. Unlike what Perry
(1992) reports, however, the rectus femoris muscle in our
simulation does not exhibit a burst of activation in push-off
(though it is slightly activated during push-off). This is
consistent with the lower than normal knee extension moment
at push-off observed in this subject’s motion (see the section
on Evaluation of the joint moments of the simulation).

Other muscles’ activations also agreed well with previous
experimental studies. Plantarflexors (soleus and medial and
lateral heads of gastrocnemius) and dorsiflexors (tibialis
anterior, extensor hallucis longus and extensor digitorum
longus) exhibit activations that are highly consistent with
experimentally measured EMG (Perry 1992; Cappellini et al.
2006). Activations of hip abductor and adductor muscles
generally agree with the literature (Perry 1992; Cappellini et al.
2006), although adductor magnus remains activated during part
of the latter half of stance when there is a substantial hip
abduction moment. There is some co-contraction between
adductor magnus and hip abductors such as sartorius and tensor
fasciae latae during this time.

Asymmetry is evident in the activations of some muscles,
similar to the asymmetry seen in some joint moments (see the
section above on Evaluation of the joint moments of the
simulation). Gluteus medius, gluteus minimus, iliacus and tensor
fasciae latae on the left leg appear to have higher activations than
do the corresponding muscles on the right leg.
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Improving dynamic consistency

Typically, motion and ground reaction forces obtained from
motion capture are dynamically inconsistent, i.e. they violate
Newton’s second law, because of measurement error and
modelling assumptions. When these motion and force data are fit
to a musculoskeletal model of the human body via the inverse
kinematics algorithm (described in the Materials and methods
section of the manuscript as computing joint angles for the model
that minimised the sum of squared distances between the
measured and model marker positions), the ground reaction
forces and moments, inertia properties and accelerations of the
model thus violated Newton’s second law, so a non-zero residual
force and a non-zero residual moment were applied to make the
whole system satisfy Newton’s second law. However, since the
residual force and moment were unphysiologic, a residual
reduction algorithm (Delp et al. 2007) was used to make small
changes to the location of the centre of mass of the torso segment
in the model, the total mass of the model and the joint angles to
reduce the magnitudes of the residual force and the moment
acting on the model during the movement.

The residual reduction algorithm modified the movement
mechanics such that the lumbar (lower back) extension moment
in the simulation agrees more closely with the literature than the
moment computed from the experimental data (Figure S3).

The residual reduction algorithm modified the pelvis
translations by 2, 1 and 1 cm (RMS) in the fore-aft, vertical
and mediolateral directions, respectively (Table S2). The residual
reduction algorithm reduced the amplitudes of the fore-aft,
vertical and mediolateral components of the residual force from
45 to 6 N, from 134 to 14 N and from 43 to 5 N, respectively, and
the frontal component of the residual moment from 53 to 29 Nm.
The residual reduction algorithm changed the amplitudes of the
transverse and sagittal components of the residual moment by
less than1 N, but the algorithm reduced the absolute values of the
average values of the frontal and sagittal components from 7.1 to
1.3 Nm and from 12.8 to 0.3 Nm (Figure S4).

Deviations of 50-ms simulations due to disturbances

Table S4 shows 50-ms analyses we ran starting at times in the
gait cycle other than the one we presented in the paper. Figure S5
shows the configuration of the model at each of these times. Start
times and durations for these analyses are:

. Starting at 44% of the gait cycle (8.0 s): the 50-ms analysis

runs from 77 to 27 ms before right initial contact, so the

contact event is not included in the forward dynamics

analysis.

. Starting at 80% of the gait cycle (8.4 s): the 50-ms analysis

occurs during right single stance: it starts approximately

120 ms after left toe-off; no foot-ground contact event

occurs during the forward dynamics analysis.

. Starting at 7% of the gait cycle (8.7 s): the 50-ms analysis

occurs during the right-to-left double support phase

starting 80 ms after left initial contact; no foot-ground

contact event occurs during the forward dynamics

analysis.

For smaller disturbing forces such as 200 and 100 N, we have
observed results similar (but with smaller deviations in the joint
angles) to those reported in the manuscript. When upward
disturbances are applied, a 400-N disturbing force caused a RMS
deviation of 48 over all joint angles over 50 ms when intrinsic

muscle properties were absent, as opposed to a 200-N disturbing
force, which caused a RMS deviation of 1.98 and a 100-N
disturbing force, which caused a RMS deviation of 0.98 (Table
S5).

Video S1. Video showing muscle activations and motion of
the model in the 3D simulation of 10 gait cycles of walking
analysed in this paper: https://simtk.org/docman/view.php/55/
783/10gc.avi

Muscle model

Each muscle-tendon compartment in our musculoskeletal model
is represented by the muscle model described in this section. The
muscle model used in our simulation is a slight modification of
the Hill-type muscle model presented in Thelen (2003). At a
given time t in a simulation, the muscle model’s inputs are
activation, aðtÞ (a real number between 0 and 1 inclusive) and
fibre length, lMðtÞ. The muscle model’s outputs are the force,
FMTðtÞ, of the muscle-tendon compartment and, for the next time
step, t þ Dt, the time derivative of activation, _aðt þ DtÞ, and the
time derivative of fibre length, _lMðt þ DtÞ. Here, we describe how
the force of the muscle-tendon compartment, time derivative of
activation and fibre velocity are calculated.

Activation dynamics represents how an excitation, uðtÞ, a
unit-less value between 0 and 1, is transformed into an activation,
aðtÞ, a unit-less value between 0 and 1, of a muscle. When a
muscle is neurally excited, its activation gradually increases,
while if a muscle’s excitation decreases, its activation also
decreases, albeit at a slower rate than the increase. The time
derivative of activation is calculated as:

_aðt þ DtÞ ¼
uðtÞ2 aðtÞð Þ=tact; uðtÞ $ aðtÞ

uðtÞ2 aðtÞð Þ=tdeact; uðtÞ , aðtÞ

(
;

where tact ¼ 10 ms and tdeact ¼ 40 ms.
As shown in Figure S6A, our muscle model consists of two

parts: the muscle fibres and the tendon. The muscle fibres may be
slanted relative to the tendon at an angle called the pennation
angle. The muscle fibres consist of a passive element that
produces passive force (i.e. force due to the fibres’ inherent
stiffness) and a contractile element that produces active force (i.e.
force due to activation of the muscle).

Our muscle model contains several parameters. Some
parameter values vary between muscles in our musculoskeletal
model while other parameter values are the same for all muscles.
The parameter values that vary between muscles are:

. FM
0 , the maximum isometric force of the muscle

. lM0 , the optimal fibre length of the muscle

. lTs , the tendon slack length, the tendon length below which

the tendon (and therefore the whole muscle) produces zero

force

. a0, the pennation angle of the muscle fibres at the optimal

fibre length

The parameter values that are the same across muscles are:

. 1M0 ¼ 0:6, passive muscle strain due to maximum

isometric force

. ktoe ¼ 3, an exponential shape factor

. 1T0 ¼ 0:033, tendon strain due to maximum isometric

force

. klin ¼ 1:712=1T0 , a linear shape factor

C.T. John et al.10
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. 1Ttoe ¼ 0:6091T0 , tendon strain above which tendon force is

linear with respect to tendon strain

. �F
T
toe ¼ 0:333333, normalised tendon force above which

tendon force is linear with respect to tendon strain

. k PE ¼ 4, an exponential shape factor for the passive

force–length relationship

. g ¼ 0:5, a shape factor for the Gaussian active force–

length relationship

. Af ¼ 0:3, a shape factor for the force – velocity

relationship

. �F
M
len ¼ 1:8, maximum normalised muscle force achievable

when the fibre is lengthening

A bar over variables representing lengths indicates normal-
isation with respect to the optimal fibre length, e.g. �lM ¼ lM=lM0
is the ‘normalised fibre length’. A bar over variables representing
forces indicates normalisation with respect to the maximum
isometric force, e.g. �FMT ¼ FMT=FM

0 is the ‘normalised muscle-
tendon compartment force’.

The computation of muscle-tendon compartment force
proceeds as follows. From the configuration of the musculoske-
letal model of the body at time t, we obtain the length of the
whole muscle-tendon unit, lMTðtÞ. The tendon length is then
calculated:

lTðtÞ ¼ lMTðtÞ2 lM cosaðtÞ:

From this, a normalised quantity called the tendon strain is
calculated:

1T ¼ �lT 2 �l
T

s

� �
=�l

T

s :

Then the tendon force is calculated as F TðtÞ ¼ FM
0
�FT 1T

� �
,

where

�FT 1T
� �

¼ 0:001 1 þ 1T
� �

þ

klin 1T 2 1Ttoe

� �
þ �F

T
toe; 1T . 1Ttoe

�F
T
toe

e
ktoe1

T=1T
toe21

ektoe21
; 0 , 1T # 1Ttoe

0; 1T # 0

8>>><
>>>:

represents the normalised tendon force–strain relationship, also
known as tendon elasticity, tendon compliance or tendon
stiffness. The extra term 0:001ð1 þ 1TÞ exists to prevent the
tendon from going completely slack during a simulation.
The tendon attaches the muscle fibres to the bones in the
musculoskeletal model, so the force in the tendon is the force
generated by the muscle-tendon compartment as a whole, so
FMTðtÞ ¼ F TðtÞ.

The computation of fibre velocity proceeds as follows. The
width of each muscle, kept constant as w ¼ lM0 sina0, and the
current fibre length, lMðtÞ, are used to calculate the pennation
angle,

aðtÞ ¼

0; lMðtÞ ¼ 0 or w=lMðtÞ # 0

sin 21 w=lMðtÞ
� �

; 0 , w=lMðtÞ , 1

p=2; w=lMðtÞ $ 1:

8>><
>>:

The active force in the muscle fibres is computed as

FaðtÞ ¼ aðtÞf l l
MðtÞ

� �
¼ aðtÞFM

0
�fl �l

MðtÞ
� �

;

where

�fl �l
MðtÞ

� �
¼ e2ð�lMðtÞ21Þ2=g;

is a Gaussian function representing the normalised active force–
length relationship for all muscles in our musculoskeletal model.
The passive force in the muscle fibres is computed as
FPEðtÞ ¼ FM

0
�FPEð�lMðtÞÞ, where

�FPE �lM
� �

¼

1 þ k PE

1M
0

�lM 2 1 þ 1M0
� �� �

; �lM . 1 þ 1M0

e
k PE ð�l M21Þ=1M

0

ek
PE ; �lM # 1 þ 1M0

8><
>:

is a function representing the normalised passive force–length
relationship for all muscles in our musculoskeletal model. This
function is affine for large forces (the first case in the above
equation) and is otherwise exponential (the second case in the
equation). The total effect of the normalised passive and active
force–length relationships yields a function that increases, levels
off, decreases slightly and then increases rapidly (Figure S6B).
All muscles in our musculoskeletal model have this same
normalised force–length property. It has been shown that the
shapes of the total force–length curve for different muscles in the
body are not identical (Gareis et al. 1992): while some muscles
have a slight decrease after the level portion of the total force–
length curve, others have a significant decrease and some have an
increase instead of a decrease. Therefore, our model is an
approximation of the total force–length relationships of muscles
in real humans.

The force in the contractile element is then calculated as

F CEðtÞ ¼
F TðtÞ

cosaðtÞ
2 FPEðtÞ:

The distinction between the force in the contractile element and
the active force calculated above is that the active force does not
include the effects of the force–velocity relationship of the
muscle fibres. We calculate this force–velocity scale factor as

�F
M
V

�iM t þ Dtð Þ
� �

¼
F CEðtÞ

FaðtÞ
:

�F
M
V is an invertible function representing the normalised

force–velocity relationship. The normalised fibre velocity is
calculated as

�iM t þ Dtð Þ ¼ �F
M
V

� �21 F CEðtÞ

FaðtÞ

� �
;

Computer Methods in Biomechanics and Biomedical Engineering 11

D
ow

nl
oa

de
d 

by
 [

C
ha

nd
 J

oh
n]

 a
t 1

0:
01

 0
9 

Ja
nu

ar
y 

20
12

 



where, for any normalised force f,

�F
M
V

� �21

ðf Þ ¼

1þ 1
Af

� �
f 2 1; f , 0

f21

1þ
f
Af

; 0 # f , 1

f21ð Þ �F
M
len21

� �
2þ 2

Af

� �
�F
M
len2f

� � ; 1 # f , 0:95 �F
M
len

10 �F
M
len21

� �
1þ 1

Af

� �
�F
M
len

218:05 �F
M
len þ 18þ

20f �F
M
len21

� �
�F
M
len

� �
; 0:95 �F

M
len # f :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
The exact implementation of �F

M
V

� �21

is slightly different to
adjust for possible numerical issues as described below. The fibre
velocity (un-normalised) is

_lM t þ Dtð Þ ¼ Vmax
�iM t þ Dtð Þ;

where

Vmax ¼ 5 þ 5að ÞlM0 :

Note that �iM is different from �ı_M . �iM , which we calculated above,
is the fibre velocity normalised (i.e. divided) by Vmax, while �ı_M is
the fibre velocity normalised (i.e. divided) by lM0 :

�ı_M ¼
d

dt
�lM
� �

¼
d

dt

lM

lM0

	 

¼

1

lM0

d

dt
lM
� �

¼
_lM

lM0
:

The original normalised force–velocity relationship is

�F
M
V vð Þ¼

vþ1
1þ 1

Af

; v,21

vþ1
12 v

Af

; 21#v,0

2þ 2
Af

� �
v �F

M
lenþ

�F
M
len21

2þ 2
Af

� �
vþ �F

M
len21

; 0#v,
10 �F

M
len21

� �
0:95 �F

M
len21

� �
1þ 1

Af

� �
�F
M
len

�F
M
len

20 �F
M
len21

� � 1þ 1
Af

� �
�F
M
lenv

10 �F
M
len21

� � þ18:05 �F
M
len 218

0
@

1
A;

10 �F
M
len21

� �
0:95 �F

M
len21

� �
1þ 1

Af

� �
�F
M
len

#v:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

This function was inverted to obtain the expressions for �F
M
V

� �21

above, but in the implementation, some additional constants,
j ¼ 0.05 (a passive damping factor for the force–velocity
relationship) and 1 ¼ 1026 are incorporated to prevent possible
numerical errors. The complete implementation of the inverted
normalised force–velocity relationship is as follows:

�F
M
V

� �21

F CE;Fa

� �
¼

F CE

1
12Fa

Faþ
1
Af
þj

þ Fa

Faþj

� �
2 Fa

Faþj
; F CE , 0

F CE2Fa

Faþ
F CE

Af
þj

; 0 # F CE , Fa

F CE2Fa

2þ 2
Af

� �
Fa �F

M
len

2F CEð Þ
�F
M
len

21
þj

; Fa # F CE , 0:95Fa
�F
M
len

f v0 þ
F CE20:95Fa

�F
M
len

1Fa
�F
M
len

f v1 2 f v0

� �
; 0:95Fa

�F
M
len # F CE;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

where

f v0 ¼
0:95Fa

�F
M
len 2 Fa

2þð2=Af Þð Þ0:05Fa
�F
M
len

�F
M
len21

þ j

and

f v1 ¼
0:95 þ 1ð ÞFa

�F
M
len 2 Fa

2þð2=Af Þð Þ 0:0521ð ÞFa
�F
M
len

�F
M
len21

þ j
:

The curves representing the active force–length, passive force–
length and force–velocity properties of fibres and the elasticity of
tendon are shown in Figure S6.

Inverse dynamics

Forces and moments at the joints of the subject in this study were
computed from experimental data using a process known as
inverse dynamics (Featherstone and Orin 2000). Given a model
and its motion (e.g. joint angles as functions of time), Newton’s
second law is applied to the rigid body segments in the model to
compute the forces and moments required at the joints to drive
the model to follow the given motion.
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