

Documents

 OpenSim Advanced
User & Developer
Workshop

 August 15-17, 2011, Stanford University

 Websites: SimTK.org/home/opensim and opensim.stanford.edu

OpenSim Workshop Agenda

Day One – Monday, August 15, 2011
Li Ka Shing Center, Room 102, Stanford University

8:30 – 9:00am Welcome, Workshop Goals, and Meet the OpenSim Team
 Scott Delp and Jen Hicks

9:00 – 10:15am Participant Introduction and Goals
 You: Each presenter will be limited to 2 min + 1 min Q&A

10:15 – 10:30am BREAK

10:30 – 12:00pm Generating Forward Simulations with Residual Reduction and
Computed Muscle Control: Theory, Best Practices, and Hands-On
Example

 Ajay Seth and Sam Hamner

12:00 – 1:00pm LUNCH

1:00 – 2:00pm Components of an OpenSim Model with a Hands-On Example
 Matt DeMers

2:00 – 2:15pm BREAK

2:15 – 2:30pm Solidify Project Plans

2:30 – 5:00pm Work on Projects

6:00pm Informal Social Outing in Downtown Palo Alto

Day Two – Tuesday, August 16, 2011
Li Ka Shing Center, Room 102, Stanford University

8:30 – 9:00am Batch Processing and Data Management
 Edith Arnold

9:00 – 10:00am Breakout Session: Hands-On Introduction to the OpenSim API
 Ajay Seth and Marjolein van der Krogt

8:30 – 12:00pm Work on Projects

12:00 – 1:00pm LUNCH

1:00 – 1:30pm Discussion of Common Issues
 OpenSim Team and You

1:30 – 5:00pm Work on Projects

Day Three – Wednesday, August 17, 2011
Li Ka Shing Center, Room 102, Stanford University

8:30 – 12:00pm Work on Projects

12:00 – 1:00pm LUNCH

1:00 – 2:00pm Prepare Project Presentations

2:00 – 3:45pm Presentation of Progress, Hurdles, and Future Plans
 You

3:45 – 4:00pm Closing Remarks
 Scott Delp and Jen Hicks

4:00 – 5:00pm RECEPTION

	

	

	

Acknowledgments

OpenSim was developed as a part of SimTK and funded by the Simbios National Center for

Biomedical Computing through the National Institutes of Health and the NIH Roadmap for

Medical Research, Grant U54 GM072970. Information on the National Centers can be found at

http://nihroadmap.nih.gov/bioinformatics.

Trademarks and Copyright and Permission Notice

SimTK and Simbios are trademarks of Stanford University. The documentation for OpenSim is freely available and
distributable under the MIT License.

Copyright (c) 2011 Stanford University

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

Table of Contents

1	
 INTRODUCTION ... 5	

1.1	
 Getting the Most Out of an OpenSim Workshop ... 5	

1.2	
 Where to Find Additional Resources and Support .. 6	

1.2.1	
 The OpenSim GUI ...6	

1.2.2	
 OpenSim User’s Guide ..6	

1.2.3	
 Model and Simulation Repository ...6	

1.2.4	
 Online Resources ...7	

1.2.5	
 Publications ..7	

2	
 THE OPENSIM WORKFLOW ... 8	

2.1	
 The OpenSim Model ... 8	

2.2	
 Importing Experimental Data .. 9	

2.3	
 Scaling .. 9	

2.4	
 The Inverse Problem ... 10	

2.4.1	
 Inverse Kinematics ...10	

2.4.2	
 Inverse Dynamics ...11	

2.4.3	
 Static Optimization ..12	

2.5	
 The Forward Problem .. 12	

2.6	
 Analyzing Simulations .. 13	

3	
 PREVIEWING MOCAP DATA ... 15	

3.1	
 Tips and best practices for collecting experimental data .. 15	

3.2	
 Using the data previewer .. 15	

3.3	
 Visualizing marker trajectories in OpenSim .. 16	

3.4	
 Visualizing external forces in OpenSim .. 16	

3.5	
 Previewing transformed data ... 17	

4	
 SCALING .. 19	

 Getting the Most Out of an OpenSim Workshop

2

4.1	
 How it Works ... 19	

4.2	
 Scale Tool ... 19	

4.2.1	
 Input ...19	

4.2.2	
 Output ...20	

4.3	
 Best Practices and Troubleshooting .. 20	

5	
 INVERSE KINEMATICS .. 22	

5.1	
 How It Works .. 22	

5.2	
 Inverse Kinematics Tool ... 22	

5.2.1	
 Input ...22	

5.2.2	
 Output ...23	

5.3	
 Best Practices and Troubleshooting .. 23	

6	
 INVERSE DYNAMICS ... 24	

6.1	
 How it Works ... 24	

6.2	
 Inverse Dynamics Tool ... 24	

6.2.1	
 Input ...24	

6.2.2	
 Output ...25	

6.3	
 Best Practices and Troubleshooting .. 25	

7	
 FORWARD DYNAMICS .. 26	

7.1	
 How it Works ... 26	

7.1.1	
 Musculoskeletal Model Dynamics ...26	

7.1.2	
 States of a Musculoskeletal Model ..27	

7.1.3	
 Controlling a Musculoskeletal Model ..27	

7.1.4	
 Numerical Integration of Dynamical Equations ..27	

7.2	
 Forward Dynamics Tool ... 28	

7.2.1	
 Inputs ..28	

7.2.2	
 Outputs ...28	

7.3	
 Best Practices and Troubleshooting .. 29	

8	
 STATIC OPTIMIZATION .. 30	

8.1	
 How it Works ... 30	

 Getting the Most Out of an OpenSim Workshop

3

8.2	
 Static Optimization Tool ... 30	

8.2.1	
 Input ...31	

8.2.2	
 Output ...31	

8.3	
 Best Practices and Troubleshooting .. 31	

9	
 RESIDUAL REDUCTION ALGORITHM ... 32	

9.1	
 How it Works ... 32	

9.2	
 Residual Reduction Algorithm Tool .. 32	

9.2.1	
 Input ...32	

9.2.2	
 Output ...33	

9.3	
 Best Practices and Troubleshooting .. 33	

10	
 COMPUTED MUSCLE CONTROL ... 35	

10.1	
 How it Works ... 35	

10.2	
 Computed Muscle Control Tool .. 35	

10.2.1	
 Input ...35	

10.2.2	
 Output ...36	

10.3	
 Best Practices and Troubleshooting .. 36	

11	
 ELEMENTS OF A MODEL ... 37	

11.1	
 What is a musculoskeletal model in OpenSim? .. 37	

11.2	
 Organization of the OpenSim model file ... 37	

11.3	
 Specifying a Body and its Joint .. 38	

11.3.1	
 Available Joint Types ...38	

11.3.2	
 The CustomJoint Transform ..39	

11.3.3	
 Kinematic Constraints in OpenSim ..41	

11.4	
 Forces in OpenSim .. 42	

11.4.1	
 Available Forces ..42	

11.4.2	
 Common Actuators ..43	

11.4.3	
 The Muscle Actuator ..43	

12	
 EXTENDING OPENSIM’S CAPABILITIES ... 46	

12.1	
 Overview .. 46	

 Getting the Most Out of an OpenSim Workshop

4

12.2	
 Organization of OpenSim ... 46	

12.3	
 OpenSim Model and ModelComponents .. 47	

12.4	
 OpenSim Application Programming Interface (API) .. 49	

12.5	
 What is an OpenSim plug-in? .. 50	

12.6	
 What is an OpenSim “main” program? .. 50	

12.7	
 OpenSim Developer’s Guide .. 51	

12.8	
 Command Line Utilities .. 51	

12.9	
 MATLAB Utilities for Data Import .. 52

 Getting the Most Out of an OpenSim Workshop

5

	

1 Introduction
1.1 Getting the Most Out of an OpenSim Workshop

The OpenSim team at Stanford puts many hours into preparing for workshops and

developing the software, documentation, and examples. As participants, you’ve put many

hours into collecting and analyzing your data and now have traveled from around the world

to spend three days working on your projects. There are several guidelines we can follow to

ensure that everyone gets a maximum benefit from the workshop:

• Use the didactic lectures, handouts, and online OpenSim resources we’ve provided as

the first step for resolving problems.

• Work together! The participant sitting next to you might be able to answer your

question just as well or better than a member of the Stanford team. Included with

your handout materials is a list of all of the workshop attendees and their project

topics.

• There will be many Stanford graduate students and staff researchers available to help

answer questions during the workshop. Everyone has different areas of expertise.

Please see the see the workshop leaders to find where best to direct your questions.

• Have fun and take breaks. We’ve purposely included breaks and time for social

interaction and ask that you follow this part of the schedule. Taking the time to rest

and recharge is essential for everyone.

• Set a clear and manageable project goal for the workshop. This is the purpose of

preparing goals slides and the related pre-workshop interaction.

• Share your results. Create a project on SimTK.org to share your models and

simulation results at the end of the workshop, if you haven’t done so already.

Documenting your work will allow other researchers to build on your findings and

give you credit for the discoveries you’ve made in your research.

• Teach others. We hope you will share what you learn at the workshop with your

students and colleagues. Please contact us if you are interested in starting an

OpenSim user group or leading a workshop at your local institution.

 Where to Find Additional Resources and Support

6

• Fill out our online survey to give us feedback and help us improve OpenSim and

future workshops.

1.2 Where to Find Additional Resources and Support

There are many resources available to help with troubleshooting, access models and

simulation data, and interact with the rest of the OpenSim community.

1.2.1 The OpenSim GUI

The OpenSim Help menu provides the following resources:

• Direct links for filing a bug or requesting a new feature.

• Direct links to three tutorials for becoming familiar with the OpenSim GUI.

• A “Convert Files…” utility for converting older OpenSim model and setup file formats

to the latest version.

• An “Available Objects…” option that opens a panel that lists all the model

components, analyses, and tools that are available in OpenSim and lists their setup

properties that specify the behavior of these objects.

1.2.2 OpenSim User’s Guide

The User’s Guide is an extensive resource for most of the features available in OpenSim. For

assistance using the GUI and learning about setting up Tools in OpenSim, please refer to the

OpenSim User’s Guide that is available under “OpenSim Documentation” at

https://simtk.org/docman/?group_id=91.

1.2.3 Model and Simulation Repository

You can create your own models of musculoskeletal structures and dynamic simulations of

movement in OpenSim, as well as take advantage of computer models and dynamic

simulations that other users have developed and shared. For example, you can use existing

computer models of the human lower limb, upper limb, cervical spine, and whole body,

which have already been developed and posted at https://simtk.org/home/nmblmodels. You

can also use dynamic simulations of walking and other activities that have been developed,

tested, and posted on SimTK.org. We encourage you to share your models and simulations

with the research community by setting up a project on SimTK.org.

 Where to Find Additional Resources and Support

7

1.2.4 Online Resources

There are many resources available online for support both during and after the workshop.

This includes the User’s Guide and model repository described above, as well as a user

forum, tutorials, examples, webinars, and many other resources. We’ve recently launched a

new website that serves as a portal to these resources. It can be found at

http://opensim.stanford.edu. You can also find more about OpenSim and related projects

by other researchers around that world at the SimTKorg project site at

http://simtk.org/home/opensim.

1.2.5 Publications

You can find additional information in the following article: Delp, S.L., Anderson, F.C.,

Arnold, A. S., Loan, P., Habib, A., John, C., Guendelman, E.G., Thelen, D.G., OpenSim:

Open-source software to create and analyze dynamic simulations of movement. IEEE

Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940-1950, 2007. Please cite

this work in any of your own publications that use OpenSim.

2 The OpenSim Workflow
OpenSim has a broad range of capabilities for generating and analyzing musculoskeletal

models and dynamic simulations. This chapter provides an overview of these capabilities

and a list of resources to find more information about each component of the OpenSim

workflow.

2.1 The OpenSim Model

One of the major goals of the OpenSim project is to provide

a common platform for creating and sharing models of the

musculoskeletal system. Thus the first component of any

analysis is an OpenSim model. An OpenSim model

represents the dynamics of a system of rigid bodies and

joints that are acted upon by forces to produce motion.

The OpenSim model file is made up of components

corresponding to

parts of the physical

system. These parts

include bodies, joints,

forces, constraints,

and controllers

(Figure 2-1).

For example, in a model used for simulation of human

walking (Figure 2-2), the bodies represent the

geometry and inertial properties of the body segments.

The joints specify the articulations at the pelvis, hip,

knee, and ankle joints, while a constraint could be

used, for example, to couple the motion of the patella

with the model’s knee flexion angle. The forces in the

model include both internal forces from muscles and

ligaments and external forces from interaction with the

Figure 2-2 An OpenSim model

for simulation of gait

Figure 2-1 A conceptual

representation of an

OpenSim model and its

components

 Importing Experimental Data

9

ground. Finally, the model’s controller determines the activation of muscles (e.g. computed

muscle control).

Chapter 10 of this handout contains more information about the components of an

OpenSim model and Chapter 11 describes an example of editing an existing

model. Additional information is also available in the OpenSim User’s Guide (Chapter 24).

A large repository of existing models is available at SimTK.org

(https://simtk.org/home/nmblmodels). This library includes models of the lower extremity,

head and neck, spine, and wrist. We encourage you to contribute your own models to this

library to enable other researchers to build on your work and further advance the field.

2.2 Importing Experimental Data

In many cases, you will use OpenSim to analyze experimental data that you have collected in

your laboratory. This data typically includes:

• Marker trajectories or joint angles from motion capture

• Force data, typically ground reaction forces and moments and/or centers of pressure

• Electromyography

Chapter 23 of the User’s Guide contains detailed information about preparing and

importing your experimental data. Chapter 3 of this handout describes how to

preview and verify your data.

2.3 Scaling

If you are using a generic model from the existing library of models, the next step is to scale

the model to match the experimental data collected for your subject, functionality provided

by the Scale tool in OpenSim. The purpose of scaling a generic musculoskeletal model is to

modify the anthropometry, or physical dimensions, of the generic model so that it matches

the anthropometry of a particular subject. Scaling is one of the most important steps in

solving inverse kinematics and inverse dynamics problems because these solutions are

sensitive to the accuracy of the scaling step. In OpenSim, the scaling step adjusts both the

mass properties (mass and inertia tensor), as well as the dimensions of the body segments.

 The Inverse Problem

10

Chapter 4 of this handout provides best practices and trouble-shooting tips for using

the Scale tool. In addition, there is detailed documentation of the tool in Chapter

14 of the OpenSim User’s Guide. OpenSim Tutorial #3, available from the Downloads page

of the OpenSim project site on SimTK.org includes an example using the Scale tool. This

tutorial is also accessible from the OpenSim application Help menu.

2.4 The Inverse Problem

OpenSim enables researchers to solve the Inverse Dynamics problem, using experimental

measured subject motion and forces to generate the kinematics and kinetics of a

musculoskeletal model (Figure 2-3).

Figure 2-3 The Inverse Dynamics Problem. In inverse dynamics, experimentally measured

marker trajectories and force data are use to estimate a model’s kinematics and kinetics.

2.4.1 Inverse Kinematics

The Inverse Kinematics (IK) Tool in OpenSim finds the set of generalized coordinates (joint

angles and positions) for the model that best match the experimental kinematics recorded for a

particular subject (Figure 2-4). The experimental kinematics targeted by IK can include

experimental marker positions, as well as experimental generalized coordinate values (joint

angles). The IK tool goes through each time step of motion and computes generalized coordinate

values which positions the model in a pose that “best matches” experimental marker and

coordinate values for that time step. Mathematically, the “best match” is expressed as a weighted

least squares problem, whose solution aims to minimize both marker and coordinate errors.

 The Inverse Problem

11

Figure 2-4: Inverse Kinematics Tool Overview. Experimental markers are

matched by model markers throughout the motion by varying the generalized

coordinates (e.g., joint angles) through time.

Some best practices and troubleshooting tips for using the IK tool are included in Chapter 5

of this handout. In addition, Chapter 15 of the User’s Guide contains the full

documentation for running IK in OpenSim. Tutorial #3, available on the downloads page of the

OpenSim project site on SimTK.org and from the OpenSim application’s Help menu walks

through an example of using Inverse Kinematics for human walking.

2.4.2 Inverse Dynamics

Dynamics is the study of motion and the forces and moments that produce that motion. The

Inverse Dynamics (ID) tool determines the generalized forces (e.g., net forces and torques)

that cause a particular motion, and its results can be used to infer how muscles are utilized

for that motion. To determine these internal forces and moments, the equations of motion

for the system are solved with external forces (e.g., ground reactions forces) and

accelerations given (estimated by differentiating angles and positions twice). The equations

of motion are automatically formulated using the kinematic description and mass properties

of a musculoskeletal model in Simbody™.

Some best practices and troubleshooting tips for using the ID tool are included in Chapter

6 of this handout. In addition, Chapter 16 of the User’s Guide contains the full

documentation for running ID in OpenSim. Tutorial #3, available on the downloads page of the

OpenSim project site on SimTK.org and from the OpenSim application Help menu walks through

an example of using ID for human walking.

 The Forward Problem

12

2.4.3 Static Optimization

Static optimization is an extension of inverse dynamics that further resolves the net joint

moments into individual muscle forces at each instant in time based on some performance

criteria, like minimizing the sum of squared muscle forces. More information about the Static

Optimization tool available in OpenSim can be found in Chapter 8 of this handout and Chapter 17

of the OpenSim User’s Guide.

2.5 The Forward Problem

OpenSim is also capable of generating muscle-driven forward simulations of gait and other

movements (Figure 2-5).

Figure 2-5 The forward dynamics problem. In a forward dynamic simulation of motion,

simulated muscle excitations are used to drive the motion of a model to follow some observed

movement.

The Forward Dynamics tool takes a set of controls (e.g., muscle excitations) to drive a model’s

motion by integrating forward in time. Typically, muscle excitations are generated using the

Computed Muscle Control (CMC) tool. As a pre-cursor to running CMC, the Residual Reduction

Algorithm (RRA) is used to minimize the effects of modeling and marker data processing errors

that aggregate and lead to large nonphysical compensatory forces called residuals. Specifically,

RRA alters the torso mass center of a subject-specific model and permits the kinematics of the

model from inverse kinematics to vary in order to be more dynamically consistent with the

ground reaction force data. Thus the typical workflow for generating a muscle-driven simulation

after importing experimental data is Scale->IK->RRA->CMC->Forward Dynamics (Figure 2-6).

 Analyzing Simulations

13

Figure 2-6 Overview of the workflow for generating a muscle-actuated simulation in

OpenSim.

Best practices and troubleshooting tips for Forward, RRA, and CMC are included in Chapters 9,

10, and 11 of this handout. Full documentation of Forward Dynamics, RRA, and CMC is available

in Chapters 18 through 20 of the User’s Guide.

2.6 Analyzing Simulations

Often, answering your research questions requires delving deeper into the details of a

simulation. Thus OpenSim includes an Analyze tool that allows you to estimate, for

example, muscle fiber or tendon lengths during a motion or the loads on the knee joint. The

Analyze Tool enables you to analyze a model or simulation based on a number of inputs that

can include time histories of model states, controls, and external loads applied to the model.

The following analyses are available in OpenSim:

1. Body Kinematics: Reports the spatial kinematics (position and orientation, linear

and angular velocity, linear and angular acceleration) of specified bodies for the

duration of the analysis.

2. Point Kinematics: Reports the global position, velocity and acceleration of a point

defined local to a body during a simulation.

3. Muscle Analysis: Reports all attributes of all muscles. This includes: fiber length

and velocity, normalized fiber length, pennation angle, active-fiber force, passive-

fiber force, tendon force, and more.

 Analyzing Simulations

14

4. Joint Reactions: Reports joint reaction forces. These are forces that enforce the

motion of the joint. The force applied to either parent or child and expressed in

ground, parent or child can be reported.

5. Induced Acceleration: Computes accelerations caused or “induced” by individual

forces acting on a model, for example, the contribution of individual muscle forces to

the mass center acceleration.

6. Force Reporter: Reports all forces acting in the model. For ligaments and

muscles, the tension along the path is reported and for ideal actuators the scalar

force or torque is reported. For all other forces, the resultant body forces (force and

moment acting at the center of mass of the body) are reported. For example, contact

forces from an ElasticFoundationForce element yields the resultant body force on the

contacting bodies separately, expressed in ground. For constraints, the same is true,

except the forces are expressed in the most distal common ancestor body. Whenever

a constraint involves ground, this is the ground body; however, if for example a

model of the arm has a hand with fingers touching via a point constraint, then the

forces are expressed in the nearest common ancestor, which would be the palm (if

modeled as a single body).

More details about the analyses available in OpenSim are available in Chapter 21 of the

User’s Guide. Chpater 22 contains information about conducting an Induced Acceleration

Analysis in OpenSim.

3 Previewing Mocap Data
3.1 Tips and best practices for collecting experimental data

The first step for most researchers is collecting experimental data in the form of marker

trajectories, ground reaction forces, and EMG. There are several key steps you can take to

ensure that your motion capture data is as accurate as possible and represented correctly in

OpenSim:

• Develop and document lab protocols and standards for your marker sets, camera

positions, and force plate/camera system coordinate frames.

• Calibrate center-of-pressure measurements with marker positions using a calibration

“T” to pinpoint where on the force-plate the point load (lowest tip of the “T”) is being

applied. If the center-of-pressure calculated from the force-plate does not match the

“T” location from markers (within marker resolution), you need align the force-plate

and marker mo-cap reference frames.

• Digital cameras and camcorders are cheap! Take lots of photos/video during

experiments so that you can verify marker placement and other factors for the data

you collect.

3.2 Using the data previewer

After performing experiments, motion capture data can be previewed in the OpenSim GUI to

verify that preprocessing was done correctly and that data is in agreement with the intended

model. If users have multiple files representing different pieces of data, this tool allows users

to synchronize data to verify that the data was transformed consistently. The data previewer

handles two types of data: marker trajectories (contained in .trc files) and measured forces

(e.g., ground reactions, contained in .mot files).

Select Preview Motion Data… from the File menu. Then browse to select the motion

capture data file to be visualized. Once selected, OpenSim performs the following actions:

• Adds a new model to the Navigator with the default name of “ExperimentalData” and

a unique number, such as “01”.

• Makes the loaded motion capture data file the current motion.

This enables the user to perform the following tasks:

 Visualizing marker trajectories in OpenSim

16

• Use the motion slider in the toolbar to visualize different frames of data.

• Synchronize the motions from different motion files. These other motions could be

either motion capture files or results from OpenSim tools. For example,

experimentally measured marker trajectories and ground reaction forces can be

synchronized and superimposed on the result of a forward simulation.

3.3 Visualizing marker trajectories in OpenSim

In OpenSim, marker trajectories are contained in a .trc file. When loaded with the data

previewer, a model named “ExperimentalData” will contain the loaded motion file consisting

of the marker data (e.g. “subject01_walk1.trc”). The “Markers” node lists each individual

marker found in the file (Fig. 3-1). Nodes corresponding to individual markers have the

following options (access options by right clicking the marker name):

• Show: Enabled only if a marker is hidden

• Show Only: Hides all other markers except for those selected.

• Toggle Trail Display: Toggles the display of a line representation of the trajectory

of selected marker(s).

Figure 3-1. Navigator view of trajectory data file

3.4 Visualizing external forces in OpenSim

In OpenSim, external forces (e.g., ground reaction forces) are contained in a .mot file. The

header of the selected force (.mot) file is the same as that expected by OpenSim tools (see

Section 22.5 of the User’s Guide for more detail). For the ground reaction forces used by the

gait model, the column labels are shown below (for 2 external forces force1, force2, torque1,

torque2):

 Previewing transformed data

17

ground_force1_vx, ground_force1_vy, ground_force1_vz,

ground_force1_px, ground_force1_py, ground_force1_pz,

ground_force2_vx, ground_force2_vy, ground_force2_vz,

ground_force2_px, ground_force2_py, ground_force2_pz,

ground_torque1_x, ground_torque1_y, ground_torque1_z,

ground_torque2_x, ground_torque2_y, ground_torque2_z

 The data previewer expects groups of 6 columns for a force of the form

“body”_”ForceName”_{vx, vy, vz, px, py, pz}, where vi corresponds to each component of

the force and pi corresponds to each component of the location of the force (e.g., center of

pressure) and 3 columns for a torque of the form “body”_”TorqueName”_{x, y, z},

corresponding to each component of the applied torque. Note that this naming convention is

only necessary for previewing purposes. OpenSim tools employ a new user interface

enabling you to specifiy any number of forces, along with points of application, or torques to

a model during any simulation or analysis.

3.5 Previewing transformed data

For any kind of previewed data (e.g., marker trajectories or ground reaction forces), you can

visualize the effect of a rigid-body-transform applied to the data and save the data as a new

file. However, the visualization is transformed to enable users to adapt preprocessing tools

accordingly. The visual transformation dialog is available as a context menu (Fig. 3-2) by

right clicking on the node with the data file name.

Figure 3-2. Transform data previewer

 Previewing transformed data

18

Arrow buttons change the angle for “Rotate X”, “Rotate Y”, and “Rotate Z” that transform

the data in the viewer. Angles are always positive (0-360°). Translations can be previewed by

modifying the display offset. The data file is NOT modified by OpenSim, but provides a

preview so that the appropriate transformation(s) may be determined and applied during

preprocessing.

Figure 3-3. Preview of motion capture data in OpenSim

19

4 Scaling
4.1 How it Works

The Scale Tool alters the anthropometry of a model so that it matches a particular subject as

closely as possible. Scaling is typically performed based on a comparison of experimental marker

data with virtual markers placed on a model. In addition to scaling a model, the scale tool can be

used to adjust the locations of virtual markers so that they better match the experimental data.

In this chapter, we provide a conceptual review of the inputs and outputs of the Scale tool

and a set of troubleshooting tips and best practices for scaling. The OpenSim User’s Guide

provides detailed information and step-by-step instructions on scaling a model (Chapter 14).

Carefully scaling your model to match your subject is essential for getting good results from

later tools, like Inverse Kinematics and Inverse Dynamics.

4.2 Scale Tool

The Scale Tool is accessed by selecting Tools → Scale Model… from the OpenSim main

menu bar. Like all tools, the operations performed by the Scale Tool apply to the current

model.

4.2.1 Input

The modelName_Setup_Scale.xml file is the setup file for the Scale Tool. Note that all

filenames given are examples. You may use different naming conventions, if desired. The

setup file contains settings, which help describe the model, data, and parameters for scaling.

These include:

1. modelName.osim: A generic, unscaled model.

2. modelName_Scale_MarkerSet.xml: A virtual marker set that corresponds to your

experimental marker set.

3. subject_static.trc: The experimental marker data of your subject in a static pose and

the time range when the static pose was collected. The static pose should include the

subject wearing the full marker set. The marker trajectories are specified in global

frame.

 Best Practices and Troubleshooting

20

4. modelName_Scale_MeasurementSet.xml: The measurement set for the Scale Tool,

which contains pairs of experimental markers, the distance between which are used

to scale the generic musculoskeletal model.

AND/OR

modelName_Scale_ScaleSet.xml: Scale set for the Scale Tool. Alternately, you can

use manual scale factors to scale the generic musculoskeletal model.

5. modelName_Scale_Tasks.xml: In addition to scaling the model, the Scale Tool

moves the virtual markers on the model so that their positions match the

experimental marker locations. To do this, the Scale Tool must position the model so

that it best matches the position of the subject, which requires an inverse kinematics

problem to be solved. This file contains the inverse kinematics tasks describing

which virtual and experimental markers should be matched up during the inverse

kinematics phase. The file also contains marker weights, which are relative and

determine how "well" the virtual markers track experimental markers (i.e., a larger

weight will mean less error between virtual and experimental marker positions).

6. subject_static.mot (optional): Experimental generalized coordinate values (joint angles)

for a trial obtained from alternative motion capture devices or other specialized

algorithms. You can specify coordinate weights in the Tasks file, if joint angles are know a

priori. Coordinate weights are also relative and determine how "well" a joint angle will

track the specified angle.

4.2.2 Output

1. subject.osim: OpenSim musculoskeletal model scaled to the dimensions of the subject.

2. subject_static_ik.mot: A motion file containing the joint angles for the static pose.

4.3 Best Practices and Troubleshooting

1. When collecting data, take pictures of your subjects in the static pose.

2. Have your subjects perform movements to calculate functional joint centers at the

hip, knee, ankle, and/or shoulders and append the joint centers to your static trial

data.

3. Measure subject specifics, like height, mass, body segment lengths, mass distribution

(if DXA is available), and strength (if a Biodex is available).

 Best Practices and Troubleshooting

21

4. Do not use all markers from motion-capture to position and scale the model.

Markers that match anatomical landmarks and functional joint centers are the only

markers that can be relied on for scaling. Avoid adjusting their model positions to

match experimental positions, and use the marker position errors to assess the

quality of your scaling results.

5. Some segments, like the pelvis are best scaled non-uniformly.

6. In general, maximum marker errors for bony landmarks should be <2 cm.

7. Use what you know about your subject’s static pose when looking at the results of

Scale. For example, in a typical static posture ankle angle is generally less than 5º

and hip flexion angle is less than 10º.

8. Use the “preview static pose” option in the GUI to visualize the scaled model’s

anatomical marker positions relative to the corresponding experimental markers to

see how well the model “fits” the data before adjusting all the markers to match the

experimental data.

9. If the results of scale look incorrect, you can either change the location of virtual

markers or alter marker weightings to calculate static pose.

10. Use coordinate tasks (Static Pose Weights) to set joint angles for troublesome joints

(commonly the ankle joint and lumbar joint) that are very sensitive to how the

markers are placed. For example if it is known that the foot is flat, an ankle angle can

be provided and then the markers adjusted in order to match the known pose.

11. It is common to iterate through Scale and Inverse Kinematics to fine-tune segment

dimensions and marker positions that yield low marker errors for the task of interest.

12. If using coordinates from a motion capture system make sure that the

joint/coordinate definitions match otherwise you may cause more harm than good.

13. The model has a built in assumption that the global Y axis is up. If your data doesn’t

fit this, then consider transforming it using the Preview Motion Data option in the

GUI.

22

5 Inverse Kinematics
5.1 How It Works

The Inverse Kinematics Tool steps through each time frame of experimental data and positions

the model in a pose that “best matches” experimental marker and coordinate data for that time

step. This “best match” is the pose that minimizes a sum of weighted squared errors of markers

and/or coordinates.

In this chapter, we provide a conceptual review of the inputs and outputs of the Inverse

Kinematics (IK) tool and a set of troubleshooting tips and best practices. The OpenSim

User’s Guide provides detailed information and step-by-step instructions (Chapter 15).

Getting accurate results from the IK tool is essential for using later tools like Static

Optimization, Residual Reduction Algorithm, and Computed Muscle Control.

5.2 Inverse Kinematics Tool

To launch the IK Tool, select Tools → Inverse Kinematics from the OpenSim main menu

bar.

5.2.1 Input

The primary inputs to IK are the following files:

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model

with the Scale Tool or by other means, along with an associated marker set containing

adjusted virtual markers.

2. motionTrial.trc: Experimental marker trajectories for a trial obtained from a motion

capture system, along with the time range of interest

3. marker_tasks.xml: A file containing marker weightings. As in the scale tool, marker

weights are relative and determine how "well" the virtual markers track experimental

markers (i.e., a larger weight will mean less error between virtual and experimental

marker positions).

4. subject01_coords.mot (optional): Experimental generalized coordinate values (joint

angles) for a trial obtained from alternative motion capture devices or other

 Best Practices and Troubleshooting

23

specialized algorithms. You can optionally specify relative coordinate weights in the

Tasks file, if joint angles are known a priori.

5.2.2 Output

1. subject01_ik.mot: A motion file containing the generalized coordinate trajectories

(joint angles and/or translations) computed by IK.

5.3 Best Practices and Troubleshooting

1. When collecting experimental data, place three non-collinear markers per body

segment that you want to track. You need at least three markers to track the 6 DOF

motion (position and orientation) of a body segment.

2. Place markers on anatomical locations with minimum skin/muscle motion.

3. Weight “motion” segment markers, for example from a triad placed on the thigh

segment, more heavily than anatomical markers affixed to landmarks like the greater

trochanter and the acromion, which can be helpful for scaling, but are influenced by

muscle and other soft tissue movements during motion.

4. Relative marker weightings are more important than their absolute values.

Therefore, a weighting of 10 vs. 1 is 10 times more important whereas 20 vs. 10 is

only twice as important. Markers are not necessarily tracked better because they

both have higher weightings.

5. Total RMS and max marker errors are reported in the messages window. Use these

values to guide changes in weightings, or if necessary to redo marker placement and

possibly scaling. Maximum marker error should generally be less than 2-4cm and

RMS under 2cm is achievable.

6. Compare your results to similar data reported in the literature. Your results from an

unimpaired average adult should generally be within one standard deviation.

24

6 Inverse Dynamics
6.1 How it Works

The Inverse Dynamics Tool steps through each time frame of a motion and computes the net

forces and/or torques at each joint in the model based upon/due to the experimental kinematics.

The equations of motion relate the model accelerations to the forces and/or joint torques applied

to the model.

In this chapter, we provide a conceptual review of the inputs and outputs of the Inverse

Dynamics tool and a set of troubleshooting tips and best practices. The OpenSim User’s

Guide provides detailed information and step-by-step instructions (Chapter 16).

6.2 Inverse Dynamics Tool

To launch the Inverse Dynamics Tool select Inverse Dynamics… from the Tools menu.

The Inverse Dynamics Tool dialog, like all other OpenSim tools, operates on the Current

Model open and selected in OpenSim.

6.2.1 Input

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model

with the Scale Tool or by other means, along with an associated marker set containing

adjusted virtual markers. The model must include inertial parameters. Note that forces

like contact, ligaments, bushings, and even muscles will be applied to the model based on

the kinematic state of the model and defaults for the muscle states, unless these forces are

specifically excluded in the calculation.

2. subject01_ik.mot: Coordinate motion data (i.e., joint angles or translation for a

motion) and time range for the motion of interest).

3. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and

center of pressure location). Note that it is necessary to measure and apply or model

all external forces acting on a subject during the motion to calculate accurate joint

torques and forces. This file includes the name of the ground reaction force-data file

(e.g. subject01_grf.mot) as well as the names of the bodies they are applied to.

Options to specify the forces, point of application, and torques in a global or body

 Best Practices and Troubleshooting

25

local frame (relative to the body to which the force is being applied) are also defined

here.

6.2.2 Output

1. subject01_id.sto: Joint torques and forces, acting along the coordinate axes that

produce the accelerations estimated (via double differentiation) from your measured

experimental motion and modeled and external forces applied.

6.3 Best Practices and Troubleshooting

1. Filter your raw coordinate data, since noise is amplified by differentiation. Without

filtering, the calculated forces and torques will be very noisy.

2. Compare your results to data reported in the literature. Your results should be within

one s.d. of reported values.

3. Inspect results from Inverse Dynamics to check if ground reaction forces were

applied correctly or not. For gait, applying ground reaction forces should help reduce

the forces computed by Inverse Dynamics at the pelvis.

26

[] { }FqGqqCτqMq +++= −)()()(1  ,

[]),,()(llafqRτ =m

),,,(qqlal !! !=

7 Forward Dynamics
7.1 How it Works

The Forward Dynamics Tool uses the model together with the initial states and controls to run a

muscle-driven forward dynamics simulation. A forward dynamics simulation is the solution

(integration) of the differential equations that define the dynamics of a musculoskeletal model.

7.1.1 Musculoskeletal Model Dynamics

In contrast to inverse dynamics where the motion of the model was known and we wanted to

determine the forces and torques that generated the motion, in forward dynamics, a

mathematical model describes how coordinates and their velocities change due to applied forces

and torques (moments).

From Newton’s second law, we can describe the accelerations (rate of change of velocities) of the

coordinates in terms of the inertia and forces applied on the skeleton as a set of rigid-bodies:

Multibody dynamics

where q!! is the coordinate accelerations due to joint torques, τ , Coriolis and centrifugal forces,

),(qqC  , as a function of coordinates, q , and their velocities, q , gravity,)(qG , and other forces

applied to the model, F , and [] 1)(−qM is the inverse of the mass matrix.

Moments due to muscle forces

Muscle contraction dynamics

 How it Works

27

),(xaa Α= Muscle activation dynamics

The net muscle moments, mτ , in turn, are a result of the moment arms,)(qR , multiplied by

muscle forces, f , which are a function of muscle activations, a , and muscle fiber lengths, l , and

velocities, l . Muscle fiber velocities are governed by muscle contraction dynamics, Λ , which is

dependent on the current muscle activations and fiber lengths as well as the coordinates and their

velocities. Activation dynamics, Α , describes how the activation rates, a , of the muscles respond

to input neural excitations, x , generally termed the model’s controls. These form a set of

differential equations that model musculoskeletal dynamics.

7.1.2 States of a Musculoskeletal Model

The state of a model is the collection of all model variables defined at a given instant in time that

are governed by dynamics. The model dynamics describe how the model will advance from a

given state to another through time. In a musculoskeletal model the states are the coordinates

and their velocities and muscle activations and muscle fiber lengths. The dynamics of a model

require the state to be known in order to calculate the rate of change of the model states (joint

accelerations, activation rates, and fiber velocities) in response to forces and controls.

7.1.3 Controlling a Musculoskeletal Model

The forces (e.g., muscles) in a musculoskeletal model are governed by dynamics and have inputs

that affect their behavior. In OpenSim, these inputs are called the controls of a model, which can

be excitations for muscles or torque generators. Ultimately, controls determine the forces and/or

torques applied to the model and therefore determine the resultant motion.

7.1.4 Numerical Integration of Dynamical Equations

A simulation is the integration of the musculoskeletal model’s dynamical equations starting from

a user-specified initial state. After applying the controls, the activation rates, muscle fiber

velocities, and coordinate accelerations are computed. Then, new states at small time interval in

the future are determined by numerical integration. A 5th-order Runge-Kutta-Feldberg integrator

is used to solve (numerically integrate) the dynamical equations for the trajectories of the

musculoskeletal model states over a definite interval in time. The Forward Dynamics Tool is an

open-loop system that applies muscle/actuator controls with no feedback, or correction

mechanism, therefore the states are not required to follow a desired trajectory.

 Forward Dynamics Tool

28

7.2 Forward Dynamics Tool

To launch the Forward Dynamics Tool select Forward Dynamics… from the Tools menu.

The Forward Dynamics Tool dialog like all other OpenSim tools operates on the Current

Model open and selected in OpenSim.

7.2.1 Inputs

Three items are required by the Forward Dynamics Tool:

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model

with the Scale Tool or by other means, along with an associated marker set containing

adjusted virtual markers. The model must include inertial parameters (segment masses,

etc.).

2. subject01_controls.xml: XML	
 file	
 containing	
 the	
 time	
 histories	
 of	
 the	
 model	
 controls	
 (e.g.,	

muscle	
 excitations)	
 to	
 the	
 muscles	
 and/or	
 joint	
 torques.	
 This	
 file	
 may	
 be	
 generated	
 by	
 the	

user,	
 Static	
 Optimization	
 Tool,	
 or	
 Computed	
 Muscle	
 Control	
 Tool.	
 If	
 no	
 controls	
 are	
 provided	

they	
 are	
 assumed	
 to	
 be	
 zero	
 for	
 any	
 actuators	
 in	
 the	
 model.

3. subject01_states.sto: Storage file containing the initial states of the musculoskeletal

model that includes coordinates and their velocities and muscle activations and muscle

fiber lengths. Alternately, the simulation can begin from the pose that mode is in without

providing initial states. Muscle states are estimated by solving for muscle-fiber and

tendon force equilibrium.

A few additional items may be provided to the Forward Dynamics Tool:

1. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and

center of pressure location).

2. Settings for numerical integration

3. Additionally, analyses can be added so that they are executed during a forward

simulation.

7.2.2 Outputs

The Forward Dynamics Tool generates storage files containing the time histories of the

model’s controls and states that result from integration of the model’s dynamical equations

in the output directory specified.

 Best Practices and Troubleshooting

29

7.3 Best Practices and Troubleshooting

1. Forward dynamics simulations are sensitive to initial conditions and it is good practice to

double check that they are appropriate for the desired simulation.

2. If the Forward Tool fails gracefully (i.e., without crashing OpenSim) or the output of

the Forward Tool drifts too much (i.e., the model goes crazy), shorten the interval

over which the Forward Tool runs (i.e., make initial_time and final_time closer to

each other in the Forward Tool setup dialog box or setup file). Open-loop forward

dynamics tends to drift over time due to the accumulation of numerical errors during

integration.

30

8 Static Optimization
8.1 How it Works

As described in the previous chapter, the motion of the model is completely defined by the

generalized positions, velocities, and accelerations. The Static Optimization Tool uses the known

motion of the model to solve the equations of motion for the unknown generalized forces (e.g.,

joint torques) subject to one of the following muscle activation-to-force conditions:

()
  

generators force ideal

 j

nm

m
jmmm rFa τ=∑

=1
,

0
 or ()[]

  
properties velocity-length-force by dconstraine

 j

nm

m
jmmmmm rvlFfa τ=∑

=1
,

0 ,,

while minimizing the objective function:

()
pnm

m
maJ ∑

=

=
1

where nm is the number of muscles in the model; ma is the activation level of muscle m at a

discrete time step; 0

mF is its maximum isometric force; ml is its length; mv is its shortening

velocity; ()mmm vlFf ,,0 is its force-length-velocity surface; jmr , is its moment arm about the j th

joint axis; jτ is the generalized force acting about the j th joint axis; and p is a user defined

constant.

8.2 Static Optimization Tool

To launch the Static Optimization Tool, select Static Optimization… from the Tools

menu. The Static Optimization Tool dialog window, like all other OpenSim tools, operates

on the current model open and selected in OpenSim

 Best Practices and Troubleshooting

31

8.2.1 Input

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model

with the Scale Tool or by other means, along with an associated marker set containing

adjusted virtual markers. The model must include inertial parameters (segment masses,

etc.).

2. subject01_ik.mot: Kinematic data (i.e., joint angles) from IK or states (i.e., joint angles

AND velocities) from RRA and the time range of interest.

3. x: The exponent for the activation-based cost function, ∑
actuators

xa to be minimized (i.e.,

the criteria used to solve muscle force distribution problem).

4. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and center

of pressure location). Note that you must measure or model all external forces acting on a

subject during the motion to calculate accurate muscle forces.

8.2.2 Output

1. subject01_actuator_forces.sto: A set of muscle and other actuator forces that produce the

necessary generalized force (joint torque) for your measured motion.

8.3 Best Practices and Troubleshooting

1. You can use IK or RRA results as input kinematics. If using IK results, you usually need

to filter them, either externally or using the OpenSim analyze/static optimization field. If

using RRA results, you usually do not have to filter.

2. Add residual actuators to the first free joint in the model (typically the ground-pelvis

joint).

3. If the actuators/muscles are weak, the optimization will take a long time to converge or

never converge at all. This takes a long time. If troubleshooting a weak model and each

time, optimization is slow, try reducing the parameter that defines the max number of

iterations.

4. Increase the maximum control value of a residual or reserve actuator, while lowering its

maximum force. This allows the optimizer to generate a large force (if necessary) to match

accelerations but large control values are penalized more heavily. In static optimization,

ideal actuator excitations are treated as activations in the cost function.

32

9 Residual Reduction

Algorithm
9.1 How it Works

The purpose of Residual Reduction is to minimize the effects of errors in modeling and marker

kinematics that lead to significant nonphysical forces called residuals. Specifically, residual

reduction slightly adjusts the mass properties of a subject-specific model and the joint kinematics

from inverse kinematics to improve dynamic consistency with respect to the ground reaction

force data.

In this chapter, we provide a conceptual review of the inputs and outputs of the Residual

Reduction Algorithm (RRA) along with a set of troubleshooting tips and best practices for

completing the tool. RRA is covered in detail in Chapter 19 of the OpenSim User’s Guide.

9.2 Residual Reduction Algorithm Tool

The residual reduction algorithm tool is accessed by selecting Tools → Residual

Reduction Algorithm… from the OpenSim main menu bar. Like all tools, the operations

performed by the computed muscle control tool apply to the current model.

9.2.1 Input

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model

with the Scale Tool or by other means, along with an associated marker set containing

adjusted virtual markers. The model must include inertial parameters.

2. subject01_ik.mot: Kinematic data (i.e., joint angles) from IK and time range.

3. subject01_RRA_tasks.xml: A tracking tasks file specifying which coordinates to track

and the corresponding tracking weight (weights are relative and determine how "well" a

joint angle will track the specified joint angle from IK).

4. subject01_RRA_actuators.xml: The Actuator Set specifies the residual and reserve

actuators to be applied and their parameters, like maximum/minimum force and body or

joint, or location, depending on the actuator type. Each degree of freedom in the model

should have an ideal torque or force (reserve) actuator. This includes the 6 DOFs of the

 Best Practices and Troubleshooting

33

model’s base segment, which are called the residual actuators. In most circumstances,

these Ideal joint actuators used to replace the muscles in the model (by checking “Replace

model actuators” in the Actuators tab.

5. subject01_RRA_ControlConstraints.xml: The actuator constraints file specifying the

maximum and minimum "excitation" (i.e., control signal) for each actuator. Note that the

maximum/minimum force or torque generated by an ideal actuator is the product of the

max/min force and max/min excitation.

6. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and center

of pressure location). See Inverse Dynamics (Handout Chapter 6) for more details.

7. Integrator settings (i.e., max number of steps, max step size, min step size, and error

tolerance)

9.2.2 Output

1. subject01_RRA_states.sto: Adjusted kinematics (i.e., joint angles) and corresponding

model states of the simulated motion (i.e., joint angles AND velocities).

2. subject01_adjusted.osim (optional): A model with adjusted mass properties.

3. subject01_RRA_forces.sto: Actuator forces and torques (i.e., joint torques corresponding

to adjusted kinematics).

4. subjct01_RRA_controls.xml: Actuator excitations (i.e., control signals needed to generate

actuator forces and torques)

9.3 Best Practices and Troubleshooting

1. RMS difference in joint angle during the movement should be less than 2-5º (or less

than 2 cm for translations).

2. Peak Residual Forces should be less than 10-20 N.

3. Compare the residual moments from RRA to the moments from Inverse Dynamics.

You should see a 30-50% reduction in peak residual moments.

4. Compare the joint torques/forces to established literature (if available). Try to find

data with multiple subjects. Your results should be within one standard deviation of

the literature.

5. Optimal forces for residuals should be low to prevent the optimizer from "wanting" to

use residual actuators (an actuator with large optimal force and low excitation is

"cheap" in the optimizer cost).

 Best Practices and Troubleshooting

34

6. To help minimize residuals, make an initial pass with default inputs, then check

residuals and coordinate errors. To reduce residuals further, decrease tracking

weights on coordinates with low error. You can also try decreasing the maximum

excitation on residuals or the actuator optimal force.

7. If RRA is failing, try increasing the max excitation for residuals by 10x until the

simulation runs. Then try working your way back down while also "relaxing" tracking

weights on coordinates.

8. If residuals are very large (typically, this is greater than 2-3x BW, depending on the

motion), there is probably something wrong with either (i) the scaled model, (ii) the

IK solution, or (iii) the applied GRFs. To double check that forces are being applied

properly, visualize GRFs with IK data (you can use the “Preview motion data”

function in the GUI).

35

10 Computed Muscle Control
10.1 How it Works

The purpose of Computed Muscle Control (CMC) is to compute a set of muscle excitations (or

more generally actuator controls) that will drive a dynamic musculoskeletal model to track a set

of desired kinematics in the presence of applied external forces (if applicable).

In this chapter, we provide a conceptual review of the inputs and outputs of the Computed

Muscle Control (CMC) tool, along with a set of troubleshooting tips and best practices. CMC

is a tool for estimating the muscle excitations that drive a subject’s motion and is covered in

detail in Chapter 20 of the OpenSim User’s Guide.

10.2 Computed Muscle Control Tool

The computed muscle control tool is accessed by selecting Tools → Computed Muscle

Control… from the OpenSim main menu bar. Like all tools, the operations performed by

the computed muscle control tool apply to the current model.

10.2.1 Input

1. subject01.osim: A subject-specific OpenSim model generated by scaling a generic model

with the Scale Tool or by other means, along with an associated marker set containing

adjusted virtual markers. The model must include inertial parameters.

2. subject01_RRA_states.sto: Kinematic data (i.e., joint angles) from RRA and the time

range of interest.

3. subject01_CMC_tasks.xml: A tracking tasks file specifying which coordinates to track

and the corresponding tracking weight (weights are relative and determine how "well" a

joint angle will track the specified joint angle from RRA).

4. subject01_CMC_actuators.xml: This includes reserve and residual actuators, as in RRA.

5. subject01_CMC_ControlConstraints.xml: The control constraints file specifying the

maximum and minimum "excitation" (i.e., control signal) for each actuator. Control

constraints can also be used to enforce when certain actuators are "on" or "off" and the

range in which they can operate.

6. subject01_grf.xml: External load data (i.e., ground reaction forces, moments, and center

of pressure location). See Inverse Dynamics (Handout Chapter 6) for more details.

 Best Practices and Troubleshooting

36

7. Integrator settings (i.e., max number of steps, max step size, min step size, and error

tolerance)

10.2.2 Output

1. subject01_CMC_states.sto: Model and muscle states of the simulated motion (i.e., joint

angles AND velocities, muscle fiber lengths AND activations).

2. subjct01_CMC_controls.xml: Actuator (e.g., muscle) excitations (i.e., control signals

needed to generate muscle forces and reserve/residual forces and torques).

3. subject01_CMC_forces.sto: Muscle forces and reserve/residual forces and torques .

10.3 Best Practices and Troubleshooting

1. Compare the simulated activations to experimental EMG data (either recorded from

your subject or from the literature). Activations should exhibit similar timing and

magnitude to EMG data.

2. Peak reserve actuators torques should typically be less than 10% of the peak joint

torque.

3. If performing Perturbation or Induced Acceleration Analysis, you should verify that

reserves and residuals contribute less than 5% to the net acceleration of interest.

4. Compare your results (muscle activations or forces) to other simulations, if available.

5. To help minimize reserve torques, make an initial pass with default inputs, and then

check reserves, residuals, and joint angle errors. To reduce reserves further, decrease

tracking weights on coordinates with low error.

6. Optimal forces for reserves should be low to prevent optimizer from "wanting" to use

reserve actuators (an actuator with large optimal force and low excitation is "cheap"

in the optimizer cost). Increase the maximum control value of residuals so they can

generate sufficient force, but are penalized for doing so.

7. If CMC is failing, try increasing the max excitation for reserves and residuals by 10x

until the simulation runs. Then try working your way back down while also "relaxing"

tracking weights on coordinates.

37

11 Elements of a Model
11.1 What is a musculoskeletal model in OpenSim?

In OpenSim, the skeletal part of a model is represented by rigid bodies interconnected by

joints. Joints define how a body (e.g., bone segment) can move with respect to its parent

body. In OpenSim, all bodies have a parent and are connected to its parent via a joint, except

for ground. Constraints can also be applied to limit the motion of bodies.

Muscles are modeled as specialized force elements that act at muscle points (e.g., insertion

and origin points) connected to rigid bodies. The force of a muscle is typically dependent on

the path through muscle points comprised of muscle fiber and tendon lengths, the rate of

change of the fiber lengths, and the level of muscle activation. OpenSim also has a variety of

other forces, which represent externally applied forces (e.g. ground reaction forces), passive

spring-dampers (e.g., ligaments), and controlled linear and torsional actuators.

11.2 Organization of the OpenSim model file

In formulating the equations-of-motion (i.e., the system dynamics), OpenSim employs

Simbody which is an open-source multibody dynamics solver. In Simbody and OpenSim, the

body is the primary building block of the model. Each body in turn owns a joint and that

joint defines the coordinates and kinematic transforms that govern the motion of that body

with respect to its parent body. Within the model all bodies are contained in a BodySet. The

ConstraintSet contains all the kinematic constraints that act on bodies (and/or their

coordinates) in the model. User forces acting on the model are all included in a ForceSet.

<Model name="Bouncing Ball">
 <!—Default values for properties that are not specified -->
 <defaults> ...
 <credits> John Doe </credits>
 <publications> Fantastic Journal of ... </publications>
 <length_units> m </length_units>
 <force_units> N </force_units>
 <!--Acceleration due to gravity.-->
 <gravity> 0.00000000 -9.80650000 0.00000000 </gravity>
 <!--Bodies in the model.-->
 <BodySet name=""> ...
 <!--Constraints in the model.-->
 <ConstraintSet name=""> ...
 <!--Forces in the model.-->
 <ForceSet name=""> ...
 <!--Markers in the model.-->

 Specifying a Body and its Joint

38

 <MarkerSet name=""> ...
 <!—ContactGeometry associated which contact forces that are in the model.-->
 <ContactGeometrySet name=""> ...
</Model>

Figure 7-1: Top level organization of an OpenSim model file

11.3 Specifying a Body and its Joint

Figure 8: A joint (in red) defines the kinematic relationship between two frames (B and

P) each affixed to a rigid-body (the parent, Po, and the body being added, Bo)
parameterized by joint coordinates

A body is a moving reference frame (Bo) in which its center-of-mass and inertia are defined,

and the location of a joint frame (B) fixed to the body can be specified (Fig. 10-2). Similarly,

the joint frame (P) in the parent body frame (Po) can also be specified. Flexibility in

specifying the joint is achieved by permitting joint frames that are not coincident with the

body frame.

11.3.1 Available Joint Types

1. WeldJoint: introduces no coordinates (degrees of freedom) and fuses bodies together

2. PinJoint: one coordinate about the common Z-axis of parent and child joint frames

3. SliderJoint: one coordinate along common X-axis of parent and child joint frames

 Specifying a Body and its Joint

39

4. BallJoint: three rotational coordinates that are about X, Y, Z of B in P

5. EllipsoidJoint: three rotational coordinates that are about X, Y, Z of B in P with

coupled translations such that B traces and ellipsoid centered at P

6. FreeJoint: six coordinates with 3 rotational (like the ball) and 3 translations of B in P

7. CustomJoint: user specified 1-6 coordinates and user defined spatial transform to

locate B with respect to P

Figure 10-3: Sample Body and Joint Definitions in OpenSim. The right knee joint is

governed by one coordinate, the knee_angle_r.

11.3.2 The CustomJoint Transform

Most joints in an OpenSim model are custom joints since this is the most generic joint

representation, which can be used to model both conventional (pins, slider, universal, etc…)

as well as more complex biomechanical joints. The user must define the transform (rotation

and translation) of the child in the parent (B and P, Fig. 10-2) as a function of the

generalized coordinates listed in the Joint’s CoordinateSet (Fig. 10-3). Consider the spatial

transform

!

PXB :

 Specifying a Body and its Joint

40

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

6

5

4

321),,()(
x
x
x

xxxq BPBP RX ,

where

,

),,,(

),,,(
),,,(

)(

216

212

211

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

m

m

m

qqqf

qqqf
qqqf

qx

…

…
…

q are the joint coordinates, and x are the spatial coordinates for the rotations (x1, x2, x3) and

translations (x4, x5, x6) along user-defined axes that specify a spatial transform (X) according

to functions fi. The behavior of a CustomJoint is specified by its SpatialTransform. A

SpatialTransform is comprised of 6 TransformAxes (3 rotations and 3 translations) that

define the spatial position of B in P as a function of coordinates. Each transform axis enables

a function of joint coordinates to operate about or along its axis. The function of q is used to

determine the displacement for that axis. The order of the spatial transform is fixed with

rotations first followed by translations. Subsequently, coupled motion (i.e., describing

motion of two degrees of freedom as a function of one coordinate) is easily handled. The

example below (from the gait2354.osim model) describes coupled motion of the knee, with

both tibial translation and knee flexion described as a function of knee angle, by continuing

the CustomJoint definition from Fig. 10-3.

<SpatialTransform name="">
 <!--3 Axes for rotations are listed first.-->
 <TransformAxis name="rotation1">
 <function>
 <LinearFunction name="">
 <coefficients> 1.00000000 0.0000000 </coefficients>
 </LinearFunction>
 </function>
 <coordinates> knee_angle_r </coordinates>
 <axis> 0.00000000 0.00000000 1.00000000 </axis>
 <TransformAxis>
 <TransformAxis name="rotation2">
 <function>
 <Constant name="">
 <value> 0.00000000 </value>
 </Constant>
 </function>
 <coordinates> </coordinates>
 <axis> 0.00000000 1.00000000 0.00000000 </axis>
 </TransformAxis>
 <TransformAxis name="rotation3"> ...
 <!--3 Axes for translations are listed next.-->
 <TransformAxis name="translation1">

 Specifying a Body and its Joint

41

 <function>
 <NaturalCubicSpline name=""> ...
 </function>
 <coordinates> knee_angle_r </coordinates>
 <axis> 1.00000000 0.00000000 0.00000000 </axis>
 </TransformAxis>
 <TransformAxis name="translation2">
 <function>
 <NaturalCubicSpline name=""> ...
 </function>
 <coordinates> knee_angle_r </coordinates>
 <axis> 0.00000000 1.00000000 0.00000000 </axis>
 </TransformAxis>
 <TransformAxis name="translation3"> ...
</SpatialTransform>

</CustomJoint>
</Joint>

Figure 9: Spatial transform of a custom joint that implements a translating knee joint

11.3.3 Kinematic Constraints in OpenSim

OpenSim currently supports three types of built-in constraints: PointConstraint

WeldConstraint and CoordinateCouplerConstraint. A point constraint fixes a point defined

with respect to two bodies (i.e., no relative translations). A weld constraint fixes the relative

location and orientation of two bodies (i.e., no translations or rotations). A coordinate

coupler relates the generalized coordinate of a given joint (the dependent coordinate) to any

other coordinates in the model (independent coordinates). The user must supply a function

that returns a dependent value based on independent values. The following example

implements coordinate coupler constraint for the motion of the patella as a function of the

knee ankle and also welds the foot to ground.

 Forces in OpenSim

42

Figure 10: Example of constraints in OpenSim

11.4 Forces in OpenSim

Forces in OpenSim are contained in a model’s ForceSet. Forces come in two varieties:

passive forces like springs, dampers, and contact and active forces like motors and muscles.

Active forces that require input (controls) supplied by the user or by a controller are called

Actuators and are a subset of the ForceSet.

11.4.1 Available Forces

OpenSim has several built-in forces that include: PrescribedForce, SpringGeneralizedForce,

BushingForce, as well as HuntCrossleyForce and ElasticFoundationForce to model forces

due to contact (Note: contact forces also require defining contact geometry). Below is an

example of a bushing force used to model passive structures surrounding a single lumbar

joint that connects a torso body to a pelvis body.

 Forces in OpenSim

43

<!— Generate a force proportional to the separation of two frames in terms of both
relative rotational and translational displacement (stiffness) and velocity and
velocity (damping) -->
<BushingForce name="BackJointBushing">
 <body_1> pelvis </body_1>
 <body_2> torso </body_2>
 <location_body_1> -0.1007 0.0815 0.0000 </location_body_1>
 <orientation_body_1> 0.0000 0.0000 0.0000 </orientation_body_1>
 <location_body_2> 0.0000 0.0000 0.0000 </location_body_2>
 <orientation_body_2> 0.0000 0.0000 0.0000 </orientation_body_2>
 <rotational_stiffness> 10.000 10.000 10.000 </rotational_stiffness>
 <translational_stiffness> 0.0000 0.000 0.000 </translational_stiffness>
 <rotational_damping> 0.0000 0.0000 0.0000 </rotational_damping>
 <translational_damping> 0.0000 0.000 0.000 </translational_damping>
</BushingForce>

Figure 10-6: Example of a passive BushingForce

11.4.2 Common Actuators

OpenSim also includes “ideal” actuators which apply pure forces or torques that are directly

proportional to the input control (i.e., excitation) via its optimal force (i.e., a gain). Forces

and torques are applied between bodies, while generalized forces are applied along the axis

of a generalized coordinate (i.e., a joint axis).

<!—Apply an equal and opposite force at points on two bodies along the line
that connects the two points -->
<PointActuator name="FY_residual">
 <optimal_force> 8.0 </optimal_force>
 <body> pelvis </body>
 <point> -0.0724376 0.00000000 0.00000000 </point>
 <direction> 0.0 1.0 0.0 </direction>
</PointActuator>

<!—Apply an equal and opposite torque on two bodies about the axis defined
in the the first body -->
<TorqueActuator name="MZ_residual">
 <optimal_force> 1000.0 </optimal_force>
 <bodyA> ground </bodyA>
 <axis> 0.000 0.000 -1.000 </axis>
 <bodyB> pelvis </bodyB>
</TorqueActuator >

<!—Apply a generalized force along (force) or about (torque) the axis of a
generalized coordinate. Positive force increases the coordinate -->
<CoordinateActuator name="knee_reserve">
 <optimal_force> 300.0 </optimal_force>
 <coordinate> knee_angle_r </coordinate>
</CoordinateActuator>

Figure 11: Sample of linear and torque actuators in a model’s ForceSet

11.4.3 The Muscle Actuator

There are several muscle models in OpenSim. All muscles include a set of muscle points

where the muscle is connected to bones (bodies) and provide utilities for calculating muscle-

 Forces in OpenSim

44

actuator lengths and velocities. Internally muscle models may differ in the number and type

of parameters. Muscles typically include muscle activation and contraction dynamics and

their own states (for example activation and muscle fiber length). The control values are

typically bounded excitations (ranging from 0 to 1) which lead to a change in activation and

then force. Below is an example of a muscle model, as described by Thelen (2003), from an

OpenSim model.

 <Thelen2003Muscle name="soleus_r">
 <GeometryPath name="">
 <!—- points on bodies that define the path of the muscle -->
 <PathPointSet name="">
 <objects>
 <PathPoint name="soleus_r-P1">
 <location> -0.00240000 -0.15330000 0.00710000 </location>
 <body> tibia_r </body>
 </PathPoint>
 <PathPoint name="soleus_r-P2">
 <location> 0.00000000 0.03100000 -0.00530000 </location>
 <body> calcn_r </body>
 </PathPoint>
 </objects>
 <groups/>
 </PathPointSet>
 <PathWrapSet name=""> ...
 </GeometryPath>
 <!--maximum isometric force of the muscle fibers-->
 <max_isometric_force> 4000.00000000 </max_isometric_force>
 <!--optimal length of the muscle fibers-->
 <optimal_fiber_length> 0.08000000 </optimal_fiber_length>
 <!--resting length of the tendon-->
 <tendon_slack_length> 0.22000000 </tendon_slack_length>
 <!--angle between tendon and fibers at optimal fiber length-->
 <pennation_angle> 0.43633231 </pennation_angle>
 <!--time constant for ramping up of muscle activation-->
 <activation_time_constant> 0.01000000 </activation_time_constant>
 <!--time constant for ramping down of muscle activation-->
 <deactivation_time_constant> 0.04000000 </deactivation_time_constant>
 <!--maximum contraction velocity at full activation (fiber length/s)-->
 <Vmax> 10.00000000 </Vmax>
 <!--maximum contraction velocity at low activation (fiber lengths/s)-->
 <Vmax0> 5.00000000 </Vmax0>
 <!--tendon strain due to maximum isometric muscle force-->
 <FmaxTendonStrain> 0.03300000 </FmaxTendonStrain>
 <!--passive muscle strain due to maximum isometric muscle force-->
 <FmaxMuscleStrain> 0.60000000 </FmaxMuscleStrain>
 <!--shape factor for Gaussian active muscle force-length relationship-->
 <KshapeActive> 0.50000000 </KshapeActive>
 <!--exponential shape factor for passive force-length relationship-->
 <KshapePassive> 4.00000000 </KshapePassive>
 <!--passive damping in the force-velocity relationship-->
 <damping> 0.05000000 </damping>
 <!--force-velocity shape factor-->
 <Af> 0.30000000 </Af>
 <!--maximum normalized lengthening force-->

 Forces in OpenSim

45

 <Flen> 1.80000000 </Flen>
</Thelen2003Muscle>

Figure 10-8: Sample muscle actuator from a model’s ForceSet

46

12 Extending OpenSim’s

Capabilities
12.1 Overview

OpenSim provides several mechanisms for extending its existing capabilities either by

adding new model elements, computing new quantities, or computing existing quantities in

a new way. For example, you may want to model the drag acting on bodies moving through a

fluid, which OpenSim does not provide. Another example is being able to extract the linear

and angular momentum of the model during a simulation. In order to extend to OpenSim, it

is important to know what functionality exists and to have a sense of where to add new

functionality.

12.2 Organization of OpenSim

OpenSim is built on the computational and simulation core provided by SimTK. This

includes low-level, efficient math and matrix algebra libraries such as LAPACK as well as the

infrastructure for defining a dynamical system and its state. One can think of the system as

the set of differential equations and the state comprised of its variables.

Empowering the computational layer is SimbodyTM, an efficient multibody dynamics solver,

which provides an extensible multibody system and state. The OpenSim modeling layer

maps biomechanical structures (bones, muscles, tendons, etc.) into bodies and forces so that

the dynamics of the system can be computed by Simbody.

 OpenSim Model and ModelComponents

47

SimTK
Simbody

ModelComponent

Reporter

GUI

main
plug-­‐in

component
plug-­‐in
solver

Solver

Tool

OptimizationTarget

System

Force

Matter

Integrator

Optimizer

Model

Constraint

State
SimTK

Model

Analysis

Application

13-1: The three interface layers of OpenSim built on SimTK

OpenSim is essentially a set of modeling libraries for building complex actuators (e.g.

muscles) and other forces (e.g. contact) and enabling the motion (kinematics) of highly

articulated bodies (bones). Actuators can then be controlled by model controllers (e.g.

Computed Muscle Control) to estimate the neural control and muscle forces required to

reproduce human movement. An analysis layer is equipped with solvers and optimization

resources for performing calculations with the model and to report results. At the highest

level these blocks are assembled into specialized applications (ik.exe, forward.exe,

analyze.exe) to simulate and analyze model movement and internal dynamics. The OpenSim

application is a Java based program that calls Tools, Models, and underlying computations

in SimTK to provide an interactive graphical user-interface (GUI).

12.3 OpenSim Model and ModelComponents

The job of an OpenSim::Model is to organize (hierarchically) the pieces (components) of a

musculoskeletal system and to create a representative computational (mathematical) system

that can be solved accurately and efficiently using Simbody and the flat SimTK::System

framework.

 OpenSim Model and ModelComponents

48

Figure 12-2: Organizational Context vs. Computation

By separating the contextual organization of a model from its computational representation,

OpenSim can exploit the conceptual benefits of hierarchically organized models and

software without sacrificing computational efficiency. One can then think of the system as

the set of system equations while the state is a coherent set of system variable values that

satisfies the system equations. Model components know about the parts they add to the

multibody system (for example, another rigid body, a force, or a constraint) and are free to

mix and match. For example, a Coordinate component knows how to access its underlying

degree-of-freedom value, velocity and even its acceleration, given the system has been

“solved” for accelerations. A Coordinate also adds different constraints to the underlying

system, in the case that Coordinate is locked or if its motion is prescribed. It provides

context to organize locking constraints with the Coordinates being locked, but

computationally it is just another constraint equation. The Coordinate therefore acts to

manage the bookkeeping (which DOF, constraint, etc.) and provide an interface that has

context.

 OpenSim Application Programming Interface (API)

49

Figure 12-3: OpenSim Model and its ModelComponents

All model components in OpenSim have a similar responsibility to create their underlying

system representation (createSystem()). A setup() method ensures that a model is

appropriately defined (for example, a Body is being connected to a parent that exists) before

creating the system. Two additional methods allow the ModelComponent to initialize the

state of the system (from default properties) and also to hold the existing state in the

ModelComponent’s defaults. For example, a Coordinate’s default may indicate that it should

be locked, in which case its initState would set the state of its underlying constraint as

“enabled”. Similarly, after performing an analysis to find the coordinates to satisfy a static

pose, calling setDefaultsFromState(state) will update the Coordinate’s default values for the

coordinate value from the desired state. Next time the model is initialized, it will be in the

desired pose.

12.4 OpenSim Application Programming Interface (API)

In order to build custom components, it is necessary to have a general understanding of

which objects (classes) are responsible for what actions/behaviors. The functions (methods)

that OpenSim’s public classes provide (that other applications/programs can call) define its

Application Programming Interface or API.

We have already seen four methods that a model component must implement to behave as a

ModelComponent in OpenSim. This defines the ModelComponent interface. Each type of

ModelComponent, in turn, specifies additional methods in order to satisfy that type of

component. For example, a Force in OpenSim must implement a computeForce() method

 What is an OpenSim plug-in?

50

(in addition to the ModelComponent methods), a Controller must implement

computeControls(), etc. The set of all Classes and their interfaces defines the OpenSim API.

The OpenSim API is undergoing rapid development and improvement. We therefore rely on

Doxygen to automatically generate html documentation of the latest source, which describe

the classes that are available and the accessible methods. The Doxygen pages can be viewed

using a web browser and are available with your OpenSim installation in:

<OpenSim_Install_Dir>/sdk/doc/index.html. This provides the latest organization of the

available classes where one can see the list of available controllers, for example.

Figure 12-4: Example Doxygen documentation for available controllers

12.5 What is an OpenSim plug-in?

When creating a new component (like a force, controller) or a new analysis, you may want to

include it in an existing model, run it with existing tools, and/or share your contribution

with colleagues. An OpenSim plug-in is a way of packaging of your code in a dynamically

linked library so that an existing OpenSim application can recognize it, load it, and make

your code “runnable”. For an example of creating an analysis as a plug-in please see

<OpenSim_Install_Dir>/sdk/examples/plugin.

12.6 What is an OpenSim “main” program?

A main program in C/C++ results in a standalone executable that you can run from a

command prompt or by double clicking in Windows. All C/C++ programs have a main()

function, which can be as simple as printing “Hello World” or it can invoke several libraries

to produce complex applications, like Word and Excel. By including the OpenSim libraries,

your main program can call the OpenSim API, and you may also include any other (C++)

 OpenSim Developer’s Guide

51

libraries that provide additional computational and/or visualization resources. Main

programs are extremely flexible, but they are particularly useful for

streamlining/automating processes independent of the GUI. For example, ik.exe, id.exe, and

cmc.exe (available with the OpenSim distribution) are main programs that take setup files

and perform tasks related to the OpenSim workflow. Alternatively, users have created their

own main programs to systematically scale strengths of all muscles in a model, run forward

simulations with their own controllers, perform design optimizations, etc. An advantage of a

main program (compared to a plug-in) is that any classes you define in the project are

immediately useable by your program. This can make prototyping and testing of your new

component or analysis faster and easier without having to wrap, load, and call your plug-in

from the GUI.

12.7 OpenSim Developer’s Guide

The developer’s guide provides a step-by-step example of calling the OpenSim API to build a

model, including muscles and contact forces, and to perform a simulation in a main

program. Please refer to the OpenSim Developer’s Guide, available at

https://simtk.org/docman/?group_id=91 for more details.

12.8 Command Line Utilities

All of the OpenSim Tools are available as command-line utilities that take as input the same

setup (or settings) file loaded into or saved from the OpenSim GUI application. For example,

to perform Inverse Kinematics from the command line (the Command Prompt in Windows)

one can execute the following command:

ik –S arm26_Setup_InverseKinematics.xml

Similarly, this command line arguments work for CMC or any other tool, with the complete

set of command line executables available in <OpenSim_Install_Dir>/bin. In addition to

the –Setup option, there are –Help , -PrintSetup and –PropertyInfo options. Help

provides this list of options. Print Setup prints a default setup file for that Tool with all

available properties (XML tags) for Tool settings.

 MATLAB Utilities for Data Import

52

The –PropertyInfo option can be a very handy resource to obtain information about

existing settings for Tools and ModelComponents including the XML tags needed in the

model and/or setup file. This is the same information listed in the “Available Objects…”

panel under the Help menu in the OpenSim GUI. Executing ik –PI lists all the available

classes (components, analyses, utilities and tools) available in OpenSim. For more

information about a particular object, such as adding a point constraint to the model,

executing

ik –PI PointConstraint yields:

PROPERTIES FOR PointConstraint (5)
1. isDisabled
2. body_1
3. body_2
4. location_body_1
5. location_body_2

The information returned lists the properties for defining a point constraint in OpenSim.

12.9 MATLAB Utilities for Data Import

There are several MATLAB scripts for reading .trc, .c3d, .mot, and .sto files into MATLAB

and writing out the data file formats required by OpenSim. Scripts provided by the

Neuromuscular Biomechanics Lab at Stanford are available on the OpenSim Utilities project

on SimTK.org: https://simtk.org/home/opensim-utils. Additional utilities by OpenSim

users are posted on SimTK.org and can be found using the search tool on SimTK.org

