
Documents

 An Introduction to
OpenSim

 November 16, 2010
SIMPAR 2010 | Darmstadt, Germany

 Website: SimTK.org/home/opensim

OpenSim Workshop Agenda

Tuesday, November 16, 2010

8:30am – 8:45am Welcome and goals of workshop
– Sam Hamner & Massimo Sartori

8:45am – 9:00am Introduction to the GUI
– Sam Hamner

9:00am – 10:00am Guided GUI example and exploration on your own
– Sam & You

10:00am – 10:30am Break

10:30am – 10:45am Introduction to the API
– Massimo Sartori

10:45am – 11:55am Guided API example and exploration on your own
– Massimo & You

11:55am – 12:00pm Closing Remarks
– Sam & Massimo

vi

Trademarks and Copyright and Permission Notice

SimTK and Simbios are trademarks of Stanford University. The documentation for OpenSim is freely available and
distributable under the MIT License.

Copyright (c) 2008 Stanford University

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

vii

Acknowledgments

OpenSim was developed as a part of SimTK and funded by the Simbios National Center for

Biomedical Computing through the National Institutes of Health and the NIH Roadmap for

Medical Research, Grant U54 GM072970. Information on the National Centers can be found at

http://nihroadmap.nih.gov/bioinformatics.

Table of Contents
1  INTRODUCTION TO THE GUI.. 1 

1.1  What is the OpenSim GUI?.. 1 
1.2  Capabilities .. 2 
1.3  Model and Simulation Repository ... 2 
1.4  Additional Resources and Help ... 2 

2  INVERSE KINEMATICS.. 3 
2.1  The inverse Kinematics Problem: ... 3 
2.2  How It Works .. 3 

2.2.1  Marker Errors...4 
2.2.2  Coordinate Errors...4 
2.2.3  Weighted Least Squares Equation ...4 

2.3  Inputs.. 5 
2.4  Outputs... 5 
2.5  Inverse Kinematics Tool ... 5 

3  INVERSE DYNAMICS ... 9 
3.1  How it Works... 9 
3.2  Inputs.. 9 
3.3  Outputs... 10 
3.4  Inverse Dynamics Tool ... 10 

4  EXAMPLE: INVERSE KINEMATICS AND INVERSE DYNAMICS.. 13 
4.1  Performing Inverse Kinematics ... 13 
4.2  Viewing Inverse Kinematics Results ... 13 
4.3  Performing Inverse Dynamics ... 14 
4.4  Comparing Inverse Dynamics Results .. 14 

5  COMPUTED MUSCLE CONTROL... 15 
5.1  Why is Computed Muscle Control Necessary .. 15 
5.2  How it Works... 15 
5.3  Inputs.. 16 
5.4  Outputs... 17 
5.5  Computed Muscle Control (CMC) Tool ... 17 

6  EXAMPLE: COMPUTED MUSCLE CONTROL .. 19 
6.1  Using Computed Muscle Control .. 19 

ix

6.2  Modifying the Muscle Controls ... 20 
6.3  Experiment On Your Own ... 21 

7  INTRODUCTION TO THE API .. 23 
7.1  API Overview .. 23 
7.2  Prerequisites for Programming with OpenSim.. 23 
7.3  Installing OpenSim ... 24 
7.4  Obtaining the Example Programs ... 25 

8  USING THE OPENSIM API .. 27 
8.1  An Example main Program (“Tug of War”).. 27 
8.2  Setting up Visual Studio with CMake ... 28 
8.3  Create an OpenSim Model ... 29 
8.4  Get the Model’s Ground Body... 29 
8.5  Save the Model to a File.. 30 
8.6  Create a New Block Body... 31 
8.7  Create a Joint .. 32 
8.8  Add the Block Body to the Model.. 32 
8.9  Define Gravity ... 33 
8.10  Initialize the OpenSim Model System ... 33 
8.11  Define Initial Position and Velocity States of the Block .. 34 
8.12  Create the Integrator and Manager for the Simulation .. 34 
8.13  Integrate the System Equations of Motion ... 35 
8.14  Save the Simulation Results ... 35 
8.15  Add Muscles... 36 
8.16  Prescribe Muscle Controls from Functions .. 37 
8.17  Define the Initial Activation and Fiber Length States... 37 
8.18  Add Contact... 38 
8.19  Add a Prescribed Force .. 39 
8.20  Adding a Built-in Analysis ... 40 
8.21  Add a Constraint ... 41 

1

1 Introduction to the GUI

1.1 What is the OpenSim GUI?
OpenSim is a freely available software package that enables you to build, exchange, and

analyze computer models of the musculoskeletal system and dynamic simulations of

movement. OpenSim version 1.0 was introduced at the American Society of Biomechanics

Conference in 2007. Since then, many people have begun to use the software in a wide

variety of applications, including biomechanics research, medical device design, orthopedics

and rehabilitation science, neuroscience research, ergonomic analysis and design, sports

science, computer animation, robotics research, and biology and engineering education.

The software provides a platform on which the biomechanics community can build a library

of simulations that can be exchanged, tested, analyzed, and improved through multi-

institutional collaboration. The underlying software is written in C++ and the graphical user

interface (GUI) is written in Java. OpenSim plug-in technology will make it possible to

develop customized controllers, analyses, contact models, and muscle models among other

things. These plug-ins can be shared without the need to alter or compile source code. You

can analyze existing models and simulations and develop new models and simulations and

visualize them within the GUI.

OpenSim is built on top of SimTK, an open-source simulation toolkit developed to create

mathematical models of biological dynamics. SimTK is being developed by Simbios, an NIH

National Center for Biomedical Computation based at Stanford University. Open-source,

third-party tools are used for some basic functionality, including the Xerces Parser from the

Apache Foundation for reading and writing XML files (xml.apache.org/xerces-c) and the

Visualization Toolkit (VTK) from Kitware for visualization (www.vtk.org). Use of plug-in

technology allows low-level computational components such as integrators and optimizers

to be updated as appropriate without extensive restructuring.

 Capabilities 2

1.2 Capabilities
OpenSim includes a wide variety of features to support modeling, simulation and analysis of

musculoskeletal models. You can find out about these features by completing the tutorials

and browsing the user guide and this handout. Some of the most useful features are:

• Scaling a Musculoskeletal Model

• Performing Inverse Kinematics Analyses

• Performing Inverse Dynamics Analyses

• Performing Static Optimization Analyses

• Generating Forward Dynamics Simulations

• Analyzing Dynamic Simulations

• Plotting Results

• Creating Snapshots and Making Animations

1.3 Model and Simulation Repository
You can create your own models of musculoskeletal structures and dynamic simulations of

movement in OpenSim, as well as take advantage of computer models and dynamic

simulations that other users have developed and shared. For example, you can use existing

computer models of the human lower limb, upper limb, cervical spine, and whole body

which have already been developed and posted at https://simtk.org/home/nmblmodels. You

can also use dynamic simulations of walking and other activities that have been developed,

tested and posted on Simtk.org. We encourage you to share your models and simulations

with the research community by setting up a project on SimTK.org.

1.4 Additional Resources and Help
You can learn more at the OpenSim project site at http://simtk.org/home/opensim. The

project site provides a forum for users to ask questions and share expertise. You can also get

additional information in the following article: Delp, S.L., Anderson, F.C., Arnold, A. S.,

Loan, P., Habib, A., John, C., Guendelman, E.G., Thelen, D.G., OpenSim: Open-source

software to create and analyze dynamic simulations of movement. IEEE Transactions on

Biomedical Engineering, vol. 54, no. 11, pp. 1940-1950, 2007.

The following chapters elaborate on some of the tools in both the GUI and API (Application

Programming Interface) that will be used in the workshop.

3

2 Inverse Kinematics

2.1 The inverse Kinematics Problem:
The Inverse Kinematics Tool solves a problem faced by practically any user who has a

(OpenSim) model and is trying to find the best set of joint angles that the model can assume

that fits recorded experimental data. The experimental data is usually given in the form of

marker trajectories, reported as a sequence of frames.

2.2 How It Works
The Inverse Kinematics Tool goes through each time step (frame) of motion and computes

generalized coordinate values which position the model in a pose that “best matches”

experimental marker and coordinate values for that time step. Mathematically, the “best match”

is expressed as a weighted least squares problem, whose solution aims to minimize both marker

and coordinate errors (if a guess is provided).

Figure 2-1: Inverse Kinematics Tool Overview. Experimental markers are

matched by model markers throughout the motion by varying the generalized

coordinates (e.g., joint angles) through time.

 How It Works 4

2.2.1 Marker Errors

A marker error is the distance between an experimental marker and the corresponding marker

on the model (Figure 2-1) when the model is positioned using the generalized coordinates

computed by the Inverse Kinematics solver. Each marker has a weight associated with it,

specifying how strongly that marker’s error term should be minimized.

2.2.2 Coordinate Errors

A coordinate error is the difference between an “experimental coordinate value” and the

generalized coordinate value computed by the Inverse Kinematics Tool. Experimental coordinate

values can be joint angles obtained directly from a motion capture system (i.e., built-in mocap

inverse kinematics capabilities), or may be computed from experimental data by various

specialized algorithms (e.g., defining anatomical coordinate frames and using them to specify

joint frames that, in turn, describe joint angles) or by other measurement techniques that involve

other measurement devices (e.g., a goniometer). A fixed desired value for a coordinate can also be

a specified constant (e.g., if we know that a specific joint angle should stay at 0˚). The inclusion of

experimental coordinate values is optional; the Inverse Kinematics Tool can solve for the

generalized coordinates using marker matching alone.

2.2.3 Weighted Least Squares Equation

The weighted least squares problem solved by the Inverse Kinematics Tool is

where q is the vector of generalized coordinates being solved for, xiexp is the experimental position

of marker i, xi(q) is the position of the corresponding marker on the model (which depends on

the coordinate values), and qj
exp is the experimental value for coordinate j.

 Inputs 5

2.3 Inputs
Three files are required as input by the Inverse Kinematics Tool:

arm26_elbow_flex.trc: Experimental marker trajectories for a motion trial.

arm26_InverseKinematics_Tasks.xml: Contains the inverse kinematics tasks

(i.e., a specification of which markers should be matched up during the inverse

kinematics solution) and their relative weightings. Matching is based on names.

arm26.osim: The current model loaded in OpenSim

2.4 Outputs
The Inverse Kinematics Tool generates a single file:

arm26_InverseKinematics.mot: Motion file containing the time histories of

generalized coordinates that describe the movement of the model.

2.5 Inverse Kinematics Tool
To launch the Inverse Kinematics Tool, select Inverse Kinematics… from the Tools

menu. The Inverse Kinematics Tool dialog (Figure 2-2) like all other OpenSim tools,

operates on the Current Model open and selected in OpenSim (e.g., arm26). Inverse

kinematics requires that a marker set is associated with the model and the number of

markers is reported (e.g., 3 markers). The IK Trial section specifies the experimental

marker data that the Inverse Kinematics Tool will match with the current model. A Trial

name can be associated with the trial to uniquely identify the resultant motion. The Marker

data for trial field must contain the path to the marker data (in .trc format) and OpenSim

will report the information it recognizes from the file such as the number of markers, the

number of frames and sampling frequency as well as the start and end times of the data set

in the Marker Data pane. Any subset of the time range can be specified for performing

inverse kinematics in the Time range field, but by default the complete time range is

specified. If the Coordinate data for trial flag is checked, then the Inverse Kinematics Tool

will require coordinate values specified in a motion (.mot) file to be loaded.

 Inverse Kinematics Tool 6

Figure 2-2: Inverse Kinematics Tool Dialog

Once a marker file, and possibly a coordinate file, are specified, the behavior of the Inverse

Kinematics Tool can be modified under the Weights tab (Figure 2-3). Each entry in the

table represents a weight in the least-squares equation for either a marker (top table) or a

coordinate (lower table). By selecting a row (or multiple rows), the entry fields below the

panes become editable allowing the marker(s) or coordinate(s) to be enabled and allowing

the user to specify a weight. The weight value will affect to what degree a match should be

satisfied with larger weights penalizing errors for that marker or coordinate more heavily

and thus attempting to match the experimental value more closely. For coordinates, the

coordinate value to be matched can come from a specified motion file or set to its default or

a user-specified (manual) constant value.

When running the Inverse Kinematics Tool from the GUI, the results from inverse

kinematics are not automatically saved to file but are associated with the model under the

Motions category in the model Navigator. One can view multiple Inverse Kinematics results

before saving to file. To save a motion, right click on the motion in the Navigator and select

“Save as.”

 Inverse Kinematics Tool 7

Figure 2-3: Specifying Inverse Kinematics Tool Weights

9

3 Inverse Dynamics

3.1 How it Works
The equations of motion for a multibody system may be written in the following form:

where is the number of degrees of freedom; are the vectors of generalized

positions, velocities, and accelerations, respectively; is the system mass matrix;

 is the vector of Coriolis and centrifugal forces; is the vector of

gravitational forces; and is the vector of generalized forces.

The motion of the model is completely defined by the generalized positions, velocities, and

accelerations. Consequently, all of the terms on the left-hand side of the equations of motion are

known. The remaining term on the right-hand side of the equations of motion is unknown. The

Inverse Dynamics Tool uses the known motion of the model to solve the equations of motion for

the unknown generalized forces (e.g., joint torques).

3.2 Inputs
Two files are required as input by the Inverse Dynamics Tool:

arm26_InverseKinematics.mot: Motion file containing the time histories of

generalized coordinates that describe the movement of the model. This file may be

generated by the Inverse Kinematics Tool.

arm26.osim: The current model loaded in OpenSim.

Note: When analyzing movements with external forces (e.g., ground reaction forces during

walking), this data can be specified on the External Forces tab.

 Outputs 10

3.3 Outputs
The Inverse Dynamics Tool generates a single file in a specified folder:

arm26_InverseDynamics_force.sto: Storage file containing the time histories of the

net forces and torques at each joint.

3.4 Inverse Dynamics Tool
To launch the Inverse Dynamics Tool select, Inverse Dynamics… from the Tools menu.

The Inverse Dynamics Tool dialog (Figure 3-1) like all other OpenSim tools operates on

the Current Model open and selected in OpenSim (e.g., arm26). The Inverse Dynamics Tool

is controlled by a dialog with two tabbed panes. The Main Settings pane specifies

parameters relating to the input kinematics of the current model, the time range for the

analysis, and the output of the results. The External Loads pane specifies parameters

relating to the external loads applied to the model during the analysis.

The Main Settings pane (Figure 3-1) is organized into four main sections entitled Current

Model, Input, Time, and Output. The Current Model section displays an uneditable

name for the current model being used for the inverse dynamics analysis. The Input section

displays editable information specifying the kinematics (e.g., states or motion) describing

the movement of a model. The Time section displays editable information specifying the

start and end time for the inverse dynamics analysis. The Output section displays editable

information specifying the prefix appended to the resulting output file, the directory to

which the file is saved, and the precision (number of decimal places) used when writing

results. You may use the button to browse for a directory to save the output files, and the

 button to explore to the specified directory.

 Inverse Dynamics Tool 11

Figure 3-1: Dialog for the Inverse Dynamics Tool. The main settings pane.

13

4 Example: Inverse Kinematics

and Inverse Dynamics
4.1 Performing Inverse Kinematics

1. Open the Model. To open the model, select Open Model… from the File menu,

then navigate the directory with the Arm26 example (e.g., C:\OpenSim

2.2\examples\Arm26\arm26.osim).

2. Open Inverse Kinematics Tool. To open the tool (Figure 2-2), select Inverse

Kinematics… from the Tools menu.

3. Specify Trial Name. Begin in the Settings pane and enter a name (e.g., inverse

kinematics) for the trial.

4. Specify Marker Data for Trial. Browse to the inverse kinematics directory (e.g.,

..\InverseKinematics) and select the marker file (e.g., arm26_elbow_flex.trc).

5. Specify Time Range. Enter a range from 0 to 1 seconds corresponding to the

interval in the marker file.

6. Confirm Weights. Move to the Weights pane and set all marker weights to 1.

7. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,

arm26_Setup_InverseKinematics.xml).

8. Run and Close Inverse Kinematics Tool. The model’s elbow will begin to flex as

the optimization to best match marker trajectories. When the analysis has completed

by reaching the end of the specified time range, the Motions branch under the

model in the Navigator will be populated by the inverse kinematics motion.

4.2 Viewing Inverse Kinematics Results
1. View Motion. Use the motion viewer to play back the inverse kinematics motion.

2. Save Results from Inverse Kinematics. Right click the new motion in under the

model in the Navigator and select Save As to save the file (e.g.,

arm26_InverseKinematics.mot).

3. Plot Joint Angles from Inverse Kinematics. From the resulting motion (e.g.,

inverse kinematics), plot r_shoulder_elev and r_elbow_flex versus time. (see

Chapter 13 of the OpenSim User’s Guide for complete details on using the plotter).

 Performing Inverse Dynamics 14

4.3 Performing Inverse Dynamics
1. Open Inverse Dynamics Tool. To open the tool (Figure 3-1), select Inverse

Dynamics… from the Tools menu.

2. Specify Unfiltered Input Motion. Use the radio buttons to select the Loaded

motion (e.g., inverse kinematics) and uncheck the Filter coordinates option.

3. Specify Time Range. Enter a range from 0 to 1 seconds corresponding to the

interval in the motion.

4. Specify Output Directory. Set the output Directory (e.g.,

..\InverseDynamics\UnfilteredResults), so that you are able to compare the results

of inverse dynamics analyses using unfiltered and filtered input motions.

5. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,

arm26_Setup_InverseDynamics.xml).

6. Run Inverse Dynamics Tool. You will see the model begin to move as the analysis

flexes the elbow while computing joint torques. When the analysis has completed by

reaching the end of the specified time range, the specified output directory will be

populated by a storage file (e.g., arm26_InverseDynamics_force.sto).

7. Specify New Filtered Input Motion. Check the Filter coordinates option and

enter a cutoff frequency of 6 Hz.

8. Specify New Output Directory. Rename the output Directory (e.g.,

..\InverseDynamics\FilteredResults).

9. Run and Close Inverse Dynamics Tool.

4.4 Comparing Inverse Dynamics Results
1. Plot Noisy Joint Torques from Inverse Dynamics. From the resulting file

(e.g., ..\UnfilteredResults\arm26_InverseDynamics_force.sto), plot

r_shoulder_elev and r_elbow_flex versus time. Leave the Plotter dialog open to

compare subsequent joint torques.

2. Plot Smooth Joint Torques from Inverse Dynamics. From the resulting file

(e.g., ..\FilteredResults\arm26_InverseDynamics_force.sto), plot r_shoulder_elev

and r_elbow_flex versus time. Compare with noisy joint torques.

 Why is Computed Muscle Control Necessary 15

5 Computed Muscle Control

5.1 Why is Computed Muscle Control Necessary
With musculoskeletal models, we are also typically interested in estimating muscle forces and

controls. Traditional approaches to solve for muscle controls computed, like static optimization

(see Chapter 17 of the OpenSim User’s Guide), often fail to reproduce the observed motion (the

inputs to inverse dynamics and static optimization) when applied in a forward dynamics

simulation. There are three principle causes for this discrepancy: 1) forward and inverse

musculoskeletal models do not share identical dynamics, 2) experimental noise and sampling

results in dynamically inconsistent kinematics and 3) musculoskeletal models are nonlinear

dynamical systems and inherently chaotic. Cause 3) is often overlooked but it is important to

realize that even if identical models where used in an inverse and then forward analysis with

noiseless and error-free kinematics (i.e. synthetic data) a forward simulation will fail to reproduce

the initial performance if the initial states of the simulation are not identical, since even the

smallest of differences (to machine precision) can lead to diverging solutions. Cause 2) stems

from the reality that data acquired (from a subject) does not match what could be generated by

the model (satisfying modeled dynamics) and the estimates of joint kinematics (from IK) does

not take into the continuity of system dynamics from one instant to the next given discrete

samples of position data. The largest source of discrepancies is the fact that different models are

used to perform inverse dynamics and static optimization versus that of a forward simulation.

Even when static optimization includes force-length and force-velocity relationships, the estimate

of muscle length and velocity are determined by the length of the whole muscle-tendon unit

(inelastic tendon) and activations do not satisfy excitation-to-activation dynamics present in

forward.

5.2 How it Works
Computed muscle control (CMC) attempts to bridge the gap between forward and inverse

methods by combining: PD feedback control to track experimental kinematic, static optimization

to estimate the feed forward controls (muscle excitations) in order to generate desired

accelerations at a small time (T) in the future, and then forward integration to generate new

states and step forward in time.

 Inputs 16

Figure 5-1: Overview of Computed Muscle Control

PD:

Two formulations of the static optimization problem are currently available in CMC. The first

formulation, called the slow target, consists of a performance criterion () that is a weighted sum of

squared actuator controls plus the sum of desired acceleration errors:

Slow Target:

The second formulation, called the fast target, is the sum of squared controls augmented by a set

of equality constraints (Cj=0) that requires the desired accelerations to be achieved within the

tolerance set for the optimizer:

Fast Target:

5.3 Inputs
The primary inputs to CMC consist of:

arm26_InverseKinematics.mot: Desired kinematics [.mot or .sto file] to be tracked

arm26_ComputedMuscleControl_Tasks.xml : Tracking tasks [.xml file] specifying which
coordinates are to be tracked

(arm26_CMC_Control_Constraints.xml): Optional control constraints [.xml file] used to

limit the allowed values of the actuator controls.

arm26.osim: The current model loaded in OpenSim.

 Outputs 17

(arm26_Reserve_Actuators.xml): Optional set of actuators (reserve are ideal torques)

to append or replace the model’s current set of actuators. Falls under the “Actuators and

External Loads” tab of the CMCTool. In this case, ideal torques supplement muscles if

muscles are unable to generate the required net joint moments.

5.4 Outputs
The following primary CMC outputs are placed in the specified output directory:

arm26_controls.xml: Actuator control [.xml file] (e.g., muscle excitations) computed by CMC
that will drive a forward dynamic simulation.

arm26_controls.sto: Actuator controls [.sto file] computed by CMC in a format suitable for
plotting.

arm26_states.sto: Model states file [.sto file] containing the time histories of all model states
that occurred during the CMC simulation.

arm26_Kinematics_q.mot: Motion file [.mot file] containing the time histories of the
generalized coordinates resulting from CMC (Joint angles are expressed in degrees rather than
radians).

5.5 Computed Muscle Control (CMC) Tool
To launch the Computed Muscle Control Tool, select Computed Muscle Control… from

the Tools menu. The Computed Muscle Control Tool is controlled by a dialog with three

tabbed panes (Fig. 8-2). The Main Settings pane specifies parameters relating to the

controls and states that will be input into the model, the time range for the simulation, and

the output of the results. The Actuators and External Loads pane specifies the actuator

set and the external loads applied to the model during the simulation. The Integrator

Settings pane specifies integrator step sizes and tolerances used to solve the simulation.

Limits on the range of controls can be defined by selecting the option Actuator

constraints check box.

The Main Settings pane (Fig. 8-2) is organized into five main sections entitled Current

Model, Input, Reduce Residuals, Time, and Output. The Current Model section

displays uneditable information about the current model being used for analysis by the

Computed Muscle Control Tool. The Input section displays editable information specifying

the desired kinematics to be tracked by the CMC Tool. You may use the button to browse

 Computed Muscle Control (CMC) Tool 18

for the desired kinematics as either a storage (.sto) or motion (.mot) file. Filtering options

are the next set of inputs, followed by the Tasks (.xml) file that specifies the kinematics to be

tracked, their relative weightings and PD controller gains. The Time section displays

editable information specifying the start and end time for the forward simulation during

CMC as well at the look-ahead time window CMC uses to estimate accelerations in the future

from current controls. The Output section displays editable information specifying the

prefix appended to all of the resulting output files, the directory to which the files are saved,

and the precision (number of decimal places) used when writing results. You may use the

 button to browse for a directory to save the output files, and the button to open an

explorer to the specified directory.

Figure 5-2: Dialog for the Compute Muscle Control Tool. The main settings pane.

19

6 Example: Computed Muscle

Control
6.1 Using Computed Muscle Control

1. Open Computed Muscle Control Tool. To open the tool (Error! Reference

source not found.), select Compute Muscle Control… from the Tools menu.

2. Specify Filtered Input Motion. Browse to the inverse kinematics directory and

select the Desired kinematics file (e.g.,

..\InverseKinematics\arm26_InverseKinematics.mot), check the Filter

kinematics option, and enter a cutoff frequency of 6 Hz.

3. Specify Tracking Tasks. Browse to select the tasks file (e.g.,

arm26_ComputedMuscleControl_Tasks.xml) specifying the joint coordinates for

CMC to track, their relative weightings, and the Kp and Kv gains on the errors.

4. Uncheck Adjust Model. This option is used to specify an adjusted model when

performing residual reduction to obtain more dynamically consistent simulations.

For our example, residual reduction is not necessary.

5. Specify Time Range. The time range for the forward simulation is specified and

these should be set from 0 to 1 sec to correspond to the interval upon which the

controls from static optimization were computed.

6. Set CMC look-ahead window. A time window of 0.01 is generally sufficient for

muscle activations to change enough to produce the desired accelerations.

7. Specify Output Directory. Set the output Directory (e.g.,

..\ComputedMuscleControl\Results), so that you are able to compare the results of a

CMC simulation with Forward Dynamics simulations using Nonphysiological and

Physiological controls generated earlier by Static Optimization.

8. Specify Additional Model Actuators. Set the actuator settings to Append

(rather than replace) edit the Additional actuator set files field by adding an

actuator set file (e.g., arm26_Reserve_Actuators.xml) containing reserve torques.

9. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,

arm26_Setup_ComputedMuscleControl.xml).

 Modifying the Muscle Controls 20

10. Run CMC Tool. You will see the model begin to move as muscles contract and

accelerate the model. When the simulation has completed by reaching the end of the

specified time range, the specified output directory will be populated by states files

(e.g., arm26_states_degrees.mot) and the corresponding motion file (e.g.,

arm26_states) will be associated with the model in the GUI.

6.2 Modifying the Muscle Controls
1. Open Excitation Editor by selecting Excitation… from the Edit menu.

2. Load Controls. In the Excitation Editor dialog, load the controls file (e.g.,

arm26_controls.xml) from the static optimization results that use the muscle force-

length-velocity relation. These results are located in your specified output directory

(e.g., ..\ComputedMuscleControl\Results). Select muscle excitations to edit (e.g.,

BIClong).

3. Modify Controls. The controls appear as individual graphs with moveable control

nodes, which enable you to reshape the controls as desired. To select an individual

control node, hold the Ctrl key and click the control node. To select multiple control

nodes, hold the Ctrl key and drag a box (from top left to bottom right) around

control nodes of interest. Use the left mouse button to drag selected control node(s).

Increase the excitation to Biceps Long (BIClong) by 25% or so.

Note: To zoom in, click and drag from the top left to bottom right. To zoom out, click and

drag from bottom right to top left.

4. Save Modified Controls. Use the Save As button to save the modified controls to

a new file (e.g., \ComputedMuscleControl\Results\arm26_Modified_controls.xml).

5. Open Forward Dynamics Tool. To open the tool, select Forward Dynamics…

from the Tools menu.

6. Specify the Controls. In the Forward Dynamics Tool dialog, select the Controls

file (e.g., arm26_Modified_controls.xml) from the static optimization results that do

not use the muscle force-length-velocity relation.

7. Specify Initial States. An initial States file was calculated in the CMC results

(e.g.,\ComputedMuscleControl\Results\arm26_states.sto) and the Forward

Dynamics Tool should use this file.

8. Solve for Equilibrium. This option makes sure that the initial actuator states

(muscle activation, fiber length) are in static equilibrium, that is the rate of

contraction is zero. This is a useful option for setting initial states when one does not

 Experiment On Your Own 21

have reliable estimates and the model is starting from rest. It utilizes the input state

to determine the position of the model and initial activation of the muscles from

which the initial muscle fiber lengths are computed.

9. Specify Time Range. The time range for the forward simulation is specified and

these should be set from 0 to 1 sec to correspond to the interval upon which the

controls from static optimization were computed.

10. Specify Output Directory. Set the output Directory (e.g.,

..\ForwardDynamics_ModifiedCMC_Results), to save the results of the simulation.

11. Specify Model’s Actuators. Set the actuator settings to Append (rather than

replace).

12. Save Settings. Use the Settings > button to save your settings to a setup file (e.g.,

arm26_Setup_ForwardDynamics.xml).

13. Run Forward Dynamics Tool. You will see the model begin to move as muscles

contract and accelerate the model. When the simulation has completed by reaching

the end of the specified time range, the specified output directory will be populated

by states files (e.g., arm26_states_degrees.mot).

14. View New Motion. Use the motion viewer controls to play back the forward

dynamics motion. Was performance improved?

6.3 Experiment On Your Own
1. Experiment with Different Controls. Repeat section 6.2 with other muscle

controls.

2. View Results Simultaneously. Multiple models can be open at once to visualize

simulation results simultaneously. Open another model (e.g., arm26.osim) by

selecting Open model… from the File menu. The new model will appear offset

from the original model. You can associate other motions (e.g.,

arm26_states_degrees.mot) to this model by selecting Load motion… from the

File menu.

3. Make a Movie. Use the camera tool to take snapshots or use the movie-camera to

generate animations. The camera dolly allows the view point of the movie-camera to

change during when the animation is being captured, by interpolating between user

defined views.

23

7 Introduction to the API

7.1 API Overview

This chapter introduces the Application Programming Interface (API) for OpenSim, a freely

available software package for musculoskeletal modeling and dynamic simulation of

movement. For more information on OpenSim, visit the OpenSim project site at

http://simtk.org/home/opensim. The project site provides a forum for users to ask

questions and share expertise, as well as many other resources. The API is intended for users

who want to utilize OpenSim functionality inside their own framework and whose needs are

not satisfied by the GUI.

7.2 Prerequisites for Programming with OpenSim

To run the examples provided in this guide, you will need:

• A computer running Windows XP, Vista or Windows7 (or Mac OSX with

Windows, BootCamp, or VMWare)

• Microsoft’s Visual Studio (version 2005 or 2008) or Visual C++ 2008 Express

Edition (http://www.microsoft.com/express/vc/Default.aspx)

• CMake 2.6.0 or later (http://www.cmake.org/cmake/resources/software.html)

We also recommend the following tools:

• An XML Editor, for example,

o notepad++ (http://notepad-plus.sourceforge.net/uk/site.htm)

o XMLMarker (http://symbolclick.com/download.htm)

• Dependency Walker (http://www.dependencywalker.com/): a third-party, free

tool for checking the interdependency between modules (dll, sys, exe, etc.) on

Windows. It is useful for troubleshooting installation issues.

 Installing OpenSim 24

7.3 Installing OpenSim

1. To install OpenSim API, download the self-extracting executable from the download

page of OpenSim (go to http://simtk.org/home/opensim and click on “Downloads”. The

API is installed by default along with the OpenSim application).

Due to incompatibility between various versions of Microsoft Visual Studio, you need to

download/install the distribution of OpenSim that is consistent with your development

environment: either Visual Studio 2005, 2008, or 2008 Express

Visual Studio 2008 Express is recommended, as it is free and tested!

2. Run the executable, following the on-line instructions.

To be able to run the main programs from the command line (outside Visual Studio), you

need to add the OpenSim libraries to your PATH. This can be done during installation by

selecting the radio button as illustrated below.

Warning: Earlier installations of OpenSim will continue to be accessible but only

through the GUI, which sets its own environment (PATH) variable.

 Obtaining the Example Programs 25

3. Test your installation. Go to the \bin directory for the OpenSim installation (if you

installed in the default location, the full directory is C:\OpenSim2.2\bin). Copy the file

testOpenSimAPI.exe to the directory C:\OpenSim 2.2\sdk\APIExamples\ExampleMain

and then double-click on it to run the test. If everything was installed correctly, a

window should pop up with message like that shown below:

7.4 Obtaining the Example Programs

The examples come with the OpenSim distribution and are located in the sdk\APIExamples

directory for the OpenSim installation (if you installed in the default location, the full

directory is C:\OpenSim 2.2\sdk\APIExamples).

27

8 Using the OpenSim API

8.1 An Example main Program (“Tug of War”)

In this chapter, we will write a main program to perform a forward dynamic simulation

using the OpenSim API. We will build it up in pieces, starting from the simplest possible

OpenSim model, a single block experiencing the force of gravity. In the end, we will have an

OpenSim model with two muscles performing a tug-of-war on the block, with the muscles

and ground reactions counteracting the gravitational force. The resulting source code and

associated files for this example come with the OpenSim 2.2 distribution under the

directory:

C:\OpenSim 2.2\sdk\APIExamples\ExampleMain

Performing a forward dynamic simulation in OpenSim involves a series of steps. Each of

these steps usually requires only a few lines of code. The following sections explain the steps

by gradually developing a complete program, stopping at points where the partial program

can be compiled, run, and its results visualized.

For your convenience, we have provided the source code as a series of exercise-labeled

development snapshots, gradually leading up to the complete program, which is called

TugOfWar_Complete.cpp. After most steps, we will be using the OpenSim GUI to visualize

the model and the motions that result from running the simulations. Each of the steps below

generates output files with the same names.

 Setting up Visual Studio with CMake 28

8.2 Setting up Visual Studio with CMake

To get started we will use CMake to generate a Visual Studio project:

1. Open CMake to generate a Visual Studio solution file. In textbox labeled Where is

the source code:, specify the example directory, e.g. C:\OpenSim

2.2\sdk\APIExamples\ExampleMain. In the textbox labeled Where to build the

binaries, specify a new build directory, such as C:\OpenSim

2.2\sdk\APIExamples\ExampleMain_BUILD.

2. Press Configure. CMake will ask you to create the directory (say “Yes”) and will ask

you to specify your compiler (e.g., Visual Studio 9 2008).

3. If you installed OpenSim in a location other than the default then you need to change

the value of the CMake variable OPENSIM_INSTALL_DIR to point to the actual

installation directory. This can be done either in the CMake interface (after you

“Configure” and before you “Generate”) or alternatively it could be done directly in

the CMakeLists.txt file.

4. Press Configure again. Then press Generate.

5. If you’re using Visual Studio, navigate to the new build directory and find the file

named OpenSimTugOfWar.sln. Double click the file to launch Visual Studio and load

in the solution file that CMake just created.

6. Within Visual Studio, set the Configuration to “RelWithDebInfo” (that is “release

with debug information” – unfortunately it won’t work in Debug).

7. Compile and run the program. If it is working, it should output “OpenSim example

completed successfully.” and do nothing else. If it doesn’t work, be sure to

resolve the problem before attempting to move any further through the exercise.

 Create an OpenSim Model 29

8.3 Create an OpenSim Model

To perform a simulation, we first create an OpenSim model and set its name in our main

program.

#include <OpenSim/OpenSim.h>
using namespace OpenSim;

int main()
{
 try {
 // Create an OpenSim model and set its name
 Model osimModel;
 osimModel.setName("tugOfWar");
 }

 catch (OpenSim::Exception ex) {
 std::cout << ex.getMessage() << std::endl;
 return 1;
 }

 std::cout << "OpenSim example completed successfully.\n";
 return 0;
}

Exercise 1: This version of the example is available as TugOfWar1_CreateModel.cpp.

While the main program above compiles and runs, the OpenSim model it creates is “empty”

and no information is saved to a file. Note that you only need to include the header file

<OpenSim/OpenSim.h> at the top of the file. Also, note the line:

using namespace OpenSim;

This line is required to avoid having to prefix every symbol with OpenSim:: since all

OpenSim classes live in the namespace OpenSim. Another namespace that will appear later

in this guide is SimTK, which is utilized by OpenSim for many fundamental classes.

8.4 Get the Model’s Ground Body

A new OpenSim model comes with a ground body. This ground body, however, has no

geometry attached to it. After we have created an OpenSim model, we get a reference to the

model’s ground body. We can then add display geometry to it so we can visualize it in the

OpenSim GUI:

 Save the Model to a File 30

// Get a reference to the model's ground body
OpenSim::Body& ground = osimModel.getGroundBody();

// Add display geometry to the ground to visualize in the GUI
ground.addDisplayGeometry("ground.vtp");
ground.addDisplayGeometry("anchor1.vtp");
ground.addDisplayGeometry("anchor2.vtp");

OpenSim allows for files of type .vtp, .stl and .obj as display geometry. At this point we still

haven’t saved any information to a file, so the model cannot be opened or visualized within

the OpenSim GUI. We’ll do that next.

8.5 Save the Model to a File

After we have created a ground body and added its display geometry, we save the model to a

file with the “.osim” extension in order to visualize the model we have created.

// Save the model to a file
osimModel.print("tugOfWar_model.osim");

Exercise 2: After we compile and run the main program, we can open the model file

tugOfWar_model.osim in the OpenSim GUI and visualize the ground body (highlighted

with green for this guide).

Figure 8.1: Model with only visible ground geometry.

Except for the colors, you should see an image in the GUI like the one above.

 Create a New Block Body 31

8.6 Create a New Block Body

To add an additional body to the OpenSim model, we create a new block body with inertial

properties and add display geometry to it.

using namespace SimTK;

// Specify properties of a 20 kg, 0.1 m^3 block body
double blockMass = 20.0, blockSideLength = 0.1;
Vec3 blockMassCenter(0);
Inertia blockInertia = blockMass*Inertia::brick(blockSideLength,

blockSideLength, blockSideLength);

// Create a new block body with specified properties
OpenSim::Body *block = new OpenSim::Body("block", blockMass,

blockMassCenter, blockInertia);

// Add display geometry to the block to visualize in the GUI
block->addDisplayGeometry("block.vtp");

The classes Vec3 and Inertia live in the namespace SimTK. You can write them as

SimTK::Vec3 and SimTK::Inertia or include a “using namespace” statement as we did above.

Also, note that the units for mass and length are kilograms and meters, respectively.

OpenSim uses the SI convention (length in meters; mass in kilograms; time in seconds;

forces in Newtons; and moments/torques are in Newton-meters). Angles can be in degrees

or radians; internally, OpenSim uses radians.

Programming Note: OpenSim model objects in this example are allocated on the heap using

“new”. Whenever they are added to the model, the model takes ownership of these objects, you

shouldn’t call “delete” on these objects otherwise the model will be left holding to stale pointers, these

objects will be destructed by the model destructor.

At this point, the block body is not connected to the OpenSim model and cannot be used or

visualized in the GUI. To achieve that, the block body has to be connected to the ground

body (or any other body already in the model) with a joint. We’ll do that next.

 Create a Joint 32

8.7 Create a Joint

Before we add the block body to the OpenSim model, we create a new free joint (i.e., 6

degrees-of-freedom) between the block and ground.

// Create a new free joint with 6 degrees-of-freedom (coordinates)
between the block and ground bodies

Vec3 locationInParent(0, blockSideLength/2, 0),
orientationInParent(0), locationInBody(0), orientationInBody(0);

FreeJoint *blockToGround = new FreeJoint("blockToGround", ground,
locationInParent, orientationInParent, *block, locationInBody,
orientationInBody);

// Get a reference to the coordinate set (6 degrees-of-freedom)

between the block and ground bodies
CoordinateSet& jointCoordinateSet =

 blockToGround->getCoordinateSet();

// Set the angle and position ranges for the coordinate set (SimTK::

prefix not actually needed here)
double angleRange[2] = {-SimTK::Pi/2, SimTK::Pi/2};
double positionRange[2] = {-1, 1};
jointCoordinateSet[0].setRange(angleRange);
jointCoordinateSet[1].setRange(angleRange);
jointCoordinateSet[2].setRange(angleRange);
jointCoordinateSet[3].setRange(positionRange);
jointCoordinateSet[4].setRange(positionRange);
jointCoordinateSet[5].setRange(positionRange);

At this point, the block body and corresponding free joint are ready to be added to the

OpenSim model. Although we defined a FreeJoint in this example, different kinds of joints

are available, with corresponding constructors:

• WeldJoint

• PinJoint

• SliderJoint

• BallJoint

• EllipsoidJoint

• CustomJoint

• Joint (abstract class)

8.8 Add the Block Body to the Model

To finish this step, we simply add the block body to the OpenSim model.

// Add the block body to the model
osimModel.addBody(block);

 Define Gravity 33

Exercise 3: After we compile and run the current main program, we can open the model in

the OpenSim GUI (the model will be overwritten with the same file name

tugOfWar_model.osim as in the earlier step) and visualize the ground body (highlighted

with green for this guide) and the block body (highlighted with blue for this guide). You’ll

also be able to open the “coordinate viewer” within the GUI and interactively change the

coordinates. For the FreeJoint, the built-in names of the coordinates are “X-rotation”, “Y-

rotation”, “Z-rotation” followed by the three translations “X-translation”, “Y-translation”,

and “Z-translation”. These names, however, can be changed by calling the coordinate’s

setName() method directly.

Figure 8.2: Model of a moving free block between two fixed anchors.

Except for the colors, the model in the GUI should look like the image above. Be sure to go to

the “coordinates” pane, move the sliders corresponding to the six coordinates, and note the

effect that has on the block’s position and orientation.

8.9 Define Gravity

In order for the block to actually fall during the simulation, we define the acceleration of

gravity to pull the block towards the ground. The actual direction of the vector is arbitrary;

however, OpenSim uses the convention that gravity is in the negative Y-direction in the

models included with the OpenSim distribution.

// Define the acceleration of gravity
osimModel.setGravity(Vec3(0,-9.80665,0));

8.10 Initialize the OpenSim Model System

An OpenSim model is backed by a SimTK::System, which actually performs the

computations. As such, the model itself is a stateless object with the state being stored

 Define Initial Position and Velocity States of the Block 34

externally in an instance of SimTK::State. To begin simulating the block falling, we initialize

the SimTK::System associated with the OpenSim model and create an instance of the system

state. After the call to initSystem(), no changes should be made to the structure

of the model. For example, adding forces or constraints would require the re-creation of

the system and a fresh call to initSystem() since these objects may have a state of their own

that needs to be incorporated into the system’s state.

// Initialize the system
SimTK::State& si = osimModel.initSystem();

8.11 Define Initial Position and Velocity States of the Block

Next, we define the initial position and velocity of the block. For the free joint, the position

coordinates and their velocities are ordered 0 (x-rotation), 1 (y-rotation), 2 (z-rotation), 3 (x-

translation), 4 (y-translation), and 5 (z-translation).

// Define non-zero (defaults are 0) states for the free joint
CoordinateSet& modelCoordinateSet = osimModel.updCoordinateSet();
// set x-translation value
modelCoordinateSet[3].setValue(si, blockSideLength);
// set x-speed value
modelCoordinateSet[3].setSpeedValue(si, 0.1);
// set y-translation value
modelCoordinateSet[4].setValue(si, blockSideLength/2+0.01);

8.12 Create the Integrator and Manager for the Simulation

We create the integrator and manager for the simulation in order to perform the numerical

integration of the system equations of motion during the forward dynamics simulation. An

OpenSim Manager object collects together all the resources need to perform a simulation,

including the Model, the numerical methods to be employed, the current State, storage for

the trajectory, and runtime options for controlling the simulation.

// Create the integrator and manager for the simulation.
SimTK::RungeKuttaMersonIntegrator

integrator(osimModel.getMultibodySystem());
integrator.setAccuracy(1.0e-4);
Manager manager(osimModel, integrator);

 Integrate the System Equations of Motion 35

8.13 Integrate the System Equations of Motion

We integrate the system equations of motion from the initial time to the final time of the

simulation. Depending on your computer speed, this numerical integration could take from

a few to several seconds.

// Define the initial and final simulation times
double initialTime = 0.0;
double finalTime = 4.0;

// Integrate from initial time to final time
manager.setInitialTime(initialTime);
manager.setFinalTime(finalTime);
std::cout<<"\n\nIntegrating from "<<initialTime<<" to "

<<finalTime<<std::endl;
manager.integrate(si);

8.14 Save the Simulation Results

After we have performed the integration for the forward dynamics simulation, we save the

resulting motion in order to visualize the simulation we have created. Note that OpenSim

uses radians internally but degrees are required in a .mot file, so we have to convert to

degrees before writing out the .mot file for visualization.

// Save the simulation results
Storage statesDegrees(manager.getStateStorage());
statesDegrees.print("tugOfWar_states.sto");
osimModel.updSimbodyEngine().convertRadiansToDegrees(statesDegrees);
statesDegrees.setWriteSIMMHeader(true);
statesDegrees.print("tugOfWar_states_degrees.mot");

Exercise 4: After we compile and run the current main program, we can load the model

and the motion in the OpenSim GUI and visualize the simulation. (To load the motion, go to

File → Load Motion. Select the motion file tugOfWar_states_degrees.mot that we just

wrote out.)

 Add Muscles 36

Figure 8.3: Block is falling in the presence of gravity.

Except for the colors, you should see the above in the GUI. Using the motion slider and video

controls, visualize the motion. You should see the block falling under gravity.

8.15 Add Muscles

To prevent the block from falling through the ground, we create two opposing muscles

between the ground and block. Note: this code must be added before the call to

initSystem, or else the muscles are not included in the simulation.

// Create two new muscles using the Thelen 2003 muscle model
double maxIsometricForce = 1000.0, optimalFiberLength = 0.1,

tendonSlackLength = 0.2, pennationAngle = 0.0,
 activation = 0.0001, deactivation = 1.0;

Thelen2003Muscle *muscle1 = new
 Thelen2003Muscle("muscle1", maxIsometricForce,
 optimalFiberLength, tendonSlackLength, pennationAngle);
muscle1->setActivationTimeConstant(activation);
muscle1->setDeactivationTimeConstant(deactivation);

Thelen2003Muscle *muscle2 = new
 Thelen2003Muscle("muscle2", maxIsometricForce,
 optimalFiberLength, tendonSlackLength, pennationAngle);
muscle2->setActivationTimeConstant(activation);
muscle2->setDeactivationTimeConstant(deactivation);

// Specify the paths for the two muscles
muscle1->addNewPathPoint("muscle1-point1", ground, Vec3(0.0,0.05,-

0.35));
muscle1->addNewPathPoint("muscle1-point2", *block, Vec3(0.0,0.0,-

0.05));
muscle2->addNewPathPoint("muscle2-point1", ground,

Vec3(0.0,0.05,0.35));
muscle2->addNewPathPoint("muscle2-point2", *block,

Vec3(0.0,0.0,0.05));

// Add the two muscles (as forces) to the model
osimModel.addForce(muscle1);
osimModel.addForce(muscle2);

 Prescribe Muscle Controls from Functions 37

8.16 Prescribe Muscle Controls from Functions

We define the control values for each muscle as a linear function of time defined by the slope

of the line and its intercept (value when time=0). We define two linear function one for each

muscle in the tug-of-war.

// Create a prescribed controller that simply applies controls as
function of time

 PrescribedController *muscleController = new
PrescribedController();

 muscleController->setActuators(osimModel.updActuators());
// Define linear functions for the control values for the two

muscles
 Array<double> slopeAndIntercept1(0.0, 2); // array of 2 doubles
 Array<double> slopeAndIntercept2(0.0, 2);
// muscle1 control has slope of -1 starting 1 at t = 0
 slopeAndIntercept1[0] = -1.0/(finalTime-initialTime);

slopeAndIntercept1[1] = 1.0;
// muscle2 control has slope of 1 starting 0.05 at t = 0
 slopeAndIntercept2[0] = 1.0/(finalTime-initialTime);

slopeAndIntercept2[1] = 0.05;

// Set the indiviudal muscle control functions for the prescribed

muscle controller
 muscleController->prescribeControlForActuator("muscle1", new

 LinearFunction(slopeAndIntercept1));
 muscleController->prescribeControlForActuator("muscle2", new
 LinearFunction(slopeAndIntercept2));

8.17 Define the Initial Activation and Fiber Length States

In addition, we define the initial activation and fiber length of each muscle. Once these

parameters are set, we initialize the states for each muscle.

// Define the initial states for the two muscles
// Initial activation correspond to control at time=0
muscle1->setDefaultActivation(slopeAndIntercept1[1]);
muscle2->setDefaultActivation(slopeAndIntercept2[1]);
// Fiber length
muscle2->setDefaultFiberLength(0.1);
muscle1->setDefaultFiberLength(0.1);
// Compute initial conditions for muscles
osimModel.computeEquilibriumForAuxiliaryStates(si);

Exercise 5: After we compile and run the current main program, we can load the motion in

the OpenSim GUI (same file name tugOfWar_states_degrees.mot as before) and visualize

the simulation.

 Add Contact 38

Figure 8.4: Simulation of a falling block suspended by muscles

Except for the colors, you should see something like the above in the GUI. You should see

the block falling under gravity but then restrained by the muscles.

8.18 Add Contact

As you have seen, display geometry does not cause contact forces. To prevent the block from

penetrating the floor, we create some contact geometry and an elastic foundation force

between the floor and a cube.

// Create new contact geometry for the floor and a cube
// Create new floor contact halfspace
ContactHalfSpace *floor = new ContactHalfSpace(SimTK::Vec3(0),

SimTK::Vec3(0, 0, -0.5*SimTK::Pi), ground);
floor->setName("floor");
// Create new cube contact mesh
OpenSim::ContactMesh *cube = new

OpenSim::ContactMesh("blockRemesh192.obj", SimTK::Vec3(0),
SimTK::Vec3(0), *block);

cube->setName("cube");

// Add contact geometry to the model
osimModel.addContactGeometry(floor);
osimModel.addContactGeometry(cube);

// Create a new elastic foundation force between the floor and cube.
OpenSim::ElasticFoundationForce *contactForce = new

OpenSim::ElasticFoundationForce();
OpenSim::ElasticFoundationForce::ContactParameters contactParams;
contactParams.updGeometry().append("cube");
contactParams.updGeometry().append("floor");
contactParams.setStiffness(1.0e8);
contactParams.setDissipation(0.01);
contactParams.setDynamicFriction(0.25);
contactForce->updContactParametersSet(). append(contactParams);
contactForce->setName("contactForce");

// Add the new elastic foundation force to the model
osimModel.addForce(contactForce);

 Add a Prescribed Force 39

Exercise 6: After we compile and run the current main program, we can load the motion in

the OpenSim GUI (same file name tugOfWar_states_degrees.mot as before) and visualize

the simulation. Note: Make sure the file blockRemesh192.obj is in your working

directory.

Figure 8.5: Muscle actuated block gliding on a contact surface

Except for the colors, you should see something like the above in the GUI. You should see

that the block no longer falls through the floor.

8.19 Add a Prescribed Force

To push the block during the tug-of-war, we create a prescribed force to apply to the block.

The prescribed force is applied in the x-direction in the block body’s frame. The point of

application varies linearly from (0, 0, 0) to (0.1, 0, 0) during the simulation.

// Specify properties of a force function to be applied to the block
double time[2] = {0, finalTime}; // time nodes for linear function
double fXofT[2] = {0, -blockMass*9.80665*3.0}; // force values at t1

and t2
double pXofT[2] = {0, 0.1}; // point in x values at t1 and t2

// Create a new linear functions for the force and point components
PiecewiseLinearFunction *forceX = new PiecewiseLinearFunction(2,

time, fXofT);
PiecewiseLinearFunction *pointX = new PiecewiseLinearFunction(2,

time, pXofT);

// Create a new prescribed force applied to the block
PrescribedForce *prescribedForce = new PrescribedForce(block);
prescribedForce->setName("prescribedForce");

// Set the force and point functions for the new prescribed force
prescribedForce->setForceFunctions(forceX, new Constant(0.0), new

Constant(0.0));
prescribedForce->setPointFunctions(pointX, new Constant(0.0), new

Constant(0.0));

// Add the new prescribed force to the model
osimModel.addForce(prescribedForce);

 Adding a Built-in Analysis 40

Exercise 7: After we compile and run the current main program, we can load the motion in

the OpenSim GUI (same file name tugOfWar_states_degrees.mot as before) and visualize

the simulation.

Figure 8.6: Muscle-actuated block with additional perpendicular prescribed force

Except for the colors, you should see something like the above in the GUI. Using the motion

slider and video controls, visualize the motion. You should see that the block now responds

to the prescribed force as well as the muscle controls.

8.20 Adding a Built-in Analysis

Generally, we would like to report various quantities while running a simulation. In this

example, we'd like to report the forces that were applied to the model while running the

forward simulation, so that we can troubleshoot the simulation and validate it. To get this

effect, we will add in one of the built-in analyses that come with OpenSim. The specific

Analysis subclass we will use in this case is ForceReporter. Attaching this analysis to the

simulation will cause the values of the forces applied to the model to be reported in a storage

file at the end of the simulation.

OpenSim provides a set of Analysis subclasses for convenience, in particular:

• Kinematics

• PointKinematics

• Actuation

• ForceReporter

To create the analysis for this step requires adding the following lines of code before we

integrate the model forward:

ForceReporter* reporter = new ForceReporter(&osimModel);
osimModel.addAnalysis(reporter);

 Add a Constraint 41

After the integration is done, we add the line:

reporter->getForceStorage().print("tugOfWar_forces.sto");

This will create a file with columns corresponding to the forces in the muscles and the

applied prescribed forces.

8.21 Add a Constraint

In this section, our goal is to create a constraint such that the motion of the block is along a

specified line. The line we specify will be represented by the vector (1, 0, -1), which will

constrain the motion of the block on a 45º angle between the two anchor points.

// Specify properties of a point on a line constraint to limit the
block's motion

Vec3 lineDirection(1,0,-1);
Vec3 pointOnLine(1,0,-1);
Vec3 pointOnFollowerBody(0,-0.05,0);

// Create a new point on a line constraint
PointOnLineConstraint *lineConstraint = new

PointOnLineConstraint(ground, lineDirection, pointOnLine, *block,
pointOnFollowerBody);

// Add the new point on a line constraint to the model
osimModel.addConstraint(lineConstraint);

Exercise 8: This is the final step of this example. The complete program can also be found

in the file TugOfWar_Complete.cpp. You can use CMake to generate a new solution file with

this as the TARGET, or manually replace the previous source file with this one, from within

Visual Studio.

 Add a Constraint 42

Figure 8.7: Final simulation.

After we re-compile and run the current main program, we can load the new motion file in

the OpenSim GUI (same file name tugOfWar_states_degrees.mot as before) and visualize

the simulation. If you look at the animation from a top view as above, you should see that the

motion of the block is now restricted to traveling along a diagonal line.

