Module description
Plugins
CellType Plugin

This plugin is responsible for defining cell types and storing cell type information. It is a
basic plugin used by virtually every CompuCell simulation. The syntax is straight
forward as can be seen in the example below:

<Pl ugi n Nane="Cel | Type" >
<Cel | Type TypeName="Medi uni’ Typel d="0"/>
<Cel | Type TypeNanme="Fl| ui d" Typeld="1"/>
<Cel | Type TypeNanme="Wall" Typel d="2" Freeze=""/>
</ Pl ugi n>

Here we have defined three cell types that will be present in the simulation:
Medium,Fluid, Wall. Notice that we assign a number — Typeld — to every cell type. It is
strongly recommended that Typeld are consecutive positive integers (e.g. 0,1,2,3...).
Medium is traditionally given Typeld=0 but this is not a requirement.

Notice that in the example above cell type “Wall” has extra attribute Freeze=""". This
attribute tells CompuCell that cells of “frozen” type will not be altered by spin flips.
Freezing certain cell types is a very useful technique in constructing different geometries
for simulations or for restricting ways in which cells can move. In the example below we
have frozen cell types wall to create tube geometry for fluid flow studies.

VolumeFlex Plugin

Volume Flex plugin is more sophisticated version of Volume Plugin. While Volume
Plugin treats all cell types the same i.e. they all have the same target volume and lambda
coefficient, VolumeFlex plugin allows you to assign different lambda and different target
volume to different cell types. The syntax for this plugin is straightforward and
essentially mimics the example below.

<Pl ugi n Nane="Vol uneFl ex" >
<Vol uneEner gyPar anet ers Cel | Type="Prest al k" Tar get Vol ume="68" LanbdaVol unre="15"/>
<Vol uneEner gyPar anet ers Cel | Type="Prespore" Target Vol ume="69" LanbdaVol une="12"/>
<Vol uneEner gyPar anet ers Cel | Type="Aut ocycl i ng" Tar get Vol une="80" LanbdaVol ume="10"/>
<Vol uneEner gyPar aneters Cel | Type="G ound" Tar get Vol ume="0" LanbdaVol une="0"/>
<Vol uneEner gyPar aneters Cel | Type="Wal | " Tar get Vol une="0" LanbdaVol ume="0"/>
</ Pl ugi n>

Notice that in the example above cell types “Wall” and “Ground” have target volume and
coefficient lambda set to 0 — very unusual. That's because in this particular those cells are
were frozen so the parameters specified for these cells do not matter. in fact it is safe to
remove specifications for these cell types, but just for the illustration purposes we left

them.

Using VolumeFlex Plugin you can effectively freeze certain cell types. All you need to
do is to put very high lambda coefficient for the cell type you wish to freeze. You have to
be careful though , because if initial volume of the cell of a given type is different from
target volume for this cell type the cells will either shrink or expand to match target
volume (this is out of control and you should avoid it), and only after this initial volume
adjustment will they remain frozen . That is provided lambdaVolume is high enough. in
any case, we do not recommend this way of freezing cells because it is difficult to use,
and also not efficient in terms of speed of simulation run.

VolumeLocal Plugin

VolumeLocal Plugin is very similar to Volume Plugin. You specify both lambda
coefficient and target volume, but as opposed to Volume Plugin the energy is calculated
using target volume cell attribute. That is each cell (not just each cell type) has a target
volume attribute. In the course of simulation you can change this target volume
depending on e.g. concentration of FGF in the particular cell. This way you can specify
which cells grow faster , which slower based on a state of the simulation. This plugin
requires you to develop a module (plugin or steppable) which will alter target volume for
each cell. That's why it may be difficult to use for non C++ savvy person. However, in
the nearest future when scripting language is built into a CompuCell , use of this plugin
will be greatly simplified.

Example syntax:

<Pl ugi n Nane="Vol uneLocal ">
<Tar get Vol une>27</ Tar get Vol une>
<LanbdaVol une>2. 5</ LanbdaVol une>
</ Pl ugi n>

SurfaceFlex Plugin

SurfaceFlex plugin is more sophisticated version of Surface Plugin. Everything that was
said with respect to VolumeFlex plugin applies to SurfaceFlex. For syntax see example
below:

<Pl ugi n Nane="SurfaceFl ex" >
<Sur f aceEner gyPar aneters Cel | Type="Prestal k" Target Surface="90" LanbdaSurface="0.15"/>
<Sur f aceEner gyPar aneters Cel | Type="Prespore" Target Surface="98" LanbdaSurface="0.15"/>
<Sur f aceEner gyPar aneters Cel | Type="Aut ocycl i ng" Tar get Surface="92" LanbdaSurface="0.1"/>
<Sur f aceEner gyPar aneters Cel | Type="G ound" Tar get Surface="0" LanbdaSurface="0"/>
<Sur f aceEner gyPar aneters Cel | Type="Wal | " Tar get Surface="0" LanbdaSurface="0"/>

</ Pl ugi n>

SurfaceLocal Plugin

Analog of VolumeLocal plugin but for surface. Again it requires module development in
C++ . see the description of VolumeLocal plugin for more details.

NeighborTracker Plugin

This plugin , as its name suggests , tracks neighbors of every cell. In addition it calculates
common contact area between cell and its neighbors. We consider a neighbor this cell
that has at least one common pixel side with a given cell. This means that cells that touch
each other either “by edge” or by “corner” are not considered neighbors. See the drawing
below:

This plugin is used as a helper module by other plugins and modules e.g. Viscosity and
AdvectionDiffusionSolver use NeighborTracker plugin.

CellVelocity Plugin

A major function for this plugin is to attach new attribute (CellVelocityData) to every
cell. CellVelocityData attribute is an object that stores history of cell's center of mass
and a velocity of the cell.

Example usage is shown below:

<Pl ugi n Nanme="Cel | Vel ocity">
<Vel oci t yDat aHi st orySi ze>2</ Vel oci t yDat aHi st orySi ze>
<EnoughDat aThr eshol d>2</ EnoughDat aThr eshol d>

</ Pl ugi n>

Vel oci t yDat aHi st orySi ze specifies how many centers of mass are to be stored as a history
of cell's center of mass. For simple average velocity extraction 2 is sufficient. Note that
the bigger the history size the more memory simulation will require. This could be an
important factor on older machines or machines with small RAM memory.

EnoughDataThreshold tells CompuCell or CompuCellPlayer how many times cell's center of
mass has o be updated in order to be able to reliably estimate cell's velocity. This
parameter has to be greater or equal 2 and 2 is sufficient in most cases. There is no
memory penalty in specifying greater that 2 EnoughDataThreshold , you will just have to wait
longer to get velocity estimate. Sometimes such a behavior maybe desirable.

In CompuCell CellVelocity plugin is used in conjunction with CellVelocity Steppable to
extract average cell velocity. See example below:

<Pl ugi n Nane="Cel | Vel ocity">
<Vel oci t yDat aHi st orySi ze>2</ Vel oci t yDat aH st orySi ze>
<EnoughDat aThr eshol d>2</ EnoughDat aThr eshol d>
</ Pl ugi n>

<St eppabl e Type="Cel | Vel ocity">

<Updat eFr equency>50</ Updat eFr equency>
</ St eppabl e>

The way it works is the following:

Every predefined number of Monte Carlo steps (MCS) (specified by UpdateFrequency -
here it is 50) CellVelocity Steppable examines each cell and calculatesa displacement of
the center of mass. Next it divides this displacement by the time , measured in MCS to
get the velocity. This velocity is stored inside CellVelocityData cell attribute. Once you
use CellVelocity Plugin and CellVelocity Steppable you will be able to visualize velocity
field in the Player.

CAUTION: One has to make sure that UpdateFrequency is not too big. By that we mean
that on average cell should not move more than one lattice length during each update
period (given by UpdateFrequency). If the cells moves more than that (e.g. fluid flow in
the pipe with periodic boundary conditions along 'x' coordinate) then the value of average
velocity will be corrupted.

CelllnstantVelocity Plugin.

This plugin similarly as CellVelocity plugin attaches new attribute (CellVelocityData) to
every cell. However, in addition to this, every spin flip (not MCS , MCS consists of
many spin flips) updates center of mass history and calculates instantenous velocity
which in this case is equal to a difference between center of mass of a cell before and
after the spin flip.

Chemotaxis

Chemotaxis plugin , as its name suggests is used to simulate chemotaxis of cells. For
every spin flip this plugin calculates change of energy associated with pixel move. The
energy contribution comes from cell whose pixel is assigned to new site. In
CompuCell3D terminology it is newCell.

Energy is proportional to chemotaxis coefficient lambda and concentration difference in
target pixel its neighbor pixel. A neighbor pixel in this case is a pixel whose spin is
assigned to a target pixel. In many situations it is a nearest neighbor, but this is not a
requirement — user may specify spin flips to take place between more distant neighbors.

Let's look at the syntax by studying the example usage of the Chemotaxis plugin:

<Pl ugi n Nane="Chenot axi s" >
<Cheni cal Fi el d Source="Fl exi bl eDi ffusi onSol ver FE" Nanme="FG-" Lanbda="200" Fl ex="">
<Chenot axi sByType Type="Anpeba" Lanbda="300"/>
<Chenot axi sByType Type="Bacteria" Lanbda="-200"/>
</ Chemi cal Fi el d>
</ Pl ugi n>

The body of the chemotaxis plugin description contains sections called chenicalField .In
this section you tell CompuCell3D which module contains chemical field that you wish
to use for chemotaxis. In our case it is Fl exi bl eDi f f usi onSol ver FE . Next you need to
specify the name of the field - F&r in our case. Strength of chemotaxis is given by Lambda
attribute name. Flex flag is used to tell CompuCell3D that different cells may have
different chemotacting properties. In our case Amoeba goes up FGF gradient with
chemotaxis strength 300 and Bacteria moves down the gradient with Lambda=-300.
When such flexibility is not required i.e. when you assume that chemotaxis is the same
for all the cells you may use the following syntax:

<Pl ugi n Nane="Chenot axi s">
<Chemi cal Fi el d Sour ce="Fl exi bl eDi f f usi onSol ver FE' Nane="FGF" Lanbda="200" />
</ Pl ugi n>

It is important to realize that you may simulate chemotaxis with respect to many fields.
For example you may use the following syntax;

<Pl ugi n Nane="Chenot axi s" >
<Chemi cal Fi el d Sour ce="Fl exi bl eDi ff usi onSol ver FE" Nane="FG-" Lanbda="200" Fl ex="">
<Chenot axi sByType Type="Anpeba" Lanbda="300"/>
<Chenot axi sByType Type="Bacteria" Lanbda="-200"/>
</ Chemi cal Fi el d>
<Chemi cal Fi el d Sour ce="Fl exi bl eDi ff usi onSol ver FE' Nanme="Fi bronecti n" Lanbda="100" />
</ Pl ugi n>

Here Bacteria and amoeba respond differently to FGF but their response to Fibroectin is
described by the same energy term.

CAUTION: when you use chemotaxis plugin you have to make sure that fields that you
refer to and module that contains this fields are declared in the xml file. Otherwise you
will most likely cause either program crash (which is not as bad as it sounds) or
unpredicted behavior (much worse scenario, although unlikely as we made sure that in
the case of undefined symbols, the program exits)

ChemotaxisDicty plugin.

The priniciples behind this plugin are the same as in the case of Chemotaxis plugin. The
only difference is that in ChemotaxisDicty plugin calculates chemotaxis energy only
during the periods when cells are allowed to chemotact. Those periods are set
individually for every cell by module (steppable in this case) called
DictyCemotaxisSteppable. DictyCemotaxisSteppable and Chemotaxis are examples of

CompuCell extension modules and were developed to facilitate Dictyoestelium
morphogenesis simulation. Once scripting language will be built into CompuCell a
plugin like ChemotaxisDicty would be most likely be coded using scripting language and
where one would call “regular” Chemotaxis plugin.

The syntax of ChemotaxisDicty plugin is the following:

<Pl ugi n Nane="Chenot axi sDi cty">

<Lanmbda> 200 </ Lanbda>

<Cheni cal Fi el d Sour ce="Reacti onDi f f usi onSol ver FE_SavHog" >cAMP</ Cheni cal Fi el d>
</ Pl ugi n>

The symbols appearing here are analogous to the ones appearing in the “regular”
Chemotaxis . The only difference is that here the name of the field (cAMP) is listed as a
value of an xml element i.e. between xml tags <cheni cal Fi el d. . . >cAVP</ Cheni cal Fi el d>

Concentration Plugin

The sole purpose for this plugin as of now is to attach additional attribute (of type float)
to the cell object.

As such this plugin may be used by CompuCell3D developers, but is not directly usable
from xml level. This of course will be changed once scripting language becomes
available.

ContactFlex
The syntax of this plugin is the following:

<Pl ugi n Nanme="Cont act Fl ex" >
<Ener gy Typel="Medi unt Type2="Medi um' >0</ Ener gy>
<Energy Typel="Anpeba" Type2="Anpeba">15</ Energy>
<Ener gy Typel="Anpeba" Type2="Medi um' >8</ Ener gy>
<Energy Typel="Bacteria" Type2="Bacteria">15</Energy>
<Energy Typel="Bacteria" Type2="Anpeba">15</Energy>
<Energy Typel="Bacteria" Type2="Medi uni >8</ Ener gy>
<Dept h>2</ Dept h>
<Hapt ot axi s Sour ce="Fl exi bl eDi f f usi onSol ver FE* Nane="FG-"

Hapt ot act i ngTypes="Medi um Anpeba" >1. 0</ Hapt ot axi s>

</ Pl ugi n>

As one can see this is very much like usual contact plugin except that now we see new

xml tagt there :
<Hapt ot axi s Sour ce="Fl exi bl eDi ffusi onSol ver FE' Nane="FG-"
Hapt ot act i ngTypes="Medi um Anpeba" >1. 0</ Hapt ot axi s>

The energy calculations that this plugin does are the same as in the case of Contact plugin
. However there is additional term that modifies contact energy. This term depends on the
the value of concentration of a chemical field (FGF in this example).

Put exact formula here.

HaptotaxisTypes types allows user to specify which cell types are subject to this extra

contact energy modification.Names of the cell types are listed separated by “,” with no
spaces.

ExternalPotential plugin

This plugin is responsible for imposing a directed pressure (or rather force) on cells. It is
used mainly in fluid flow studies with periodic boundary conditions along these
coordinates along which force acts. If NoFlux boundary conditions are set instead , the
cells will be squeezed.

This is the example usage of this plugin:

<Pl ugi n Nane="External Potential ">
<Lanmbda x="-0.5" y="0.0" z="0.0"/>
</ Pl ugi n>

Lambda is avector quantity and determines components of force along three axes. In this
case we apply force along x axis and in this particular simulation in the <Potts> section of

€,

the simulation description we set boundary conditions along “x” axis.

<Pot t s>

<Boundary_x>Peri odi c</ Boundary_x>
<Fl i pNei ghbor MaxDi st ance>1</ Fl i pNei ghbor MaxDi st ance>
</ Pot t s>

SimpleClock Plugin

The main purpose of this plugin is to attach additional attribute — clock — of type
SimpleClock (essentially consists of integer counter and a flag) . It is used in all those
simulation in which cells exhibit time dependent behavior. For example in the
Dictyoestelium simulation cells chemotact for certain amount of monte Carlo steps, after
the cAMP concentration reaches threshold level. In somitogenesis simulations there one
may introduce cell clock which would guides segmentation process.

ViscosityPlugin

The detailed description of internals of this plugin can be found in the paper by Debasis
Dan, James Glazier, Chris Mueller and Kun Chen: Phys. Rev. E 72, 041909 (2005)
This is fairly complicated plugin and required developing of few modules (e.g.
NeighborTracker). This plugin essentially simulates cells' viscosity. One can use
flow2D.xml demo simulation to see how viscosity works in the case of fluid flow. Try
running with viscosity and then comment out the viscosity declaration in the xml file to
see the difference.

The syntax for this plugin is straightforward (as opposed to actual implementation):

<Pl ugi n Nane="Vi scosity">
<LanbdaVi scosi t y>10. 0</ LanbdaVi scosi ty>
</ Pl ugi n>

LambdaViscosity parameter determines how viscous cells are (the bigger the more
viscous).

Steppables.

Steppables are CompuCell modules that are called every Monte Carlo Step (MCS). More
precisely, they are called after all the spin attempts in a given MCS have been carried out.
Steppables may have various functions like for example solving PDE's, checking if
critical concentration threshold have been met, updating target volume or target surface
given the concentration of come growth factor, initializing cell field, writing numerical
results to a file etc. In summary Steppables perform all functions that need to be done
every MCS. In the reminder of this section we will present steppables currently available
in the CompuCell and describe their usage.

AdvectionDiffusionSolver steppable.

This steppable solves advection diffusion equation on a cell field as opposed to grid. Of
course, the inaccuracies are bigger than in the case of PDE being solved on the grid but
on the other hand solving the PDE on a cell field means that we associate cocentration
with a given cell (not just with a lattice point). This means that as cells move so does the
concentration. In other words we get advection for free. The mathematical treatment of
this kind of approximation was spelled out in Phys. Rev. E 72, 041909 (2005) paper by
D.Dan et al.

In addition to just solving advection-diffusion equation this module allowes users to
specify secretion rates of the cells as well as different secretion modes. More about it in a
moment. First let's see how one uses AdvectionDiffusionSolver:

This is an example syntax:

<St eppabl e Type="AdvectionDi ffusi onSol ver FE">
<Di f f usi onFi el d>
<Di f f usi onDat a>
<Fi el dName>FG-</ Fi el dNane>
<Di f f usi onConst ant >0. 05</ Di f f usi onConst ant >
<DecayConst ant >0. 003</ DecayConst ant >
<Concentrati onFi | eName>f | owFi el dConcentrati on2D. t xt </ Concentrati onFi | eNane>
<DoNot Di f f useTo>Wal | </ DoNot Di f f useTo>
</ Di f f usi onDat a>
<Secr et i onDat a>
<Secretion Type="Fl ui d">0. 5</ Secreti on>
<Secreti onOnCont act Type="Fl ui d"
Secr et eOnCont act Wt h="Wal | ">0. 3</ Secr et i onOnCont act >
</ Secr et i onDat a>

</ Di f fusi onFi el d>
</ St eppabl e>

Inside AdvectionDiffusionSolver you need to define sections that describe a field on
which the steppable is to operate. In our case we declare just one diffusion field. Inside
the diffusion field we specify sections describing diffusion and secretion. Let's take a

look at DiffusionData section first

<Di f f usi onDat a>
<Fi el dNane>FG~</ Fi el dNane>
<Di f f usi onConst ant >0. 05</ Di f f usi onConst ant >
<DecayConst ant >0. 003</ DecayConst ant >
<Concentrati onFi | eName>f | owFi el dConcentrati on2D. t xt </ Concentrati onFi | eNane>
<DoNot Di f f useTo>Wal | </ DoNot Di f f useTo>

</ Di f f usi onDat a>

We give a name (FGF) to the diffusion field — this is required as we will refer to this field
in other modules. Next we specify diffusion constant and decay constant.

CAUTION: We use Forward Euler Method to solve these equations. This is not a stable
method for solving diffusion equation and we do not perform stability checks. If you
enter too high diffusion constant for example you may end up with unstable (wrong)
solution. Always test your parameters to make sure you are not in the unstable region.

Concentrati onFi | eNane is an optional tag and lets you specify a text file that contains a
values of concentration for every pixel. The value of concentratio of the last pixel read for
a given cell becomes an overall value of concentration for a cell. That is if cell has , say 8
pixels and you specify different concentration at every pixel, then cell concentration will
be the last one read from the file.

Concentration file format is the following:
xXyzc

where Xx,y,z, denote coordinate of the pixel. c is the value of the concentration.
Example:

0001.2
00114

You may also specify cells which will not participate in the diffusion. You do it using
<DoNot Di f f useTo> tag. In this example you do not let any FGF diffuse into Wall cells. You
may of course use as many as necessary <DoNot Di f f useTo> tags .

In addition to diffusion parameters we may specify how secretion should proceed.
SecretionData section contains all the necessary information to tell CompuCell how to
handle secretion. Let's study the example:

<Secr et i onDat a>

<Secretion Type="Fl ui d">0. 5</ Secreti on>

<Secreti onOnContact Type="Fl ui d" SecreteOnContact Wth="Wal|">0.3</Secreti onOnCont act >
</ Secr et i onDat a>

Here we have a definition two major secretion modes. Line <secreti on
Type="Fl ui d">0. 5</ Secr et i on> ensures that every cell of type Fluid will get 0.5 increase in

concentration every MCS. Line
<Secreti onOnContact Type="Fl uid" SecreteOnContact Wth="Wall">0.3</Secreti onOnCont act >

means that cells of type Fluid will get additional 0.3 increase in concentration but only
when they touch cell of type Wall. This mode of secretion is called SecretionOnContact.

AmoebaeFieldInitilizer steppable

This steppable is responsible for initializing cell field for amoeba simulation. It is an
example steppable whose functionality can be entirely shifted to PIF initializer where one
writes a script with cell field description. in the future this steppable will not be supported
and instead better alternatives will be presented.

The syntax is straightforward:

<St eppabl e Type="Anpebaelnitializer">
<Radi us>1</ Radi us>
<Position x="10" y="5" z="10"/>

</ St eppabl e>

Radius denotes initial radius of the cell and Position tag defines initial center of the cell.

CellVelocity Steppable

This steppable is used to calculate average cell velocity. It uses CellVelocity plugin to get
access to CellVelocityData cell attribute. The syntax is straightforward:

<St eppabl e Type="Cel | Vel ocity">
<Updat eFr equency>10</ Updat eFr equency>
</ St eppabl e>

UpdateFrequency tag lels you define how often cell velocity is to be updated. As
discussed in plugin section (see discussion on CellVelocity plugin) one has to make sure
that update frequency is not too large as it may result in miscalculations. On the other
hand too low update frequency may cause average velocity to look noisy. Again you need
find optimal values by running test simulations.

DictyChemotaxis Steppable

This steppable is used for dictyoestelium morphogenesis simulation. Every MCS it

examines concentration of a chemical and if it is above threshold level . This plugin also
decrements and reloads cell's clock. Clock is reloaded when it is zero and concentration
of the chemical (here, cAMP) is above threshold (here, 0.2) and at this moment cell is
marked for being able to chemotact. Now, cell marked for chemotaxis will chemotact for

a certain number of MCS given by the difference of values of tags d ockRel oadval ue and
Cherot act Unti | .

Let's look at the example:

<St eppabl e Type="Di ct yChenot axi sSt eppabl e" >

<C ockRel oadVal ue>850</ C ockRel oadVal ue>

<Chenot act Unti | >750</ Chenpt act Unti | >

<l gnor eFi r st St eps>500</ | gnor eFi r st St eps>

<Chet not axi sActi vati onThr eshol d>0. 2</ Chet not axi sActi vati onThr eshol d>

<Chenmi cal Fi el d Source="Reacti onDi f f usi onSol ver FE_SavHog" >cAMP</ Chemi cal Fi el d>
</ St eppabl e>

ClockReloadValue is a reload value for the clock after above-mentioned conditions have
been met. When the clock falls below chemotactuntil value, cell does not chemotact, it
enters refrectory period.

I gnor eFi rst Steps tag is used to deactivate this chemotaxis in all the cells for firstcertain
number of initial MCS's (here, 500)

Chemical field based on which DictyChemotaxis steppable makes its decisions is

supplied by the line:
<Cheni cal Fi el d Source="Reacti onDi ff usi onSol ver FE_SavHog" >cAMP</ Cheni cal Fi el d>

where Source attribute contains a name of the module that declares given chemical field —
here it is a steppable called Reacti onDi f f usi onSol ver FE_SavHog and the name of the field
(specified as a content of xmlChemcalField tag) is cAMP.

DictyFieldInitializer

This is used to initialize cell field for Dictyoestalium simulation. This is an example:

<St eppabl e Type="Dictylnitializer">
<Gap>1</ Gap>
<W dt h>4</ W dt h>
<ZonePoi nt x="14" y="14" z="3" >10</ ZonePoi nt >
<Pr espor eRat i 0>0. 8</ Prespor eRat i 0>
</ St eppabl e>

width and gap values determine length of the cube and space between the cubes that
represent cells. ZonePoint defines approximately where autocycling cells are to be placed
and value 10 determines how much space they will occupy (user should experiment with
the values to make sure that initial placement of cells is the right one). Prespore ration
determines a percentage of prespore cells.

FlexibleDiffusionSolver

This steppable is one of the basis and most important modules in CompuCell simulations.

As the name suggests it is responsible for solving diffusion equation but in addition to
this it also handles chemical secretion which by itself maybe thought of as being part of
general diffusion equation. The principles of operations are analogous as in the case of
AdvectionDiffusionSolver so most of has been said there3 applies to
FlexibleDiffusionSolve. Also syntax is very similar. Let's see an example

<St eppabl e Type="Fl exi bl eDi f f usi onSol ver FE" >
<Di f f usi onFi el d>
<Di f f usi onDat a>
<Fi el dName>FG-8</ Fi el dNane>
<Di f f usi onConst ant >0. 1</ Di f f usi onConst ant >
<DecayConst ant >0. 002</ DecayConst ant >
<Del t aT>0. 1</ Del t aT>
<Del t aX>1. 0</ Del t aX>
<DoNot Di f f useTo>Bact eri a</ DoNot Di f f useTo>
</ Di f fusi onDat a>
<Secr et i onDat a>
<Secretion Type="Anpeba">0. 1</ Secreti on>
</ Secr et i onDat a>
</ Di f fusi onFi el d>

<Di f f usi onFi el d>
<Di f f usi onDat a>
<Fi el dNane>FG-</ Fi el dNane>
<Di f f usi onConst ant >0. 02</ Di f f usi onConst ant >
<DecayConst ant >0. 001</ DecayConst ant >
<Del t aT>0. 01</ Del t aT>
<Del t aX>0. 1</ Del t aX>
<DoNot Di f f useTo>Bact eri a</ DoNot Di f f useTo>
</ Di f fusi onDat a>
<Secreti onDat a>
<Secreti onOnCont act Type="Medi uni
Secr et eOnCont act Wt h="Anpeba" >0. 1</ Secr et i onOnCont act >
<Secretion Type="Anpeba">0. 1</ Secreti on>
</ Secr et i onDat a>
</ Di ffusi onFi el d>
</ St eppabl e>

We can see new xml tags <pel taT> and <bel tax>. Their values determine the
correspondence between MCS and actual time and between lattice spacing and actual
spacing size. In this example for the first diffusion field one MCS corresponds to 0.1
units of actual time and lattice spacing is equal 1 unit of actual length. What is happening
here is that the diffusion constant gets multiplied by DpeltaT/ (Deltax* Del tax) provided
the decay constant is set to 0. If the decay constant is not zero pel taT appears additionally
in the term containing decay constant so in this case it is more than simple diffusion
constant rescaling.

SecretionData sections are analogous to those defined in AdvectionDiffusionSolver. here
however, the secretion is done done on per-pixel basis (as opposed to per cell basis for

AdvectionDiffusionSolver). For example when we use the following xml statement
<Secretion Type="Anpeba">0. 1</ Secreti on>

this means that every pixel that belongs to cells of type Amoebae will get boost in
concentration by 0.1. That is the secretion proceeds uniformly in the whole body of a cell.

Alternative secretion mode would be the one described by the following line:
<Secreti onOnCont act Type="Medi unf' SecreteOnCont act Wt h="Anpeba">0. 1</ Secr eti onOnCont act >

Here the secretion will take place in medium and only in those pixels belonging to
Medium that touch directly Amoeba.

More secretion schemes will be added in the future.
ReactionDiffusionSolver_SavHog

This is a steppable that solves reaction diffusion set of PDE's as given in the paper by
P.Hogeweg and N.Savill Modelling morphogenesis: from single cells to crawling
slugs. J. theor. Biol. 184, 229-235.

This steppable is used in Dictyostaelium simulation based on above — mentioned paper.
Let's take a look at the syntax:

<St eppabl e Type="Reacti onDi f f usi onSol ver FE_SavHog" >
<Nunber O Fi el ds>3</ Nunber O Fi el ds>
<Fi el dName>cAMP</ Fi el dNane>
<Fi el dNanme>Ref r act ori ness</ Fi el dNane>
<Del t aX>0. 37</ Del t aX>
<Del t aT>0. 01</ Del t aT>
<Di f f usi onConst ant >1. 0</ Di f f usi onConst ant >
<DecayConst ant >0. 0</ DecayConst ant >
<MaxDi f f usi onZ>8</ MaxDi f f usi onZ>
<I nterval Paraneters c1="0.0065" c2="0.841"/>
<f Functi onParaneters Cl1="20" C2="3" C3="15" a="0.15"/>
<epsFuncti onParaneters epsl="0.5" eps2="0.0589" eps3="0.5"/>
<RefractorinessParaneters k="3.5" b="0.35"/>
<M nDi f f usi onBoxCor ner x="0" y="0" z="0"/>
<MaxDi f f usi onBoxCor ner x="40" y="40" z="8"/>

</ St eppabl e>

The syntax is a little bit different than in the case of diffusion solvers. You need to
declare how many fields you will be using (two PDE give two fields, and we need also
scratch field total of 3 fields is required). Next you specify PDE field names , do not give
name to scratch field. subsequently you specify DeltaX and DeltaT and diffusion
constant. As it was mentioned earlier Specification of DeltaX and DeltaT has an effect of
rescaling the diffusion constant as decay constant is 0.

Line <maxDi f f usi onz>8</ MaxDi f f usi onz> requires some explanation. MaxDiffusionZ
specifies region in which Refractoriness is allowed to diffuse. Refractoriness for pixels
with z>=8 is set to 0. In this case this is set of Xy planes for which z < 8. Similarly lines

<M nDi f f usi onBoxCor ner x="0" y="0" z="0"/>
<MaxDi f f usi onBoxCor ner x="40" y="40" z="8"/>

describe a 3D rectangular region in which the cAMP and refractoriness may diffuse.

Parameters given in lines:
<l nterval Paraneters c1="0.0065" c2="0.841"/>
<f Functi onPar aneters C1="20" C2="3" C3="15" a="0.15"/>
<epsFuncti onParaneters epsl="0.5" eps2="0.0589" eps3="0.5"/>
<RefractorinessParaneters k="3.5" b="0.35"/>

are described in the paper by Savill and Hogeweg.
In summary this steppable is a custom made module used in simulation of Dictyostelium

morphogenesis. It is not a general purpose so its use maybe limited. Availbility of
scripting language would most likely lead to greater flexibility.

