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We present a user guide for BIOLOGO , a domain-specific language for morphogenesis. BIOLOGO is
based on a mathematical model of morphogenesis known as the Cellular Potts Model (CPM) [8], which
models tissue and organ level cell pattern formation that occurs during morphogenesis. Working at the
cellular level, this model is able to simulate cell adhesion, growth, division and death, as well as chemotactic
and haptotactic responses to chemical gradients and cell differentiation into various types with specific
properties that determine behavior. External chemical gradients can generally be established by solvers for
partial differential equation (PDE) sets, such as Schnakenberg [12], Fitzhugh-Nagumo [14] or Hentschel-
Glimm [9], to model reaction-diffusion. Or, chemicals can be secreted by cells at specific rates in response
to some event.

BIOLOGO is intended to provide a higher level of abstraction for computational modeling of morpho-
genesis using the CPM coupled with chemical gradients. The language is XML-based, with its compiler an
extension of an XML parser provided by the Xerces [2] libraries. Through BIOLOGO the user can specify
CPM energy functions, chemical fields, and a model for cell differentiation. The BIOLOGO program, after
compilation, passes through a code generator which generates dynamically loaded plugin extensions for the
framework COMPUCELL3D, which is a three-dimensional framework for morphogenesis simulation. We
have witnessed success using BIOLOGO and COMPUCELL3D in modeling cell sorting [3, 7], avian limb
bud formation [13, 4], and in vitro capillary development [11].
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Chapter 1

Introduction

Modeling morphogenesis involves several challenges. Finding a biologically significant model is first. The
CPM provides a mathematical model that can accuractely model the patterning instabilities that occur dur-
ing morphogenesis by operating at a cell-centered level of modeling. The CPM is grid-based, modeling
cell shape changes and clustering in three-dimensional space. COMPUCELL3D [10, 4] employs the CPM
along with PDE equation solvers that establish exterior chemical gradients, and models morphogenesis on a
three-dimensional lattice. COMPUCELL3D addresses several challenges of morphogenesis modeling from
a software perspective, implementing techniques for reducing speed and memory consumption, improving
software maintenance and improving scalability for larger grid sizes.

The extensibility of COMPUCELL3D is strong for a programmer through its use of dynamically loaded
plugin objects, which use an extension of the Proxy design pattern [6] and encapsulate functionality that is
not a part of the core CPM model and should be included or excluded depending on the user. Through the
use of keywords and references in a configuration file, the user can add or remove plugins from a particular
simulation by adding or removing their reference in a COMPUCELL3D configuration file. A plugin object is
then only allocated if referenced, using the Factory design pattern [1]. All plugin code is contained within a
specific location, in a directory corresponding to the name of the plugin. Plugin additions can correspond to
energy Hamiltonians, Cell Type Maps (which model cell differentiation), and exterior chemical fields, and
typically do not require more than about five intermediate-level C++ classes. The addition of new features to
COMPUCELL3D for a programmer is therefore not difficult. But for a non-programmer, COMPUCELL3D is
rendered non-extensible by lack of knowledge of design patterns and C++ implementation of the necessary
biological processes. BIOLOGO addresses this specific issue. By operating at a higher level of modeling and
employing a syntax understandable to morphogenesis researchers and automatically generating appropriate
plugins and compilation scripts for COMPUCELL3D, BIOLOGO provides a more convenient method of
extending COMPUCELL3D for a non-programmer.

1.1 Useful Features
1.1.1 Cell Type Maps
Cell types provide a way of grouping cells with broadly similar behaviors (broad in a sense that each cell
as a whole is different but may behave similarly) into the same category. During morphogenesis, cells
differentiate into one of these known cell types which in turn describes its behavior. A Cell Type Map
provides a method of modeling differentiation by associating a specific cell type as an attribute of every
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cell. In addition, even two cells of the same type may exist in different states, which is determined by a
set of parameter values which also impacts behavior. Identical behavior in the same external environment is
exhibited by two cells of the same type that are in the same state. State controls behavior at a finer granularity
than type.

A Cell Type Map requires the following:

1. A set of parameter names and data types which make up the cell’s state.

2. A method for initializing the cell state for each cell type.

3. A method for updating the cell state for each cell type.

4. A method for changing the cell type. In computer science terms, this is essentially a cell type automa-
ton. There is a list of cell types, an initial cell type, and a list of rules for transitioning between cell
types.

BIOLOGO provides the ability to specify one Cell Type Map for each unique simulation. By representing
the Cell Type Map as a structured model with specific modules for the four above requirements, the user is
saved the difficulty of encoding these requirements in C++ and interfacing them to COMPUCELL3D.

1.1.2 Chemical Fields
An arbitrary number of chemical fields can be superimposed on the CPM grid. These chemical fields
may exist naturally in the external environment, or can be secreted by cells. In the former case, these
chemicals are often modeled by partial differentiatial equation that simulate Reaction-Diffusion, following
the idea of Turing [15] who introduced the idea that reacting and diffusing chemicals could form instabilities
that could be modeled by a PDE RD approach, providing the basis for biological patterning. BIOLOGO
provides statements for declaring all superimposed chemical fields, and initializing them with binary file
input if they should be populated by PDE solvers, or just require a user-defined initial gradient. Declared
fields can subsequently be referenced as three-dimensional arrays within BIOLOGO arithmetic and boolean
expressions, using the bracket [] operators.

BIOLOGO can also be used to generate PDE solvers for population of chemical field concentrations.
XML code can generate a solver which implements the finite difference method, or for more power embed-
ded Python is supported. FiPy (http:// www.ctcms.nist.gov) offers a solid set of PDE solving
libraries in Python.

1.1.3 Hamiltonians
The CPM follows the principle of energy minimization, which dictates that the system as a whole should
tend towards a state of lower energy. A requirement of the CPM is to compute a change in energy ∆E that
is incurred as a result of some change in the system, and accept this change with a specific probability that
is inversely proportional to this energy change.

Each individual CPM Hamiltonian is a contributor to this calculation of ∆E. Through BIOLOGO the
user can specify a method that returns a double-precision value, which implements the change in energy for
this particular Hamiltonian. Within the method for calculating energy change, the user can straightforwardly
reference cell attributes from the Cell Type Map such as cell type and also state variables, along with some
predefined attributes that each cell is assumed to possess (examples are volume and surface area).
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The user can choose to have their Hamiltonians be customizable. Each individual Hamiltonian will
generate its own respective plugin for COMPUCELL3D. When plugins are referenced in a COMPUCELL3D
configuration file, values for a predefined set of inputs can be provided which impact the behavior of the
plugin. Through BIOLOGO the user can specify what the names of these input variables should be, and
then correspondingly reference them in the method for calculating energy change. In this manner the user
controls what aspects of the Hamiltonian should be customized and the role that each play in the CPM
energy calculations.
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Chapter 2

Syntax

2.1 Getting Started
Since BIOLOGO is an extension of the Extensible Markup Language (XML), a BIOLOGO file is actually an
XML file, but with an extended syntax which we now describe. A BIOLOGO file always opens with the tag
<CompuCell3D> and ends with the tag </ CompuCell3D>.

2.2 Cell Type Map
The template for a BIOLOGO Cell Type Map is shown in Program 1. A Cell Type Map is declared as a
cellmodel and given a modelname. This modelname corresponds to the name of the resulting generated
plugin for COMPUCELL3D.

The Cell Type Map opens with a section for declaration of state variables, which will in turn be attributes
associated with each cell in the simulation. These are declared using BIOLOGO declare statement, de-
scribed in section 2.5.

State variable declarations are followed by multiple declarations of cell types. Each cell type is given
a type name. Within each cell type module, three modules are specified: (1) creation, which contains
BIOLOGO statements that should be executed upon creation of a cell of this type, (2) updatevaribles,
which contains BIOLOGO statements to execute to update state variables whenever this cell is selected for
flipping, and (3) updatecelltypes, which contains the conditions that must pass for a cell to become this
type. updatecelltypes thus implements the rules of the cell type automaton. The first specified cell type is
assumed to be the initial cell type, unless a COMPUCELL3D PIF is used to initialize cell distributions (see
COMPUCELL3D documentation; this input file allows for user-specified initial locations and cell types) The
following events occur in sequence when a cell of a specific type is selected:

1. Attempt a type change. Sequentially execute the updatecelltypes modules of each cell type. When
one passes, make the switch. If none pass, keep the same type.

2. If a type change was made, change the cell to be the new type.

3. Execute the updatevariables module of the current cell type.

BIOLOGO statements are all described in section 2.5.
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<cellmodel name=”modelname”>

..... declarations of state variables .....

<celltype name=”type1”>
<creation>

... statements to execute upon creation of a cell of this type ...
</creation>
<updatevariables>

... statements to execute to update state variables ...
</updatevariables>
<updatecelltypes>

... condition(s) to pass for a cell to become type1 ...
</updatecelltypes>

</celltype>

<celltype name=”type2”>
<creation>

... statements to execute upon creation of a cell of this type ...
</creation>
<updatevariables>

... statements to execute to update state variables ...
</updatevariables>
<updatecelltypes>

... condition(s) to pass for a cell to become type2 ...
</updatecelltypes>

</celltype>

... repeat for any other cell types ...

</cellmodel>
Program 1: Template for a BIOLOGO Cell Type Map.
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2.3 Chemical Fields
Superimposed chemical fields in BIOLOGO are associated with specific Hamiltonians (described in Section
2.4). One of several methods can be used to superimpose a field. A field can be populated from binary input
file(s), statically (one input file) or dynamically (multiple input files, read at specific frequencies). Or, a field
can evolve itself under specific instructions given within the Hamiltonian. Finally, a field can follow the
approach of Turing [15], governed by a set of reaction-diffusion partial differential equations (PDEs).

2.3.1 Field Type 1: Static, From File
File-populated fields are specified using a BIOLOGO <Input> tag. To declare a static field that should be
initialized through a file, the following template is used:

<Input name=”inputname” type=”file” />
<Field name=”fieldname” fieldtype=”datatype” filename=”inputname” />

When a Hamiltonian is declared, a plugin is generated for COMPUCELL3D and is then referenced ac-
cordingly in the COMPUCELL3D configuration file. This Input tag allows the user to specify the name
of the file used to populate this chemical field. The user input for the file name is given by inputname in
the COMPUCELL3D configuration file, and the dimensions by a default input FieldDim. The fieldname
attribute gives the name of the chemical field which can in turn be referenced in all Hamiltonians and the
Cell Type Map using standard 3D array bracket ([]) accessor operators. fieldtype specifies the type of data
contained by this field, which since this field is file-populated can be any BIOLOGO data type (see Section
2.5) with the exception of pixel or cell. The filename attribute hooks the two, attaching the file inputname
with the field fieldname. For some Hamiltonian H, the above could be referenced in the COMPUCELL3D
configuration file as follows:

<Plugin name=”H”
<inputname>chemical.dat</inputname>
<FieldDim x=”71” y=”36” z=”211”></FieldDim>
</Plugin

Subsequently, chemical.dat will populate fieldname as a 71x36x211 field of floating point values. The
file is assumed to contain values on individual lines, with z as the innermost loop, x as outermost.

2.3.2 Field Type 2: Dynamic, From File
A dynamic file-populated field uses a similar BIOLOGO tag, but instead of specifying inputname as type
file, inputname should be type fileprefix:

<Input name=”inputname” type=”fileprefix” />
<Field fieldname=”fieldname” type=”datatype” filename=”inputname”/>

By specifying the input as a fileprefix, upon plugin reference in the COMPUCELL3D configuration file
inputnamefreq will be a default parameter for the read frequency. Subsequently, at each appropriate step, if
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it is time to repopulate the chemical field based on the user-specified frequency, the file inputname + step #
+ .dat is read. In the COMPUCELL3D configuration file, for the same Hamiltonian H:
<Plugin name=”H”>
<inputname>chemical</inputname>
<inputnamefreq>20</inputnamefreq>
<FieldDim x=”71” y=”36” z=”211”></FieldDim>
</Plugin>

Now every 20 steps, fieldname will be repopulated by the files chemical0.dat, chemical20.dat, chemi-
cal40.dat, etc. The field dimensions are still 71x36x211.

2.3.3 Field Type 3: Secretion/Resorption
Other types of fields may be governed by simple secretion/resorption rules that should be executed at every
CPM Monte Carlo step. The format of the BIOLOGO secrete tag is as follows:

<secrete field="fieldname" location="l" amount="a" condition="c" />

We are assuming fieldname to have been declared within some Hamiltonian H as containing numerical
values (not pixels or cells). The above statement says that at every Monte Carlo step, if c (a boolean
expression) is true, increase the value at location l (type pixel) by amount a (numerical value). The resorb
tag operates in the same fashion, except location l of fieldname will decrease by a.

2.3.4 Field Type 4: Partial Differential Equations
Turing [15] modeled reaction and diffusion of chemical fields through a set of PDEs. One can superimpose
multiple interdependent fields and evolve them through the same set of PDEs, for example in the Hentschel-
Glimm [9] model there is an activator and inhibitor chemical.

BIOLOGO makes this possible with Evolvers. Currently, evolvers only work in two dimensions (zero
y-dimension) but we are working on extending them to three. The syntax is as follows:

<Evolver name="evolvername" />
... inputs ...
... fields ...
<DiffEq fieldname="field1" />
<Term exp="exp1" condition="c1" />
<Term exp="exp2" condition="c2" />
... more terms ...
</DiffEq>
<DiffEq fieldname="field2" />
... terms ...
</DiffEq>
... more differential equations ...
</Evolver>
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There is one DiffEq matched up with each field declared. The best way to illustrate this is by example.
We can take the simple Schnakenberg equations [12]:

∂u
∂t

= γ(a − u + u2v) + ∆u,
∂v
∂t

= γ(b − u2v) + d∆v.
(2.1)

We could add these equations to a simulation in BIOLOGO as follows:

<Evolver name=‘‘Schnakenberg’’>

<Input name=‘‘gamma’’ type=‘‘float’’ />

<Input name=‘‘a’’ type=‘‘float’’ />

<Input name=‘‘b’’ type=‘‘float’’ />

<Input name=‘‘d’’ type=‘‘float’’ />

<Field name=‘‘u’’ type=‘‘float’’ />

<Field name=‘‘v’’ type=‘‘float’’ />

<DiffEq fieldname=‘‘u’’>

<Term exp=‘‘gamma*(a-u+u*u*v)’’ condition=‘‘true’’ />

<Term exp=‘‘delta(u)*u’’ condition=‘‘true’’ />

</DiffEq>

<DiffEq fieldname=‘‘v’’>

<Term exp=‘‘gamma*(b-u*u*v)’’ condition=‘‘true’’ />

<Term exp=‘‘d*delta(v)’’ condition=‘‘true’’ />

</DiffEq>

</Evolver>
Program 2: Example Schnakenberg equation solver represented in BIOLOGO.

In this example, there are two fields declared, u and v and four input constants gamma, a, b and d. Note
that all condition values are true in this case (the default as well), because all terms are included in the
Schnakenberg equations no matter what. This will not always be the case however, and so we provide the
condition attribute which can conditionally add or remove terms from equations.

Embedded Python

A PDE solver can also include embedded Python modules between <Python> tags. This option offers a
tradeoff for more power at the cost of some performance. We illustrate the use of FiPy libraries to implement
the spinoff of the Gamba-Serini RD equations [5], used in [11] to model in vitro capillary formation:

∂c

∂t
= αδσx,0 − (1 − δσx,0)εc + D∇

2c, (2.2)

We can model this using standard BIOLOGO XML as in Program 3 or equivalently with embedded
Python using Program 4.

2.4 Hamiltonians
A Hamiltonian is declared using BIOLOGO Hamiltonian tags. Each Hamiltonian is given a name, input
variables, associated chemical fields, and finally a step function which calculates an energy change. This
energy change calculation is performed at every CPM flip attempt to determine if the selected cell’s proposed
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<PDESolver name=”GambaSerini” normalize=”false”>

<Input name=”alpha” type=”float” />

<Input name=”epsilon” type=”float” />

<Input name=”DiffConst” type=”float” />

<Field name=”c” type=”float” />

<DiffEq fieldname=”c”>

<Term exp=”(1-Kronecker)*alpha - epsilon*c*Kronecker + DiffConst*Laplacian(c)” condition=”true” />

</DiffEq>

</PDESolver>
Program 3: Gamba-Serini spinoff in standard XML.

<PDESolver name=”GambaSeriniSCRIPT” normalize=”false”>

<Input name=”alpha” type=”float” />

<Input name=”epsilon” type=”float” />

<Input name=”DiffConst” type=”float” />

<Field name=”c” type=”float” />

<Python>

diffterm = ImplicitDiffusionTerm(coeff = DiffConst)
secretion = alpha*kronecker
resorption = ImplicitSourceTerm(coeff = epsilon*(1-kronecker))
eq = TransientTerm() == secretion - resorption + diffterm
eq.solve(c, dt=dt)

</Python>

</PDESolver>
Program 4: Example of embedded Python.

flip should occur. Predefined BIOLOGO variables occurring in Hamiltonians included: pt (type pixel,
representing the CPM randomly selected pixel, oldcell (type cell, representing the CPM selected cell at
point pt), newcell (type cell, representing the CPM candidate cell), potts.cellfield (field of type pixel,
representing the central CPM lattice.

The Hamiltonian template is shown in Program 5.
Upon this reference in the BIOLOGO file, a plugin for COMPUCELL3D will be generated with the name

Hamiltonian name. input1 and input2 are variables whose values should be specified by the user in the
plugin reference in the COMPUCELL3D configuration file. Once declared using Input tags, input1 and
input2 can be referenced in expressions within the energy change calculation (and also in Cell Type Maps if
this plugin is specified as included). It is these inputs that enable customizability of each Hamiltonian.

The only part of Hamiltonians that has not been covered is the Equation module. This specifies how
energy is calculated with this Hamiltonian. An equation can either be a neighborsum, cellsum or pixelsum.
There formats are as follows:

1. <neighborsum exp="arithmetic expression" limit="integer expression" condition="boolean
expression" />

2. <cellsum exp="arithmetic expression" condition="boolean expression" />

3. <pixelsum exp="arithmetic expression" condition="boolean expression" />
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<Hamiltonian name=”Hamiltonian name”>
<Input name="input1" type="datatype1" />

<Input name="input2" type="datatype2" />

... other input variables ...
<Input name="file1" type="file" fieldname="field 1 name" fieldtype="data type of field 1" />

... other input declarations ...
<Field name="field 2 name" type="data type of field 2" />

... other field declarations ...
<Step>

... Chemical field secretion and resorption commands ...
</Step>

<Equation>

... Energy Hamiltonian equation ...
</Equation>

</Hamiltonian>

Program 5: Template for a BIOLOGO Hamiltonian.

A neighborsum describes interactions between all neighboring cells sigma and sigmaP in the CPM
lattice. For all sigma and sigmaP within a Euclidean distance of limit, exp will be added to the energy
sum if condition is true. This tag also defines a variable distance which can be used in expressions,
which is the distance between sigma and sigmaP. A cellsum is slightly simpler, just looping over all cells
sigma. exp is added to the energy sum if condition is true. A pixelsum loops over all pixels pt.

As an example the CPM volume energy from Eq. ?? can be represented in BIOLOGO as a cellsum:

<Hamiltonian name="Volume">
<Input name="TargetVolume" type="int" />
<Input name="LambdaVolume" type="double" />
<Equation>
<cellsum exp="LambdaVolume*(sigma.volume - TargetVolume)*(sigma.volume - TargetVolume)"

condition="true" />
</Equation>
</Hamiltonian>

2.5 BIOLOGO Statements
BIOLOGO possess the ability to declare variables, copy values, and can implement conditional blocks and
both conditional and counting loops. BIOLOGO also allows the passing of arithmetic and boolean expres-
sions in infix notation using XML tag attributes and the scripting of some C++ functions within expression
attributes. Through these capabilities BIOLOGO can implement functionality common to many other high
level languages, and through other unique capabilities, can abstract more complex functionality such as cell
type changes, pixel neighbor loops, and contributions to the CPM ∆E.
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2.5.1 Basic Functionality
Arithmetic and Boolean Expressions

BIOLOGO expressions use infix notation. They can use the following symbols: +, -, *, /, %, and () for
arithmetic operators; greater,less, greaterequal,lessequal,and, or, equal, and notequal
for boolean operators. Single quotes (’) encompass characters and strings. In all other ways, standard
C++ notation can be used for expressions, allowing reference of C++ predefined functions (for example,
drand48()). Examples of valid BIOLOGO arithmetic expressions:

• 5 + 4 * 3

• (7 % 5) / 2

• drand48() - 1

Examples of valid BIOLOGO boolean expressions. These will always evaluate to one of two quantities,
true or false. For example, in these cases, the first two evaluate to true while the last is false:

• ((5 equal 5) and (7 greater 2))

• 10 notequal 8

• ((10 less 8) or (7 lessequal 2))

Variable Declarations

BIOLOGO variables can be declared to be one of several BIOLOGO types and can subsequently be used to
store a value of this type. Variables can then be referenced in BIOLOGO arithmetic and boolean expressions,
and their current value will be substituted upon expression evaluation. A variable is declared using the BI-
OLOGO declare tag, of the following format for an integer:

<declare ><int name="variable name" value="infix integer expression"/></declare>

The value attribute is completely optional but can contain any valid BIOLOGO expression of type in-
teger. Expressions can contain combinations of variables and constants. BIOLOGO data types include the
following:

1. int: An integer.

2. float: A floating-point value.

3. double: A double-precision value.

4. char: A character.

5. string: A string of characters.

6. pixel: A data object representing a point. This type of object contains data members x, y and z which
contain integer coordinate values. These data members can be referenced in expressions using the .
operator, with the form variablename.x for example, similar to C++ or Java.
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7. cell: A data object represented a simulated cell. This type of object by default contains data members
type, volume, surfacearea,targetvolume and targetsurface. This object would also
contain any cell state variables specified by the user in the Cell Type Map.

Copying Values

The value of a valid BIOLOGO expression can be copied into a defined variable of a compatible type using
a BIOLOGO copy tag:

<copy name="variable name" value="expression" />

The types do not necessarily have to correspond exactly, for example, int, float and double values
can be copied amongst each other, with appropriate truncation occurring by the same rules as C++ or Java.
Here are examples of valid BIOLOGO copy statements, assuming x and y are declared integer variables:

• <copy name="x" value="3" />

• <copy name="x" value="(3 % y)+5" />

• <copy name="x" value="x*y" />

Conditional Blocks

BIOLOGO statements that are contained within conditional blocks should be executed only if some spe-
cific condition passes. This is implemented by a if-elseif-else set of modules, which are analagous
to conditional blocks in higher level languages. The template for a BIOLOGO conditional block is as follows:

<if condition="boolean expression 1">

.... BIOLOGO statements ....
</if>

<elseif condition="boolean expression 2">

.... BIOLOGO statements ....
</elseif>

<elseif condition="boolean expression 3">

.... BIOLOGO statements ....
</elseif>

.... any other elseif modules ....

<else>
.... BIOLOGO statements ....

</else>

Boolean expression conditions within conditional blocks are checked sequentially until one passes. The
BIOLOGO statements within the module of the first passed condition are executed. If no conditions pass,
the else module is executed. All elseif and else modules are optional.
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Loops

Loops provide the ability to execute the same sets of BIOLOGO statements multiple times without rewriting
them. There are two different types of BIOLOGO loops: conditional and counting. Conditional loops exe-
cute contained BIOLOGO statements while some boolean condition is true, and stop the moment it becomes
false. Counting loops execute a specific number of times, defining a loop counter variable (LCV) which is
initialized to a specific value, and is incremented or decrement by a specific amount at each loop iteration
until it hits another specific value and the loop stops.

Conditional loops can be either do or while. A do loop executes until the passed condition is true,
and the while loop executes until the passed condition is false. Each has the same template:

<do condition="boolean expression">

.... BIOLOGO statements ....
</do>

<while condition="boolean expression">

.... BIOLOGO statements ....
</while>

A counting loop template, using the BIOLOGO <for> tag, is shown below:

<for variable="defined variable" from="arithmetic expression" to="arithmetic expression"
step="arithmetic epxression">

.... BIOLOGO statements ....
</for>

Upon executing of this loop, the passed variable will be initialized to the evaluation of the expression
in the from attribute. Each iteration of the loop will increment the variable by the expression in the step
attribute. Execution of the loop will stop when variable exceeds the value in the to expression. Note that
this loop assumes that variable will increase at each iteration. It is also possible to allow variable to decrease
by the expression in the step attribute, and that is performed by using an attribute downto in place of to.

2.5.2 Unique Capabilities
BIOLOGO also provides some abstractions for some common tasks in the CPM model. These statements
are less general than the basic statements, and typically have specific places within the BIOLOGO file where
they are valid. The three examples are: changing cell type, pixel neighbor loops and CPM energy change
contributions. Obviously changing cell type is only applicable within the updatecelltypesmodule of
Cell Type Maps. Similarly, the energy change contribution can only be applied within Hamiltonina Step
modules. Pixel neighbor loops can be used in Cell Type Maps or Hamiltonians, but generally are more
useful within Hamiltonians.
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Changing Cell Type

In a Cell Type Map, all cells are governed by sets of rules for changing cell type. A change of cell type is
performed using the BIOLOGO <changeif> tag. Its template is as follows:

<changeif currenttype="defined cell type" condition="boolean expression" />

These updatecelltypes module which contains this statement will itself be contained within a BIOLOGO
celltype declaration. If the passed condition is true, and the cell’s current type is the value passed into
currenttype, the cell becomes the enclosed celltype. When a cell is selected by the CPM, all updatecelltypes
moduels are executed sequentially. When the first changeif statement results in a change of cell types, no
more changes are attempted. If no successful changeif statements are encountered, the updatevariables
module of the current celltype is executed.

Pixel Neighbor Loops

For convenience we have abstracted the ability to, given a pixel in the lattice, to loop over all its neighbors
within a specific Euclidean distance and perform some operation on each neighbor. This would be useful,
for example, in the definition of an adhesion-related Hamiltonian which must determine the level of adhe-
sivity between a lattice location and all neighboring points. A neighbor loop is formed using the BIOLOGO
<forneighbors> tag. This tag accepts as attributes a loop counter variable which this time is of type
pixel and holds the current neighbor. Attribute point contains the pixel of reference, grid is a field of
pixels (typically in a simulation there will only be one, the central CPM lattice), depth is a Euclidean
distance limit for neighbors, and the user can provide a variable in the distance attribute to hold the
current distance between point variable and point point. Each of these variables can subsequently be
referenced within the body of the neighbors loop.

<forneighbors variable="declared variable of type pixel" point="declared variable of type pixel"
grid="declared field of type pixel" distance="declared variable of type double" depth="arithmetic
expression of type double" />

As a simple example, suppose we have a two-dimensional 3x3 grid (we can extend the neighbor loop
to three dimensions using the same principles). Further suppose our point of reference is (1,1), and we set
depth to 1.5. This loop would execute 8 times, with the following values at each iteration:

• Iteration 1: variable = (0,1), distance = 1

• Iteration 2: variable = (1,0), distance = 1

• Iteration 3: variable = (1,2), distance = 1

• Iteration 4: variable = (2,1), distance = 1

• Iteration 5: variable = (0,0), distance = 1.414

• Iteration 6: variable = (0,2), distance = 1.414

• Iteration 7: variable = (2,0), distance = 1.414
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• Iteration 8: variable = (2,2), distance = 1.414

When another neighbor is considered, its distance will be beyond the depth of 1.5, and the loop
execution will stop.
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Chapter 3

Installation and Usage

BIOLOGO is a part of the COMPUCELL3D tarballs. To download BIOLOGO , download the appropriate
COMPUCELL3D tarball for your machine. Linux and MacOS versions are available. To view the results of
extended COMPUCELL3D simulations, Qt is required. Linux tarballs include versions which support Qt 3
(installed on most RedHat machines) and Qt 4 (the most recent version).

An initial unzipping and untarring of the .tar.gz file will produce a folder. Change to that folder and
you should find a BioLogo/ directory. Now change to the directory BioLogo/BioLogo and you will
find a script install.sh. Run this script and the BioLogo framework will compile.

The same folder will contain some example BIOLOGO XML files and an execution script BIOLOGO.sh.
To run BIOLOGO :

./BIOLOGO.sh <BIOLOGO File>

This will produce the C++ extensions for COMPUCELL3D, which can subsequently be compiled and
run with the rest of the framework.
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Chapter 4

Concluding Remarks

We thank you for using our product and wish you the best in your endeavors. Please submit all questions,
bug fixes, etc. to tcickovs@nd.edu.
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