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1  Introduction 
1.1 Getting the Most Out of an OpenSim Workshop 

The OpenSim team at Stanford puts many hours into preparing for workshops and 

developing the software, documentation, and examples. As participants, you’ve put many 

hours into collecting and analyzing your data and now have traveled from around the world 

to spend three days working on your projects.  There are several guidelines we can follow to 

ensure that everyone gets a maximum benefit from the workshop: 

 

• Use the didactic lectures, handouts, and online OpenSim resources we’ve provided as 

the first step for resolving problems. 

• Work together! The participant sitting next to you might be able to answer your 

question just as well or better than a member of the Stanford team. Included with 

your handout materials is a list of all of the workshop attendees and their project 

topics. 

• There will be many Stanford graduate students and staff researchers available to help 

answer questions during the workshop.  Everyone has different areas of expertise.  

Please see the see the workshop leaders to find where best to direct your questions. 

• Have fun and take breaks. We’ve purposely included breaks and time for social 

interaction and ask that you follow this part of the schedule.  Taking the time to rest 

and recharge is essential for everyone.  

• Set a clear and manageable project goal for the workshop. This is the purpose of 

preparing goals slides and the related pre-workshop interaction. 

• Share your results. Create a project on SimTK.org to share your models and 

simulation results at the end of the workshop, if you haven’t done so already.  

Documenting your work will allow other researchers to build on your findings and 

give you credit for the discoveries you’ve made in your research. 

• Teach others. We hope you will share what you learn at the workshop with your 

students and colleagues.  Please contact us if you are interested in starting an 

OpenSim user group or leading a workshop at your local institution. 
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• Fill out our online survey to give us feedback and help us improve OpenSim and 

future workshops. 

 

1.2 Where to Find Additional Resources and Support 

There are many resources available to help with troubleshooting, access models and 

simulation data, and interact with the rest of the OpenSim community. 

1.2.1 The OpenSim GUI 

The OpenSim Help menu provides the following resources: 

• Direct links for filing a bug or requesting a new feature.  

• Direct links to three tutorials for becoming familiar with the OpenSim GUI.   

• A “Convert Files…” utility for converting older OpenSim model and setup file formats 

to the latest version.   

• An “Available Objects…” option that opens a panel that lists all the model 

components, analyses, and tools that are available in OpenSim and lists their setup 

properties that specify the behavior of these objects. 

1.2.2 OpenSim User’s Guide 

The User’s Guide is an extensive resource for most of the features available in OpenSim. For 

assistance using the GUI and learning about setting up Tools in OpenSim, please refer to the 

OpenSim User’s Guide that is available under “OpenSim Documentation” at 

https://simtk.org/docman/?group_id=91. 

1.2.3 Model and Simulation Repository 

You can create your own models of musculoskeletal structures and dynamic simulations of 

movement in OpenSim, as well as take advantage of computer models and dynamic 

simulations that other users have developed and shared. For example, you can use existing 

computer models of the human lower limb, upper limb, cervical spine, and whole body, 

which have already been developed and posted at https://simtk.org/home/nmblmodels. You 

can also use dynamic simulations of walking and other activities that have been developed, 

tested, and posted on SimTK.org. We encourage you to share your models and simulations 

with the research community by setting up a project on SimTK.org.  
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1.2.4 Online Resources 

There are many resources available online for support both during and after the workshop.  

This includes the User’s Guide and model repository described above, as well as a user 

forum, tutorials, examples, webinars, and many other resources.  We’ve recently launched a 

new website that serves as a portal to these resources. It can be found at 

http://opensim.stanford.edu.   You can also find more about OpenSim and related projects 

by other researchers around that world at the SimTKorg  project site at 

http://simtk.org/home/opensim.  

1.2.5 Publications 

You can find additional information in the following article: Delp, S.L., Anderson, F.C., 

Arnold, A. S., Loan, P., Habib, A., John, C., Guendelman, E.G., Thelen, D.G., OpenSim: 

Open-source software to create and analyze dynamic simulations of movement. IEEE 

Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940-1950, 2007. Please cite 

this work in any of your own publications that use OpenSim. 



 

 

2 The OpenSim Workflow 
OpenSim has a broad range of capabilities for generating and analyzing musculoskeletal 

models and dynamic simulations.  This chapter provides an overview of these capabilities 

and a list of resources to find more information about each component of the OpenSim 

workflow.  

 

2.1 The OpenSim Model 

One of the major goals of the OpenSim project is to provide 

a common platform for creating and sharing models of the 

musculoskeletal system. Thus the first component of any 

analysis is an OpenSim model.  An OpenSim model 

represents the dynamics of a system of rigid bodies and 

joints that are acted upon by forces to produce motion.  

The OpenSim model file is made up of components 

corresponding to 

parts of the physical 

system. These parts 

include bodies, joints, 

forces, constraints, 

and controllers 

(Figure 2-1).   

 

For example, in a model used for simulation of human 

walking (Figure 2-2), the bodies represent the 

geometry and inertial properties of the body segments. 

The joints specify the articulations at the pelvis, hip, 

knee, and ankle joints, while a constraint could be 

used, for example, to couple the motion of the patella 

with the model’s knee flexion angle.  The forces in the 

model include both internal forces from muscles and 

ligaments and external forces from interaction with the 

Figure 2-2 An OpenSim model 

for simulation of gait 

Figure 2-1 A conceptual 

representation of an 

OpenSim model and its 

components 
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ground. Finally, the model’s controller determines the activation of muscles (e.g. computed 

muscle control).  

 

Chapter 10 of this handout contains more information about the components of an 

OpenSim model and Chapter 11 describes an example of editing an existing 

model.  Additional information is also available in the OpenSim User’s Guide (Chapter 24).  

A large repository of existing models is available at SimTK.org 

(https://simtk.org/home/nmblmodels).  This library includes models of the lower extremity, 

head and neck, spine, and wrist.  We encourage you to contribute your own models to this 

library to enable other researchers to build on your work and further advance the field. 

 

2.2 Importing Experimental Data 

In many cases, you will use OpenSim to analyze experimental data that you have collected in 

your laboratory.  This data typically includes: 

• Marker trajectories or joint angles from motion capture 

• Force data, typically ground reaction forces and moments and/or centers of pressure 

• Electromyography 

 

Chapter 23 of the User’s Guide contains detailed information about preparing and 

importing your experimental data.  Chapter 3 of this handout describes how to 

preview and verify your data. 

 

2.3 Scaling 

If you are using a generic model from the existing library of models, the next step is to scale 

the model to match the experimental data collected for your subject, functionality provided 

by the Scale tool in OpenSim. The purpose of scaling a generic musculoskeletal model is to 

modify the anthropometry, or physical dimensions, of the generic model so that it matches 

the anthropometry of a particular subject. Scaling is one of the most important steps in 

solving inverse kinematics and inverse dynamics problems because these solutions are 

sensitive to the accuracy of the scaling step. In OpenSim, the scaling step adjusts both the 

mass properties (mass and inertia tensor), as well as the dimensions of the body segments. 
 



   The Inverse Problem 

 

10 

Chapter 4 of this handout provides best practices and trouble-shooting tips for using 

the Scale tool.  In addition, there is detailed documentation of the tool in Chapter 

14 of the OpenSim User’s Guide.  OpenSim Tutorial #3, available from the Downloads page 

of the OpenSim project site on SimTK.org includes an example using the Scale tool.  This 

tutorial is also accessible from the OpenSim application Help menu. 

 

2.4 The Inverse Problem 

OpenSim enables researchers to solve the Inverse Dynamics problem, using experimental 

measured subject motion and forces to generate the kinematics and kinetics of a 

musculoskeletal model (Figure 2-3).   

 

Figure 2-3 The Inverse Dynamics Problem.  In inverse dynamics, experimentally measured 

marker trajectories and force data are use to estimate a model’s kinematics and kinetics. 

2.4.1 Inverse Kinematics 

The Inverse Kinematics (IK) Tool in OpenSim finds the set of generalized coordinates (joint 

angles and positions) for the model that best match the experimental kinematics recorded for a 

particular subject (Figure 2-4).  The experimental kinematics targeted by IK can include 

experimental marker positions, as well as experimental generalized coordinate values (joint 

angles). The IK tool goes through each time step of motion and computes generalized coordinate 

values which positions the model in a pose that “best matches” experimental marker and 

coordinate values for that time step.  Mathematically, the “best match” is expressed as a weighted 

least squares problem, whose solution aims to minimize both marker and coordinate errors.  
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Figure 2-4: Inverse Kinematics Tool Overview. Experimental markers are 

matched by model markers throughout the motion by varying the generalized 

coordinates (e.g., joint angles) through time. 

Some best practices and troubleshooting tips for using the IK tool are included in Chapter 5 

of this handout.  In addition, Chapter 15 of the User’s Guide contains the full 

documentation for running IK in OpenSim.  Tutorial #3, available on the downloads page of the 

OpenSim project site on SimTK.org and from the OpenSim application’s Help menu walks 

through an example of using Inverse Kinematics for human walking. 

2.4.2 Inverse Dynamics 

Dynamics is the study of motion and the forces and moments that produce that motion. The 

Inverse Dynamics (ID) tool determines the generalized forces (e.g., net forces and torques) 

that cause a particular motion, and its results can be used to infer how muscles are utilized 

for that motion. To determine these internal forces and moments, the equations of motion 

for the system are solved with external forces (e.g., ground reactions forces) and 

accelerations given (estimated by differentiating angles and positions twice). The equations 

of motion are automatically formulated using the kinematic description and mass properties 

of a musculoskeletal model in Simbody™.  

 

Some best practices and troubleshooting tips for using the ID tool are included in Chapter 

6 of this handout.  In addition, Chapter 16 of the User’s Guide contains the full 

documentation for running ID in OpenSim.  Tutorial #3, available on the downloads page of the 

OpenSim project site on SimTK.org and from the OpenSim application Help menu walks through 

an example of using ID for human walking. 
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2.4.3 Static Optimization 

Static optimization is an extension of inverse dynamics that further resolves the net joint 

moments into individual muscle forces at each instant in time based on some performance 

criteria, like minimizing the sum of squared muscle forces.  More information about the Static 

Optimization tool available in OpenSim can be found in Chapter 8 of this handout and Chapter 17 

of the OpenSim User’s Guide. 

 
2.5 The Forward Problem 

OpenSim is also capable of generating muscle-driven forward simulations of gait and other 

movements (Figure 2-5).  

 

Figure 2-5 The forward dynamics problem.  In a forward dynamic simulation of motion, 

simulated muscle excitations are used to drive the motion of a model to follow some observed 

movement. 

The Forward Dynamics tool takes a set of controls (e.g., muscle excitations) to drive a model’s 

motion by integrating forward in time. Typically, muscle excitations are generated using the 

Computed Muscle Control (CMC) tool. As a pre-cursor to running CMC, the Residual Reduction 

Algorithm (RRA) is used to minimize the effects of modeling and marker data processing errors 

that aggregate and lead to large nonphysical compensatory forces called residuals.  Specifically, 

RRA alters the torso mass center of a subject-specific model and permits the kinematics of the 

model from inverse kinematics to vary in order to be more dynamically consistent with the 

ground reaction force data. Thus the typical workflow for generating a muscle-driven simulation 

after importing experimental data is Scale->IK->RRA->CMC->Forward Dynamics (Figure 2-6). 
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Figure 2-6 Overview of the workflow for generating a muscle-actuated simulation in 

OpenSim. 

Best practices and troubleshooting tips for Forward, RRA, and CMC are included in Chapters 9, 

10, and 11 of this handout.  Full documentation of Forward Dynamics, RRA, and CMC is available 

in Chapters 18 through 20 of the User’s Guide. 

 

2.6 Analyzing Simulations 

Often, answering your research questions requires delving deeper into the details of a 

simulation.  Thus OpenSim includes an Analyze tool that allows you to estimate, for 

example, muscle fiber or tendon lengths during a motion or the loads on the knee joint.  The 

Analyze Tool enables you to analyze a model or simulation based on a number of inputs that 

can include time histories of model states, controls, and external loads applied to the model.  

The following analyses are available in OpenSim: 

1. Body Kinematics: Reports the spatial kinematics (position and orientation, linear 

and angular velocity, linear and angular acceleration) of specified bodies for the 

duration of the analysis.   

2. Point Kinematics: Reports the global position, velocity and acceleration of a point 

defined local to a body during a simulation.  

3. Muscle Analysis: Reports all attributes of all muscles. This includes: fiber length 

and velocity, normalized fiber length, pennation angle, active-fiber force, passive-

fiber force, tendon force, and more. 
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4. Joint Reactions: Reports joint reaction forces. These are forces that enforce the 

motion of the joint. The force applied to either parent or child and expressed in 

ground, parent or child can be reported. 

5. Induced Acceleration:  Computes accelerations caused or “induced” by individual 

forces acting on a model, for example, the contribution of individual muscle forces to 

the mass center acceleration.   

6. Force Reporter:  Reports all forces acting in the model. For ligaments and 

muscles, the tension along the path is reported and for ideal actuators the scalar 

force or torque is reported. For all other forces, the resultant body forces (force and 

moment acting at the center of mass of the body) are reported. For example, contact 

forces from an ElasticFoundationForce element yields the resultant body force on the 

contacting bodies separately, expressed in ground. For constraints, the same is true, 

except the forces are expressed in the most distal common ancestor body. Whenever 

a constraint involves ground, this is the ground body; however, if for example a 

model of the arm has a hand with fingers touching via a point constraint, then the 

forces are expressed in the nearest common ancestor, which would be the palm (if 

modeled as a single body). 

 

More details about the analyses available in OpenSim are available in Chapter 21 of the 

User’s Guide.  Chpater 22 contains information about conducting an Induced Acceleration 

Analysis in OpenSim. 



 

 

3 Previewing Mocap Data 
3.1 Tips and best practices for collecting experimental data 

The first step for most researchers is collecting experimental data in the form of marker 

trajectories, ground reaction forces, and EMG.  There are several key steps you can take to 

ensure that your motion capture data is as accurate as possible and represented correctly in 

OpenSim:  

• Develop and document lab protocols and standards for your marker sets, camera 

positions, and force plate/camera system coordinate frames. 

• Calibrate center-of-pressure measurements with marker positions using a calibration 

“T” to pinpoint where on the force-plate the point load (lowest tip of the “T”) is being 

applied. If the center-of-pressure calculated from the force-plate does not match the 

“T” location from markers (within marker resolution), you need align the force-plate 

and marker mo-cap reference frames.   

• Digital cameras and camcorders are cheap!  Take lots of photos/video during 

experiments so that you can verify marker placement and other factors for the data 

you collect. 

 

3.2 Using the data previewer 

After performing experiments, motion capture data can be previewed in the OpenSim GUI to 

verify that preprocessing was done correctly and that data is in agreement with the intended 

model. If users have multiple files representing different pieces of data, this tool allows users 

to synchronize data to verify that the data was transformed consistently. The data previewer 

handles two types of data: marker trajectories (contained in .trc files) and measured forces 

(e.g., ground reactions, contained in .mot files).  

 

Select Preview Motion Data… from the File menu. Then browse to select the motion 

capture data file to be visualized. Once selected, OpenSim performs the following actions: 

• Adds a new model to the Navigator with the default name of “ExperimentalData” and 

a unique number, such as “01”. 

• Makes the loaded motion capture data file the current motion. 

This enables the user to perform the following tasks: 
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• Use the motion slider in the toolbar to visualize different frames of data. 

• Synchronize the motions from different motion files. These other motions could be 

either motion capture files or results from OpenSim tools. For example, 

experimentally measured marker trajectories and ground reaction forces can be 

synchronized and superimposed on the result of a forward simulation. 

 

3.3 Visualizing marker trajectories in OpenSim 

In OpenSim, marker trajectories are contained in a .trc file. When loaded with the data 

previewer, a model named “ExperimentalData” will contain the loaded motion file consisting 

of the marker data (e.g. “subject01_walk1.trc”). The “Markers” node lists each individual 

marker found in the file (Fig. 3-1). Nodes corresponding to individual markers have the 

following options (access options by right clicking the marker name): 

• Show: Enabled only if a marker is hidden 

• Show Only: Hides all other markers except for those selected. 

• Toggle Trail Display: Toggles the display of a line representation of the trajectory 

of selected marker(s). 

 

 

Figure 3-1. Navigator view of trajectory data file   

3.4 Visualizing external forces in OpenSim 

In OpenSim, external forces (e.g., ground reaction forces) are contained in a .mot file. The 

header of the selected force (.mot) file is the same as that expected by OpenSim tools (see 

Section 22.5 of the User’s Guide for more detail). For the ground reaction forces used by the 

gait model, the column labels are shown below (for 2 external forces force1, force2, torque1, 

torque2): 
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ground_force1_vx, ground_force1_vy,  ground_force1_vz, 

ground_force1_px, ground_force1_py, ground_force1_pz, 

ground_force2_vx, ground_force2_vy, ground_force2_vz, 

ground_force2_px, ground_force2_py, ground_force2_pz, 

ground_torque1_x,  ground_torque1_y, ground_torque1_z, 

ground_torque2_x,  ground_torque2_y,  ground_torque2_z 

 The data previewer expects groups of 6 columns for a force of the form 

“body”_”ForceName”_{vx, vy, vz, px, py, pz}, where vi corresponds to each component of 

the force and pi corresponds to each component of the location of the force (e.g., center of 

pressure) and 3 columns for a torque of the form “body”_”TorqueName”_{x, y, z}, 

corresponding to each component of the applied torque. Note that this naming convention is 

only necessary for previewing purposes. OpenSim tools employ a new user interface 

enabling you to specifiy any number of forces, along with points of application, or torques to 

a model during any simulation or analysis. 

  

3.5 Previewing transformed data 

For any kind of previewed data (e.g., marker trajectories or ground reaction forces), you can 

visualize the effect of a rigid-body-transform applied to the data and save the data as a new 

file. However, the visualization is transformed to enable users to adapt preprocessing tools 

accordingly. The visual transformation dialog is available as a context menu (Fig. 3-2) by 

right clicking on the node with the data file name.  

  

 

Figure 3-2. Transform data previewer 
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Arrow buttons change the angle for “Rotate X”, “Rotate Y”, and “Rotate Z” that transform 

the data in the viewer. Angles are always positive (0-360°). Translations can be previewed by 

modifying the display offset. The data file is NOT modified by OpenSim, but provides a 

preview so that the appropriate transformation(s) may be determined and applied during 

preprocessing.  

 

Figure 3-3. Preview of motion capture data in OpenSim 
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4 Scaling 
4.1 How it Works 

The Scale Tool alters the anthropometry of a model so that it matches a particular subject as 

closely as possible.  Scaling is typically performed based on a comparison of experimental marker 

data with virtual markers placed on a model.   In addition to scaling a model, the scale tool can be 

used to adjust the locations of virtual markers so that they better match the experimental data. 

 

In this chapter, we provide a conceptual review of the inputs and outputs of the Scale tool 

and a set of troubleshooting tips and best practices for scaling. The OpenSim User’s Guide 

provides detailed information and step-by-step instructions on scaling a model (Chapter 14).  

Carefully scaling your model to match your subject is essential for getting good results from 

later tools, like Inverse Kinematics and Inverse Dynamics. 

 

4.2 Scale Tool 

The Scale Tool is accessed by selecting Tools → Scale Model… from the OpenSim main 

menu bar.  Like all tools, the operations performed by the Scale Tool apply to the current 

model. 

4.2.1 Input 

The modelName_Setup_Scale.xml file is the setup file for the Scale Tool.  Note that all 

filenames given are examples.  You may use different naming conventions, if desired.  The 

setup file contains settings, which help describe the model, data, and parameters for scaling.  

These include: 

1. modelName.osim:  A generic, unscaled model.  

2. modelName_Scale_MarkerSet.xml:  A virtual marker set that corresponds to your 

experimental marker set.  

3. subject_static.trc:  The experimental marker data of your subject in a static pose and 

the time range when the static pose was collected.  The static pose should include the 

subject wearing the full marker set. The marker trajectories are specified in global 

frame. 
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4. modelName_Scale_MeasurementSet.xml:  The measurement set for the Scale Tool, 

which contains pairs of experimental markers, the distance between which are used 

to scale the generic musculoskeletal model.  

AND/OR 

modelName_Scale_ScaleSet.xml:  Scale set for the Scale Tool.  Alternately, you can 

use manual scale factors to scale the generic musculoskeletal model. 

5. modelName_Scale_Tasks.xml:  In addition to scaling the model, the Scale Tool 

moves the virtual markers on the model so that their positions match the 

experimental marker locations.  To do this, the Scale Tool must position the model so 

that it best matches the position of the subject, which requires an inverse kinematics 

problem to be solved.  This file contains the inverse kinematics tasks describing 

which virtual and experimental markers should be matched up during the inverse 

kinematics phase.  The file also contains marker weights, which are relative and 

determine how "well" the virtual markers track experimental markers (i.e., a larger 

weight will mean less error between virtual and experimental marker positions).   

6. subject_static.mot (optional): Experimental generalized coordinate values (joint angles) 

for a trial obtained from alternative motion capture devices or other specialized 

algorithms. You can specify coordinate weights in the Tasks file, if joint angles are know a 

priori.  Coordinate weights are also relative and determine how "well" a joint angle will 

track the specified angle.  

4.2.2 Output  

1. subject.osim:  OpenSim musculoskeletal model scaled to the dimensions of the subject. 

2. subject_static_ik.mot:  A motion file containing the joint angles for the static pose. 

 

4.3 Best Practices and Troubleshooting 

1. When collecting data, take pictures of your subjects in the static pose. 

2. Have your subjects perform movements to calculate functional joint centers at the 

hip, knee, ankle, and/or shoulders and append the joint centers to your static trial 

data. 

3. Measure subject specifics, like height, mass, body segment lengths, mass distribution 

(if DXA is available), and strength (if a Biodex is available). 
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4. Do not use all markers from motion-capture to position and scale the model. 

Markers that match anatomical landmarks and functional joint centers are the only 

markers that can be relied on for scaling. Avoid adjusting their model positions to 

match experimental positions, and use the marker position errors to assess the 

quality of your scaling results.  

5. Some segments, like the pelvis are best scaled non-uniformly. 

6. In general, maximum marker errors for bony landmarks should be <2 cm. 

7. Use what you know about your subject’s static pose when looking at the results of 

Scale.  For example, in a typical static posture ankle angle is generally less than 5º 

and hip flexion angle is less than 10º. 

8. Use the “preview static pose” option in the GUI to visualize the scaled model’s 

anatomical marker positions relative to the corresponding experimental markers to 

see how well the model “fits” the data before adjusting all the markers to match the 

experimental data. 

9. If the results of scale look incorrect, you can either change the location of virtual 

markers or alter marker weightings to calculate static pose.  

10. Use coordinate tasks (Static Pose Weights) to set joint angles for troublesome joints 

(commonly the ankle joint and lumbar joint) that are very sensitive to how the 

markers are placed. For example if it is known that the foot is flat, an ankle angle can 

be provided and then the markers adjusted in order to match the known pose. 

11. It is common to iterate through Scale and Inverse Kinematics to fine-tune segment 

dimensions and marker positions that yield low marker errors for the task of interest. 

12. If using coordinates from a motion capture system make sure that the 

joint/coordinate definitions match otherwise you may cause more harm than good. 

13. The model has a built in assumption that the global Y axis is up.  If your data doesn’t 

fit this, then consider transforming it using the Preview Motion Data option in the 

GUI. 
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5 Inverse Kinematics  
5.1 How It Works 

The Inverse Kinematics Tool steps through each time frame of experimental data and positions 

the model in a pose that “best matches” experimental marker and coordinate data for that time 

step. This “best match” is the pose that minimizes a sum of weighted squared errors of markers 

and/or coordinates. 

 

In this chapter, we provide a conceptual review of the inputs and outputs of the Inverse 

Kinematics (IK) tool and a set of troubleshooting tips and best practices. The OpenSim 

User’s Guide provides detailed information and step-by-step instructions (Chapter 15).  

Getting accurate results from the IK tool is essential for using later tools like Static 

Optimization, Residual Reduction Algorithm, and Computed Muscle Control. 

 

5.2 Inverse Kinematics Tool 

To launch the IK Tool, select Tools → Inverse Kinematics from the OpenSim main menu 

bar.  

5.2.1 Input  

The primary inputs to IK are the following files: 

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model 

with the Scale Tool or by other means, along with an associated marker set containing 

adjusted virtual markers. 

2. motionTrial.trc:  Experimental marker trajectories for a trial obtained from a motion 

capture system, along with the time range of interest 

3. marker_tasks.xml:  A file containing marker weightings.  As in the scale tool, marker 

weights are relative and determine how "well" the virtual markers track experimental 

markers (i.e., a larger weight will mean less error between virtual and experimental 

marker positions). 

4. subject01_coords.mot (optional): Experimental generalized coordinate values (joint 

angles) for a trial obtained from alternative motion capture devices or other 
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specialized algorithms.  You can optionally specify relative coordinate weights in the 

Tasks file, if joint angles are known a priori. 

5.2.2 Output 

1. subject01_ik.mot: A motion file containing the generalized coordinate trajectories 

(joint angles and/or translations) computed by IK. 

 

5.3 Best Practices and Troubleshooting 

1. When collecting experimental data, place three non-collinear markers per body 

segment that you want to track.  You need at least three markers to track the 6 DOF 

motion (position and orientation) of a body segment.  

2. Place markers on anatomical locations with minimum skin/muscle motion. 

3. Weight “motion” segment markers, for example from a triad placed on the thigh 

segment, more heavily than anatomical markers affixed to landmarks like the greater 

trochanter and the acromion, which can be helpful for scaling, but are influenced by 

muscle and other soft tissue movements during motion.  

4. Relative marker weightings are more important than their absolute values. 

Therefore, a weighting of 10 vs. 1 is 10 times more important whereas 20 vs. 10 is 

only twice as important.  Markers are not necessarily tracked better because they 

both have higher weightings. 

5. Total RMS and max marker errors are reported in the messages window. Use these 

values to guide changes in weightings, or if necessary to redo marker placement and 

possibly scaling.  Maximum marker error should generally be less than 2-4cm and 

RMS under 2cm is achievable. 

6. Compare your results to similar data reported in the literature. Your results from an 

unimpaired average adult should generally be within one standard deviation. 
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6 Inverse Dynamics 
6.1 How it Works 

The Inverse Dynamics Tool steps through each time frame of a motion and computes the net 

forces and/or torques at each joint in the model based upon/due to the experimental kinematics. 

The equations of motion relate the model accelerations to the forces and/or joint torques applied 

to the model. 

 

In this chapter, we provide a conceptual review of the inputs and outputs of the Inverse 

Dynamics tool and a set of troubleshooting tips and best practices. The OpenSim User’s 

Guide provides detailed information and step-by-step instructions (Chapter 16). 

 

6.2 Inverse Dynamics Tool 

To launch the Inverse Dynamics Tool select Inverse Dynamics… from the Tools menu. 

The Inverse Dynamics Tool dialog, like all other OpenSim tools, operates on the Current 

Model open and selected in OpenSim. 

6.2.1 Input  

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model 

with the Scale Tool or by other means, along with an associated marker set containing 

adjusted virtual markers.  The model must include inertial parameters. Note that forces 

like contact, ligaments, bushings, and even muscles will be applied to the model based on 

the kinematic state of the model and defaults for the muscle states, unless these forces are 

specifically excluded in the calculation. 

2. subject01_ik.mot: Coordinate motion data (i.e., joint angles or translation for a 

motion) and time range for the motion of interest). 

3. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and 

center of pressure location).  Note that it is necessary to measure and apply or model 

all external forces acting on a subject during the motion to calculate accurate joint 

torques and forces. This file includes the name of the ground reaction force-data file 

(e.g. subject01_grf.mot) as well as the names of the bodies they are applied to. 

Options to specify the forces, point of application, and torques in a global or body 
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local frame (relative to the body to which the force is being applied) are also defined 

here.  

6.2.2 Output 

1. subject01_id.sto: Joint torques and forces, acting along the coordinate axes that 

produce the accelerations estimated (via double differentiation) from your measured 

experimental motion and modeled and external forces applied. 

 

6.3 Best Practices and Troubleshooting 

1. Filter your raw coordinate data, since noise is amplified by differentiation. Without 

filtering, the calculated forces and torques will be very noisy.  

2. Compare your results to data reported in the literature. Your results should be within 

one s.d. of reported values. 

3. Inspect results from Inverse Dynamics to check if ground reaction forces were 

applied correctly or not. For gait, applying ground reaction forces should help reduce 

the forces computed by Inverse Dynamics at the pelvis. 
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7 Forward Dynamics 
7.1 How it Works 

The Forward Dynamics Tool uses the model together with the initial states and controls to run a 

muscle-driven forward dynamics simulation. A forward dynamics simulation is the solution 

(integration) of the differential equations that define the dynamics of a musculoskeletal model.  

 

 

 

7.1.1 Musculoskeletal Model Dynamics 

In contrast to inverse dynamics where the motion of the model was known and we wanted to 

determine the forces and torques that generated the motion, in forward dynamics, a 

mathematical model describes how coordinates and their velocities change due to applied forces 

and torques (moments). 

 

From Newton’s second law, we can describe the accelerations (rate of change of velocities) of the 

coordinates in terms of the inertia and forces applied on the skeleton as a set of rigid-bodies:  

 

 

Multibody dynamics 

 

where q!!  is the coordinate accelerations due to joint torques, τ , Coriolis and centrifugal forces, 

),( qqC  , as a function of coordinates, q , and their velocities, q , gravity, )(qG , and other forces 

applied to the model, F , and [ ] 1)( −qM  is the inverse of the mass matrix. 

 

Moments due to muscle forces 

 

Muscle contraction dynamics 
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),( xaa Α= Muscle activation dynamics 

 

The net muscle moments, mτ , in turn, are a result of the moment arms, )(qR , multiplied by 

muscle forces, f , which are a function of muscle activations, a , and muscle fiber lengths, l , and 

velocities, l . Muscle fiber velocities are governed by muscle contraction dynamics, Λ , which is 

dependent on the current muscle activations and fiber lengths as well as the coordinates and their 

velocities. Activation dynamics, Α , describes how the activation rates, a , of the muscles respond 

to input neural excitations, x , generally termed the model’s controls. These form a set of 

differential equations that model musculoskeletal dynamics. 

7.1.2 States of a Musculoskeletal Model 

The state of a model is the collection of all model variables defined at a given instant in time that 

are governed by dynamics. The model dynamics describe how the model will advance from a 

given state to another through time. In a musculoskeletal model the states are the coordinates 

and their velocities and muscle activations and muscle fiber lengths. The dynamics of a model 

require the state to be known in order to calculate the rate of change of the model states (joint 

accelerations, activation rates, and fiber velocities) in response to forces and controls.  

7.1.3 Controlling a Musculoskeletal Model 

The forces (e.g., muscles) in a musculoskeletal model are governed by dynamics and have inputs 

that affect their behavior. In OpenSim, these inputs are called the controls of a model, which can 

be excitations for muscles or torque generators. Ultimately, controls determine the forces and/or 

torques applied to the model and therefore determine the resultant motion. 

7.1.4 Numerical Integration of Dynamical Equations 

A simulation is the integration of the musculoskeletal model’s dynamical equations starting from 

a user-specified initial state. After applying the controls, the activation rates, muscle fiber 

velocities, and coordinate accelerations are computed. Then, new states at small time interval in 

the future are determined by numerical integration. A 5th-order Runge-Kutta-Feldberg integrator 

is used to solve (numerically integrate) the dynamical equations for the trajectories of the 

musculoskeletal model states over a definite interval in time. The Forward Dynamics Tool is an 

open-loop system that applies muscle/actuator controls with no feedback, or correction 

mechanism, therefore the states are not required to follow a desired trajectory.  
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7.2 Forward Dynamics Tool 

To launch the Forward Dynamics Tool select Forward Dynamics… from the Tools menu. 

The Forward Dynamics Tool dialog like all other OpenSim tools operates on the Current 

Model open and selected in OpenSim. 

7.2.1 Inputs 

Three items are required by the Forward Dynamics Tool: 

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model 

with the Scale Tool or by other means, along with an associated marker set containing 

adjusted virtual markers.  The model must include inertial parameters (segment masses, 

etc.). 

2. subject01_controls.xml: XML	
  file	
  containing	
   the	
   time	
  histories	
  of	
   the	
  model	
  controls	
   (e.g.,	
  

muscle	
  excitations)	
  to	
  the	
  muscles	
  and/or	
   joint	
  torques.	
  This	
   file	
  may	
  be	
  generated	
  by	
  the	
  

user,	
  Static	
  Optimization	
  Tool,	
  or	
  Computed	
  Muscle	
  Control	
  Tool.	
  If	
  no	
  controls	
  are	
  provided	
  

they	
  are	
  assumed	
  to	
  be	
  zero	
  for	
  any	
  actuators	
  in	
  the	
  model. 

3. subject01_states.sto:  Storage file containing the initial states of the musculoskeletal 

model that includes coordinates and their velocities and muscle activations and muscle 

fiber lengths.  Alternately, the simulation can begin from the pose that mode is in without 

providing initial states.  Muscle states are estimated by solving for muscle-fiber and 

tendon force equilibrium.    

A few additional items may be provided to the Forward Dynamics Tool: 

1. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and 

center of pressure location).  

2. Settings for numerical integration 

3. Additionally, analyses can be added so that they are executed during a forward 

simulation. 

7.2.2 Outputs 

The Forward Dynamics Tool generates storage files containing the time histories of the 

model’s controls and states that result from integration of the model’s dynamical equations 

in the output directory specified. 
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7.3 Best Practices and Troubleshooting 

1. Forward dynamics simulations are sensitive to initial conditions and it is good practice to 

double check that they are appropriate for the desired simulation. 

2. If the Forward Tool fails gracefully (i.e., without crashing OpenSim) or the output of 

the Forward Tool drifts too much (i.e., the model goes crazy), shorten the interval 

over which the Forward Tool runs (i.e., make initial_time and final_time closer to 

each other in the Forward Tool setup dialog box or setup file).  Open-loop forward 

dynamics tends to drift over time due to the accumulation of numerical errors during 

integration. 
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8 Static Optimization 
8.1 How it Works 

As described in the previous chapter, the motion of the model is completely defined by the 

generalized positions, velocities, and accelerations. The Static Optimization Tool uses the known 

motion of the model to solve the equations of motion for the unknown generalized forces (e.g., 

joint torques) subject to one of the following muscle activation-to-force conditions: 
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while minimizing the objective function: 
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=

=
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where nm is the number of muscles in the model; ma  is the activation level of muscle m at a 

discrete time step; 0

mF  is its maximum isometric force; ml  is its length; mv  is its shortening 

velocity; ( )mmm vlFf ,,0  is its force-length-velocity surface; jmr ,  is its moment arm about the j th 

joint axis; jτ  is the generalized force acting about the j th joint axis; and p is a user defined 

constant. 

 

8.2 Static Optimization Tool 

To launch the Static Optimization Tool, select Static Optimization… from the Tools 

menu. The Static Optimization Tool dialog window, like all other OpenSim tools, operates 

on the current model open and selected in OpenSim 
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8.2.1 Input 

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model 

with the Scale Tool or by other means, along with an associated marker set containing 

adjusted virtual markers.  The model must include inertial parameters (segment masses, 

etc.). 

2. subject01_ik.mot: Kinematic data (i.e., joint angles) from IK or states (i.e., joint angles 

AND velocities) from RRA and the time range of interest. 

3. x: The exponent for the activation-based cost function, ∑
actuators

xa  to be minimized (i.e., 

the criteria used to solve muscle force distribution problem). 

4. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and center 

of pressure location). Note that you must measure or model all external forces acting on a 

subject during the motion to calculate accurate muscle forces. 

8.2.2 Output 

1. subject01_actuator_forces.sto:  A set of muscle and other actuator forces that produce the 

necessary generalized force (joint torque) for your measured motion. 

 

8.3 Best Practices and Troubleshooting 

1. You can use IK or RRA results as input kinematics.  If using IK results, you usually need 

to filter them, either externally or using the OpenSim analyze/static optimization field.  If 

using RRA results, you usually do not have to filter. 

2. Add residual actuators to the first free joint in the model (typically the ground-pelvis 

joint). 

3. If the actuators/muscles are weak, the optimization will take a long time to converge or 

never converge at all.  This takes a long time.  If troubleshooting a weak model and each 

time, optimization is slow, try reducing the parameter that defines the max number of 

iterations. 

4. Increase the maximum control value of a residual or reserve actuator, while lowering its 

maximum force. This allows the optimizer to generate a large force (if necessary) to match 

accelerations but large control values are penalized more heavily. In static optimization, 

ideal actuator excitations are treated as activations in the cost function. 
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9 Residual Reduction 

Algorithm 
9.1 How it Works 

The purpose of Residual Reduction is to minimize the effects of errors in modeling and marker 

kinematics that lead to significant nonphysical forces called residuals.  Specifically, residual 

reduction slightly adjusts the mass properties of a subject-specific model and the joint kinematics 

from inverse kinematics to improve dynamic consistency with respect to the ground reaction 

force data. 

 

In this chapter, we provide a conceptual review of the inputs and outputs of the Residual 

Reduction Algorithm (RRA) along with a set of troubleshooting tips and best practices for 

completing the tool. RRA is covered in detail in Chapter 19 of the OpenSim User’s Guide. 

 

9.2 Residual Reduction Algorithm Tool 

The residual reduction algorithm tool is accessed by selecting Tools → Residual 

Reduction Algorithm… from the OpenSim main menu bar. Like all tools, the operations 

performed by the computed muscle control tool apply to the current model. 

9.2.1 Input 

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model 

with the Scale Tool or by other means, along with an associated marker set containing 

adjusted virtual markers.  The model must include inertial parameters. 

2. subject01_ik.mot: Kinematic data (i.e., joint angles) from IK and time range. 

3. subject01_RRA_tasks.xml:  A tracking tasks file specifying which coordinates to track 

and the corresponding tracking weight (weights are relative and determine how "well" a 

joint angle will track the specified joint angle from IK). 

4. subject01_RRA_actuators.xml: The Actuator Set specifies the residual and reserve 

actuators to be applied and their parameters, like maximum/minimum force and body or 

joint, or location, depending on the actuator type.  Each degree of freedom in the model 

should have an ideal torque or force (reserve) actuator.  This includes the 6 DOFs of the 
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model’s base segment, which are called the residual actuators.  In most circumstances, 

these Ideal joint actuators used to replace the muscles in the model (by checking “Replace 

model actuators” in the Actuators tab.  

5. subject01_RRA_ControlConstraints.xml: The actuator constraints file specifying the 

maximum and minimum "excitation" (i.e., control signal) for each actuator. Note that the 

maximum/minimum force or torque generated by an ideal actuator is the product of the 

max/min force and max/min excitation. 

6. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and center 

of pressure location).  See Inverse Dynamics (Handout Chapter 6) for more details. 

7. Integrator settings (i.e., max number of steps, max step size, min step size, and error 

tolerance) 

9.2.2 Output 

1. subject01_RRA_states.sto:  Adjusted kinematics (i.e., joint angles) and corresponding 

model states of the simulated motion (i.e., joint angles AND velocities). 

2. subject01_adjusted.osim (optional): A model with adjusted mass properties. 

3. subject01_RRA_forces.sto:  Actuator forces and torques (i.e., joint torques corresponding 

to adjusted kinematics). 

4. subjct01_RRA_controls.xml: Actuator excitations (i.e., control signals needed to generate 

actuator forces and torques) 

 

9.3 Best Practices and Troubleshooting 

1. RMS difference in joint angle during the movement should be less than 2-5º (or less 

than 2 cm for translations). 

2. Peak Residual Forces should be less than 10-20 N. 

3. Compare the residual moments from RRA to the moments from Inverse Dynamics. 

You should see a 30-50% reduction in peak residual moments. 

4. Compare the joint torques/forces to established literature (if available). Try to find 

data with multiple subjects. Your results should be within one standard deviation of 

the literature. 

5. Optimal forces for residuals should be low to prevent the optimizer from "wanting" to 

use residual actuators (an actuator with large optimal force and low excitation is 

"cheap" in the optimizer cost). 
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6. To help minimize residuals, make an initial pass with default inputs, then check 

residuals and coordinate errors. To reduce residuals further, decrease tracking 

weights on coordinates with low error. You can also try decreasing the maximum 

excitation on residuals or the actuator optimal force.  

7. If RRA is failing, try increasing the max excitation for residuals by 10x until the 

simulation runs. Then try working your way back down while also "relaxing" tracking 

weights on coordinates.  

8. If residuals are very large (typically, this is greater than 2-3x BW, depending on the 

motion), there is probably something wrong with either (i) the scaled model, (ii) the 

IK solution, or (iii) the applied GRFs.  To double check that forces are being applied 

properly, visualize GRFs with IK data (you can use the “Preview motion data” 

function in the GUI). 
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10 Computed Muscle Control  
10.1 How it Works 

The purpose of Computed Muscle Control (CMC) is to compute a set of muscle excitations (or 

more generally actuator controls) that will drive a dynamic musculoskeletal model to track a set 

of desired kinematics in the presence of applied external forces (if applicable). 

 

In this chapter, we provide a conceptual review of the inputs and outputs of the Computed 

Muscle Control (CMC) tool, along with a set of troubleshooting tips and best practices.  CMC 

is a tool for estimating the muscle excitations that drive a subject’s motion and is covered in 

detail in Chapter 20 of the OpenSim User’s Guide.   

 

10.2 Computed Muscle Control Tool 

The computed muscle control tool is accessed by selecting Tools → Computed Muscle 

Control… from the OpenSim main menu bar. Like all tools, the operations performed by 

the computed muscle control tool apply to the current model. 

10.2.1 Input 

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model 

with the Scale Tool or by other means, along with an associated marker set containing 

adjusted virtual markers.  The model must include inertial parameters. 

2. subject01_RRA_states.sto: Kinematic data (i.e., joint angles) from RRA and the time 

range of interest. 

3. subject01_CMC_tasks.xml:  A tracking tasks file specifying which coordinates to track 

and the corresponding tracking weight (weights are relative and determine how "well" a 

joint angle will track the specified joint angle from RRA). 

4. subject01_CMC_actuators.xml: This includes reserve and residual actuators,  as in RRA.   

5. subject01_CMC_ControlConstraints.xml: The control constraints file specifying the 

maximum and minimum "excitation" (i.e., control signal) for each actuator. Control 

constraints can also be used to enforce when certain actuators are "on" or "off" and the 

range in which they can operate. 

6. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and center 

of pressure location).  See Inverse Dynamics (Handout Chapter 6) for more details. 
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7. Integrator settings (i.e., max number of steps, max step size, min step size, and error 

tolerance) 

10.2.2 Output 

1. subject01_CMC_states.sto: Model and muscle states of the simulated motion (i.e., joint 

angles AND velocities, muscle fiber lengths AND activations). 

2. subjct01_CMC_controls.xml: Actuator (e.g., muscle) excitations (i.e., control signals 

needed to generate muscle forces and reserve/residual forces and torques). 

3. subject01_CMC_forces.sto: Muscle forces and reserve/residual forces and torques . 

 

10.3 Best Practices and Troubleshooting 

1. Compare the simulated activations to experimental EMG data (either recorded from 

your subject or from the literature).  Activations should exhibit similar timing and 

magnitude to EMG data. 

2. Peak reserve actuators torques should typically be less than 10% of the peak joint 

torque. 

3. If performing Perturbation or Induced Acceleration Analysis, you should verify that 

reserves and residuals contribute less than 5% to the net acceleration of interest. 

4. Compare your results (muscle activations or forces) to other simulations, if available. 

5. To help minimize reserve torques, make an initial pass with default inputs, and then 

check reserves, residuals, and joint angle errors. To reduce reserves further, decrease 

tracking weights on coordinates with low error.   

6. Optimal forces for reserves should be low to prevent optimizer from "wanting" to use 

reserve actuators (an actuator with large optimal force and low excitation is "cheap" 

in the optimizer cost). Increase the maximum control value of residuals so they can 

generate sufficient force, but are penalized for doing so. 

7. If CMC is failing, try increasing the max excitation for reserves and residuals by 10x 

until the simulation runs. Then try working your way back down while also "relaxing" 

tracking weights on coordinates. 
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11 Elements of a Model 
11.1  What is a musculoskeletal model in OpenSim? 

In OpenSim, the skeletal part of a model is represented by rigid bodies interconnected by 

joints. Joints define how a body (e.g., bone segment) can move with respect to its parent 

body. In OpenSim, all bodies have a parent and are connected to its parent via a joint, except 

for ground. Constraints can also be applied to limit the motion of bodies. 

 

Muscles are modeled as specialized force elements that act at muscle points (e.g., insertion 

and origin points) connected to rigid bodies. The force of a muscle is typically dependent on 

the path through muscle points comprised of muscle fiber and tendon lengths, the rate of 

change of the fiber lengths, and the level of muscle activation. OpenSim also has a variety of 

other forces, which represent externally applied forces (e.g. ground reaction forces), passive 

spring-dampers (e.g., ligaments), and controlled linear and torsional actuators. 

 

11.2 Organization of the OpenSim model file 

In formulating the equations-of-motion (i.e., the system dynamics), OpenSim employs 

Simbody which is an open-source multibody dynamics solver. In Simbody and OpenSim, the 

body is the primary building block of the model. Each body in turn owns a joint and that 

joint defines the coordinates and kinematic transforms that govern the motion of that body 

with respect to its parent body. Within the model all bodies are contained in a BodySet. The 

ConstraintSet contains all the kinematic constraints that act on bodies (and/or their 

coordinates) in the model. User forces acting on the model are all included in a ForceSet. 
  
<Model name="Bouncing Ball"> 
 <!—Default values for properties that are not specified --> 
 <defaults> ... 
 <credits> John Doe </credits> 
 <publications> Fantastic Journal of  ... </publications> 
 <length_units> m </length_units> 
 <force_units> N </force_units> 
 <!--Acceleration due to gravity.--> 
 <gravity> 0.00000000      -9.80650000       0.00000000 </gravity> 
 <!--Bodies in the model.--> 
 <BodySet name=""> ... 
 <!--Constraints in the model.--> 
 <ConstraintSet name=""> ... 
 <!--Forces in the model.--> 
 <ForceSet name=""> ... 
 <!--Markers in the model.--> 
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 <MarkerSet name=""> ... 
 <!—ContactGeometry associated which contact forces that are in the model.--> 
 <ContactGeometrySet name=""> ...    
</Model> 

Figure 7-1: Top level organization of an OpenSim model file 

11.3 Specifying a Body and its Joint 

 
Figure 8: A joint (in red) defines the kinematic relationship between two frames (B and 

P) each affixed to a rigid-body (the parent, Po, and the body being added, Bo) 
parameterized by joint coordinates  

 

A body is a moving reference frame (Bo) in which its center-of-mass and inertia are defined, 

and the location of a joint frame (B) fixed to the body can be specified (Fig. 10-2). Similarly, 

the joint frame (P) in the parent body frame (Po) can also be specified. Flexibility in 

specifying the joint is achieved by permitting joint frames that are not coincident with the 

body frame. 

11.3.1 Available Joint Types 

1. WeldJoint: introduces no coordinates (degrees of freedom) and fuses bodies together 

2. PinJoint: one coordinate about the common Z-axis of parent and child joint frames 

3. SliderJoint: one coordinate along common X-axis of parent and child joint frames 
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4. BallJoint: three rotational coordinates that are about X, Y, Z of B in P 

5. EllipsoidJoint: three rotational coordinates that are about X, Y, Z of B in P with 

coupled translations such that B traces and ellipsoid centered at P 

6. FreeJoint: six coordinates with 3 rotational (like the ball) and 3 translations of B in P 

7. CustomJoint: user specified 1-6 coordinates and user defined spatial transform to 

locate B with respect to P 

 

Figure 10-3: Sample Body and Joint Definitions in OpenSim. The right knee joint is 

governed by one coordinate, the knee_angle_r. 

11.3.2 The CustomJoint Transform 

Most joints in an OpenSim model are custom joints since this is the most generic joint 

representation, which can be used to model both conventional (pins, slider, universal, etc…) 

as well as more complex biomechanical joints. The user must define the transform (rotation 

and translation) of the child in the parent (B and P, Fig. 10-2) as a function of the 

generalized coordinates listed in the Joint’s CoordinateSet (Fig. 10-3). Consider the spatial 

transform 

! 

PXB : 
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q are the joint coordinates, and x are the spatial coordinates for the rotations (x1, x2, x3) and 

translations (x4, x5, x6) along user-defined axes that specify a spatial transform (X) according 

to functions fi. The behavior of a CustomJoint is specified by its SpatialTransform. A 

SpatialTransform is comprised of 6 TransformAxes (3 rotations and 3 translations) that 

define the spatial position of B in P as a function of coordinates. Each transform axis enables 

a function of joint coordinates to operate about or along its axis. The function of q is used to 

determine the displacement for that axis. The order of the spatial transform is fixed with 

rotations first followed by translations. Subsequently, coupled motion (i.e., describing 

motion of two degrees of freedom as a function of one coordinate) is easily handled. The 

example below (from the gait2354.osim model) describes coupled motion of the knee, with 

both tibial translation and knee flexion described as a function of knee angle, by continuing 

the CustomJoint definition from Fig. 10-3.  

 
<SpatialTransform name=""> 
 <!--3 Axes for rotations are listed first.--> 
 <TransformAxis name="rotation1"> 
  <function> 
   <LinearFunction name=""> 
    <coefficients> 1.00000000       0.0000000 </coefficients> 
   </LinearFunction> 
  </function> 
  <coordinates> knee_angle_r </coordinates> 
  <axis>       0.00000000       0.00000000       1.00000000 </axis> 
 <TransformAxis> 
 <TransformAxis name="rotation2"> 
  <function> 
   <Constant name=""> 
    <value> 0.00000000 </value>     
   </Constant> 
  </function> 
  <coordinates> </coordinates> 
  <axis>       0.00000000       1.00000000       0.00000000 </axis> 
 </TransformAxis> 
 <TransformAxis name="rotation3"> ... 
 <!--3 Axes for translations are listed next.--> 
 <TransformAxis name="translation1"> 



   Specifying a Body and its Joint 

 

41 

  <function> 
   <NaturalCubicSpline name=""> ... 
  </function> 
  <coordinates> knee_angle_r </coordinates> 
  <axis>       1.00000000       0.00000000       0.00000000 </axis> 
 </TransformAxis> 
 <TransformAxis name="translation2"> 
   <function> 
   <NaturalCubicSpline name=""> ...     
   </function> 
  <coordinates> knee_angle_r </coordinates> 
  <axis>       0.00000000       1.00000000       0.00000000 </axis> 
 </TransformAxis> 
 <TransformAxis name="translation3"> ... 
</SpatialTransform> 

</CustomJoint> 
</Joint> 

Figure 9: Spatial transform of a custom joint that implements a translating knee joint 

11.3.3 Kinematic Constraints in OpenSim 

OpenSim currently supports three types of built-in constraints: PointConstraint 

WeldConstraint and CoordinateCouplerConstraint. A point constraint fixes a point defined 

with respect to two bodies (i.e., no relative translations). A weld constraint fixes the relative 

location and orientation of two bodies (i.e., no translations or rotations). A coordinate 

coupler relates the generalized coordinate of a given joint (the dependent coordinate) to any 

other coordinates in the model (independent coordinates). The user must supply a function 

that returns a dependent value based on independent values. The following example 

implements coordinate coupler constraint for the motion of the patella as a function of the 

knee ankle and also welds the foot to ground. 
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Figure 10: Example of constraints in OpenSim 

11.4 Forces in OpenSim 

Forces in OpenSim are contained in a model’s ForceSet. Forces come in two varieties: 

passive forces like springs, dampers, and contact and active forces like motors and muscles. 

Active forces that require input (controls) supplied by the user or by a controller are called 

Actuators and are a subset of the ForceSet.  

11.4.1 Available Forces 

OpenSim has several built-in forces that include: PrescribedForce, SpringGeneralizedForce, 

BushingForce, as well as HuntCrossleyForce and ElasticFoundationForce to model forces 

due to contact (Note: contact forces also require defining contact geometry). Below is an 

example of a bushing force used to model passive structures surrounding a single lumbar 

joint that connects a torso body to a pelvis body. 
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<!— Generate a force proportional to the separation of two frames in terms of both 
relative rotational and translational displacement (stiffness) and velocity and 
velocity (damping) --> 
<BushingForce name="BackJointBushing"> 
 <body_1> pelvis </body_1> 
 <body_2> torso </body_2> 
 <location_body_1> -0.1007 0.0815 0.0000 </location_body_1> 
 <orientation_body_1> 0.0000  0.0000  0.0000 </orientation_body_1> 
 <location_body_2> 0.0000  0.0000   0.0000 </location_body_2> 
 <orientation_body_2>  0.0000  0.0000  0.0000 </orientation_body_2> 
  <rotational_stiffness> 10.000  10.000 10.000 </rotational_stiffness> 
  <translational_stiffness> 0.0000 0.000 0.000 </translational_stiffness> 
  <rotational_damping>  0.0000  0.0000  0.0000 </rotational_damping> 
 <translational_damping> 0.0000 0.000 0.000 </translational_damping> 
</BushingForce> 

Figure 10-6: Example of a passive BushingForce 

11.4.2 Common Actuators 

OpenSim also includes “ideal” actuators which apply pure forces or torques that are directly 

proportional to the input control (i.e., excitation) via its optimal force (i.e., a gain). Forces 

and torques are applied between bodies, while generalized forces are applied along the axis 

of a generalized coordinate (i.e., a joint axis).  

<!—Apply an equal and opposite force at points on two bodies along the line 
that connects the two points --> 
<PointActuator name="FY_residual"> 
 <optimal_force> 8.0 </optimal_force> 
 <body> pelvis </body> 
 <point> -0.0724376 0.00000000 0.00000000 </point> 
 <direction> 0.0 1.0 0.0 </direction> 
</PointActuator> 
 
<!—Apply an equal and opposite torque on two bodies about the axis defined 
in the the first body --> 
<TorqueActuator name="MZ_residual"> 
 <optimal_force> 1000.0 </optimal_force> 
 <bodyA> ground </bodyA> 
 <axis> 0.000 0.000 -1.000 </axis> 
 <bodyB> pelvis </bodyB> 
</TorqueActuator > 
 
<!—Apply a generalized force along (force) or about (torque) the axis of a 
generalized coordinate. Positive force increases the coordinate --> 
<CoordinateActuator name="knee_reserve"> 
 <optimal_force> 300.0 </optimal_force> 
 <coordinate> knee_angle_r  </coordinate> 
</CoordinateActuator> 

Figure 11: Sample of linear and torque actuators in a model’s ForceSet  

11.4.3 The Muscle Actuator 

There are several muscle models in OpenSim. All muscles include a set of muscle points 

where the muscle is connected to bones (bodies) and provide utilities for calculating muscle-
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actuator lengths and velocities. Internally muscle models may differ in the number and type 

of parameters. Muscles typically include muscle activation and contraction dynamics and 

their own states (for example activation and muscle fiber length). The control values are 

typically bounded excitations (ranging from 0 to 1) which lead to a change in activation and 

then force. Below is an example of a muscle model, as described by Thelen (2003), from an 

OpenSim model. 

 

 

 <Thelen2003Muscle name="soleus_r"> 
 <GeometryPath name=""> 
  <!—- points on bodies that define the path of the muscle --> 
  <PathPointSet name=""> 
   <objects> 
    <PathPoint name="soleus_r-P1"> 
     <location> -0.00240000 -0.15330000 0.00710000 </location> 
     <body> tibia_r </body> 
    </PathPoint> 
    <PathPoint name="soleus_r-P2"> 
     <location> 0.00000000  0.03100000 -0.00530000 </location> 
     <body> calcn_r </body> 
    </PathPoint> 
   </objects> 
   <groups/> 
  </PathPointSet> 
  <PathWrapSet name=""> ... 
 </GeometryPath> 
 <!--maximum isometric force of the muscle fibers--> 
 <max_isometric_force> 4000.00000000 </max_isometric_force> 
 <!--optimal length of the muscle fibers--> 
 <optimal_fiber_length> 0.08000000 </optimal_fiber_length> 
 <!--resting length of the tendon--> 
 <tendon_slack_length> 0.22000000 </tendon_slack_length> 
 <!--angle between tendon and fibers at optimal fiber length--> 
 <pennation_angle> 0.43633231 </pennation_angle> 
 <!--time constant for ramping up of muscle activation--> 
 <activation_time_constant> 0.01000000 </activation_time_constant> 
 <!--time constant for ramping down of muscle activation--> 
 <deactivation_time_constant> 0.04000000 </deactivation_time_constant> 
 <!--maximum contraction velocity at full activation (fiber length/s)--> 
 <Vmax> 10.00000000 </Vmax> 
 <!--maximum contraction velocity at low activation (fiber lengths/s)--> 
 <Vmax0> 5.00000000 </Vmax0> 
 <!--tendon strain due to maximum isometric muscle force--> 
 <FmaxTendonStrain> 0.03300000 </FmaxTendonStrain> 
 <!--passive muscle strain due to maximum isometric muscle force--> 
 <FmaxMuscleStrain> 0.60000000 </FmaxMuscleStrain> 
 <!--shape factor for Gaussian active muscle force-length relationship--> 
 <KshapeActive>  0.50000000 </KshapeActive> 
 <!--exponential shape factor for passive force-length relationship--> 
 <KshapePassive>  4.00000000 </KshapePassive> 
 <!--passive damping in the force-velocity relationship--> 
 <damping> 0.05000000 </damping> 
 <!--force-velocity shape factor--> 
 <Af> 0.30000000 </Af> 
 <!--maximum normalized lengthening force--> 
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 <Flen>  1.80000000 </Flen> 
</Thelen2003Muscle> 

Figure 10-8: Sample muscle actuator from a model’s ForceSet
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12 Extending OpenSim’s 

Capabilities 
12.1 Overview 

OpenSim provides several mechanisms for extending its existing capabilities either by 

adding new model elements, computing new quantities, or computing existing quantities in 

a new way. For example, you may want to model the drag acting on bodies moving through a 

fluid, which OpenSim does not provide.  Another example is being able to extract the linear 

and angular momentum of the model during a simulation. In order to extend to OpenSim, it 

is important to know what functionality exists and to have a sense of where to add new 

functionality.  

 

12.2 Organization of OpenSim  

OpenSim is built on the computational and simulation core provided by SimTK. This 

includes low-level, efficient math and matrix algebra libraries such as LAPACK as well as the 

infrastructure for defining a dynamical system and its state.  One can think of the system as 

the set of differential equations and the state comprised of its variables. 

 

Empowering the computational layer is SimbodyTM, an efficient multibody dynamics solver, 

which provides an extensible multibody system and state. The OpenSim modeling layer 

maps biomechanical structures (bones, muscles, tendons, etc.) into bodies and forces so that 

the dynamics of the system can be computed by Simbody. 
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13-1: The three interface layers of OpenSim built on SimTK 

OpenSim is essentially a set of modeling libraries for building complex actuators (e.g. 

muscles) and other forces (e.g. contact) and enabling the motion (kinematics) of highly 

articulated bodies (bones). Actuators can then be controlled by model controllers (e.g. 

Computed Muscle Control) to estimate the neural control and muscle forces required to 

reproduce human movement. An analysis layer is equipped with solvers and optimization 

resources for performing calculations with the model and to report results. At the highest 

level these blocks are assembled into specialized applications (ik.exe, forward.exe, 

analyze.exe) to simulate and analyze model movement and internal dynamics. The OpenSim 

application is a Java based program that calls Tools, Models, and underlying computations 

in SimTK to provide an interactive graphical user-interface (GUI). 

 

12.3 OpenSim Model and ModelComponents 

The job of an OpenSim::Model is to organize (hierarchically) the pieces (components) of a 

musculoskeletal system and to create a representative computational (mathematical) system 

that can be solved accurately and efficiently using Simbody and the flat SimTK::System 

framework. 
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Figure 12-2: Organizational Context  vs. Computation 

By separating the contextual organization of a model from its computational representation, 

OpenSim can exploit the conceptual benefits of hierarchically organized models and 

software without sacrificing computational efficiency.   One can then think of the system as 

the set of system equations while the state is a coherent set of system variable values that 

satisfies the system equations.  Model components know about the parts they add to the 

multibody system (for example, another rigid body, a force, or a constraint) and are free to 

mix and match. For example, a Coordinate component knows how to access its underlying 

degree-of-freedom value, velocity and even its acceleration, given the system has been 

“solved” for accelerations. A Coordinate also adds different constraints to the underlying 

system, in the case that Coordinate is locked or if its motion is prescribed. It provides 

context to organize locking constraints with the Coordinates being locked, but 

computationally it is just another constraint equation. The Coordinate therefore acts to 

manage the bookkeeping (which DOF, constraint, etc.) and provide an interface that has 

context. 
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Figure 12-3: OpenSim Model and its ModelComponents 

All model components in OpenSim have a similar responsibility to create their underlying 

system representation (createSystem()).  A setup() method ensures that a model is 

appropriately defined (for example, a Body is being connected to a parent that exists) before 

creating the system.  Two additional methods allow the ModelComponent to initialize the 

state of the system (from default properties) and also to hold the existing state in the 

ModelComponent’s defaults. For example, a Coordinate’s default may indicate that it should 

be locked, in which case its initState would set the state of its underlying constraint as 

“enabled”. Similarly, after performing an analysis to find the coordinates to satisfy a static 

pose, calling setDefaultsFromState(state) will update the Coordinate’s default values for the 

coordinate value from the desired state. Next time the model is initialized, it will be in the 

desired pose. 

 

12.4 OpenSim Application Programming Interface (API) 

In order to build custom components, it is necessary to have a general understanding of 

which objects (classes) are responsible for what actions/behaviors. The functions (methods) 

that OpenSim’s public classes provide (that other applications/programs can call) define its 

Application Programming Interface or API.  

 

We have already seen four methods that a model component must implement to behave as a 

ModelComponent in OpenSim. This defines the ModelComponent interface. Each type of 

ModelComponent, in turn, specifies additional methods in order to satisfy that type of 

component. For example, a Force in OpenSim must implement a computeForce() method 
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(in addition to the ModelComponent methods), a Controller must implement 

computeControls(), etc.  The set of all Classes and their interfaces defines the OpenSim API. 

  

The OpenSim API is undergoing rapid development and improvement. We therefore rely on 

Doxygen to automatically generate html documentation of the latest source, which describe 

the classes that are available and the accessible methods. The Doxygen pages can be viewed 

using a web browser and are available with your OpenSim installation in: 

<OpenSim_Install_Dir>/sdk/doc/index.html. This provides the latest organization of the 

available classes where one can see the list of available controllers, for example. 

 

Figure 12-4: Example Doxygen documentation for available controllers 

 

12.5  What is an OpenSim plug-in? 

When creating a new component (like a force, controller) or a new analysis, you may want to 

include it in an existing model, run it with existing tools, and/or share your contribution 

with colleagues.  An OpenSim plug-in is a way of packaging of your code in a dynamically 

linked library so that an existing OpenSim application can recognize it, load it, and make 

your code “runnable”. For an example of creating an analysis as a plug-in please see 

<OpenSim_Install_Dir>/sdk/examples/plugin.  

 

12.6 What is an OpenSim “main” program? 

A main program in C/C++ results in a standalone executable that you can run from a 

command prompt or by double clicking in Windows. All C/C++ programs have a main() 

function, which can be as simple as printing “Hello World” or  it can invoke several libraries 

to produce complex applications, like Word and Excel.  By including the OpenSim libraries, 

your main program can call the OpenSim API, and you may also include any other (C++) 
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libraries that provide additional computational and/or visualization resources. Main 

programs are extremely flexible, but they are particularly useful for 

streamlining/automating processes independent of the GUI. For example, ik.exe, id.exe, and 

cmc.exe (available with the OpenSim distribution) are main programs that take setup files 

and perform tasks related to the OpenSim workflow.  Alternatively, users have created their 

own main programs to systematically scale strengths of all muscles in a model, run forward 

simulations with their own controllers, perform design optimizations, etc.  An advantage of a 

main program (compared to a plug-in) is that any classes you define in the project are 

immediately useable by your program. This can make prototyping and testing of your new 

component or analysis faster and easier without having to wrap, load, and call your plug-in 

from the GUI.  

 

12.7   OpenSim Developer’s Guide  

The developer’s guide provides a step-by-step example of calling the OpenSim API to build a 

model, including muscles and contact forces, and to perform a simulation in a main 

program. Please refer to the OpenSim Developer’s Guide, available at 

https://simtk.org/docman/?group_id=91 for more details. 

 

12.8   Command Line Utilities 

All of the OpenSim Tools are available as command-line utilities that take as input the same 

setup (or settings) file loaded into or saved from the OpenSim GUI application. For example, 

to perform Inverse Kinematics from the command line (the Command Prompt in Windows) 

one can execute the following command: 

 

ik –S arm26_Setup_InverseKinematics.xml 

 

Similarly, this command line arguments work for CMC or any other tool, with the complete 

set of command line executables available in <OpenSim_Install_Dir>/bin. In addition to 

the –Setup option, there are –Help ,  -PrintSetup and –PropertyInfo options. Help 

provides this list of options. Print Setup prints a default setup file for that Tool with all 

available properties (XML tags) for Tool settings.  
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The –PropertyInfo option can be a very handy resource to obtain information about 

existing settings for Tools and ModelComponents including the XML tags needed in the 

model and/or setup file. This is the same information listed in the “Available Objects…” 

panel under the Help menu in the OpenSim GUI. Executing ik –PI lists all the available 

classes (components, analyses, utilities and tools) available in OpenSim. For more 

information about a particular object, such as adding a point constraint to the model, 

executing 

ik –PI PointConstraint yields: 

 

PROPERTIES FOR PointConstraint (5) 
1. isDisabled 
2. body_1 
3. body_2 
4. location_body_1 
5. location_body_2 

 

The information returned lists the properties for defining a point constraint in OpenSim.  

 

12.9 MATLAB Utilities for Data Import  

There are several MATLAB scripts for reading .trc, .c3d, .mot, and .sto files into MATLAB 

and writing out the data file formats required by OpenSim. Scripts provided by the 

Neuromuscular Biomechanics Lab at Stanford are available on the OpenSim Utilities project 

on SimTK.org: https://simtk.org/home/opensim-utils. Additional utilities by OpenSim 

users are posted on SimTK.org and can be found using the search tool on SimTK.org 

 


