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If you perform musculoskeletal simulations using OpenSim at any level, this Probabilistic Plugin 
is for you. The purpose of the Probabilistic Plugin is to enable OpenSim users to quantitatively 
assess confidence in outputs from your musculoskeletal simulations. This probabilistic approach 
provides a systematic framework to quantify uncertainty and report this information. The 
Probabilistic Plugin is open source, and should be adapted as needed to your specific project.  

 
Where to Start 

 
If you are new to probabilistic analyses, visit YouTube to view a presentation 
on common probabilistic methods in musculoskeletal simulation. 
 
If you have already configured the Matlab Scripting Environment in OpenSim, 
you are ready to work through the tutorials in order. 

ynamicsHuman
L a b o r a t o r y

[Coming Soon] 
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Initialize and Test Interface between 
OpenSim and Probabilistic Plugin 

 
 

Set up the Matlab Scripting Environment in OpenSim  
 
To connect Matlab and OpenSim API, follow the instructions on Scripting with 
Matlab within the OpenSim Confluence documentation. 
 
Download the Probabilistic Plugin 

 
Download zipfile that contains the Plugin distribution and files from 
https://simtk.org/home/prob_tool 

 
Unzip the file and store folder on your computer. 
 
Save the folder and add this folder name to the Matlab search path.  

 
Test that the interface is correctly 
 
To test that the interface is working correctly, type the following into the Matlab 
Command Window: 

Model(‘YourFilePath/ProbModel_gait2392.osim’) 
 
Note: The ProbModel_gait2392.osim is a version of the gait2392 model that has 
been appropriately scaled for this data set. 
 
Proceed to Tutorial 1 if 1) No errors occur and 2) A model object appears in the 
Matlab Workspace, proceed to Tutorial 1. 
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Tutorial 1: Inverse Dynamics and Uncertainty  
in Body Segment Parameters 
(Monte Carlo Simulation) 
 

This self-guided tutorial will walk you through a simple analysis performed of 
the Probabilistic Plugin for OpenSim. A case study is presented that relies on 
Monte Carlo simulation as applied to lower extremity inverse dynamics in the 
presence of uncertainties in inertial properties. 
 
Upon completing this tutorial, you will be able to: 
• Create valid input distributions for body segment parameters 
• Create and interpret outputs of probabilistic analyses: confidence bounds 

and sensitivity factors 
• Develop intuition on convergence of Monte Carlo simulation  
• Generate a set up file for future probabilistic analyses 

 
How to consider the effects of uncertainty in inverse dynamics 

 
Inverse dynamics is a fundamental metric in 
biomechanics 
 
Modeling of inverse dynamics (net moment at a joint) during human movement 
is a foundational concept in biomechanics. Analyses of joint moments are: 
• Taught in every course that covers human movement. 
• Frequently applied to assess clinical outcomes. 
• A foundational step toward estimating muscle forces (see Tutorial 2). 

 
Where does uncertainty arise in inverse dynamics? 
 
The inverse dynamics solution is mathematically straightforward and depends 
on three input variables (external reaction forces, segment kinematics, inertial 
parameters). Each of these inputs is prone to error in the measurement or 
estimation and is carried through the calculations to the output joint moments.  

 
Effects of input uncertainty 
 
Two important effects of input uncertainty that we should consider when 
developing a musculoskeletal model: 
• The “correct output” at any given time point lies within a range of possible 

values that are linked to uncertainty in the input. 
• The contributions of uncertainty in each input to the model outputs are not 

equal. 
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To quantify these effects, we will generate and interpret Confidence Bounds and 
Sensitivity Factors. 

 
Preparation for Probabilistic Simulation 
 

Create input distributions for body segment 
parameters 
 
A challenging part of running a probabilistic analysis is correctly modeling the 
input distribution. The OpenSim Probabilistic Plugin currently accepts the mean 
and standard deviation to create the Gaussian distribution needed for sampling.  
 

 
(image taken from Wikimedia commons) 

 
where μ is the mean value of the parameter and σ is the standard deviation of 
the parameter. 
 
For your input distributions, we will take each value of μ from the starting 
model parameters, and define the input σ from previously reported literature.  
 
Coefficient of variation for quantifying the 
distribution 
 
To obtain a more generalized formulation applicable to all models, we can 
assume a constant coefficient of variation,  
 

 

 
which assumes that the standard deviation is proportional to the magnitude of 
the mean.  
 
For example, the means and standard deviations reported for the foot segment 
mass, tibia segment mass, and femur segment mass in Rao et al. (2006) were 
0.85(0.11) kg, 2.89(0.19) kg, and 7.59(1.30) kg, respectively. 
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Therefore, the corresponding coefficients of variation are: 
CVfemur= 0.171 
CVtibia= 0.066 
CVfoot = 0.129 

 
Make note of these for use when running the probabilistic simulation. 
 
Appendix A. lists papers we have found helpful to quantify distributions for a 
variety of parameters.  

 
Perform a Monte Carlo Simulation with the OpenSim 
Probabilistic Plugin 
 

A Monte Carlo simulation is the most familiar probabilistic method. Monte 
Carlo is a class of data sampling techniques in which the simulation is run for 
multiple iterations. Each time, the input values are randomly selected from 
predetermined probability density functions associated with each parameter. 
The outputs of interest are random and distributed along their own probability 
density functions.  

 
Run the baseline simulation 
 
The Baseline Simulation is the initial deterministic simulation needed before the 
probabilistic methods can be performed. In this tutorial, the baseline parameters 
will be used as the mean values when defining the input distributions. 
 
Type ProbGUI_v8.m in the Matlab Command Window 
This launches the Probabilistic Plugin and you will see the following window. 
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Select the “No” radio button, then “Continue” 
The Probabilistic Setup File is a .xml file that allows the user to bypass the GUI 
setup. A modifiable setup file will be generated at the end this tutorial, and can 
be used for future simulations using the Probabilistic Plugin. 

 
 
Click “1. Select a Model File” 
Select ProbModel_gait2392.osim, which was included in the folder. 
This file is the gait2392.osim model that has been appropriately scaled for use 
with the experimental data. The Probabilistic Plugin will generate a copy of this 
file and make changes to the copied file. If you restart the plugin, select the 
original model file.  
 
Click “2. Select Simulation Setup File” and  
Select the “OpenSimInverseDynamics_setup.xml” file, which was included 
in the folder. 
 

!! Important !! 
Before proceeding to the next step, open the simulation setup file and the 

external ground reaction force setup file and ensure that the file paths in these 
setup files are completely defined. 

 
Select “Inverse Dynamics” from the OpenSim Tool dropdown menu. 
 
Click “Run Baseline Simulation” 
 
Check that “inverse_dynamics.sto” was written in the “Results” folder 
located in the current Matlab directory. 
 
If you do not see “inverse_dynamics.sto” with a time stamp equivalent to 
running the simulation, examine out.txt for errors that occurred during the 
baseline simulation.  
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Out.txt is written at the conclusion of the baseline simulation and is located in 
the current Matlab folder. 
 
The most common errors are related to improper path to locate the files needed 
for the Inverse Dynamics simulation. To correct this, ensure that all paths in the 
.xml setup files are correctly entered. 
 
Close the Probabilistic Plugin and launch again after correcting the error. 
 

 
 
Click “Select Baseline Simulation Results File”  
Select the “inverse_dyanmics.sto” file located in the Results folder. 

 
Select the “Yes” radio button located under “Would you like to store the 
output data from each Monte Carlo simulation?” 
The results from each iteration will be stored in the Results folder. The default 
is “Yes” to ensure future analysis.  

 
Enter the input distributions 
 
Define the parameters that will be perturbed and define the quantitative 
distributions. 
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Select “Body Segment Parameters” radio button and click “Continue” 
 

 
 
Select the “femur_r” and “tibia_r” segments in the list of bodies available 
to perform analyses. 
 note: To select multiple items in the list hold the Ctrl key. 

 
Select “Mass” as the parameter to perturb on each segment. 

note: Although Mass is already highlighted, you must click on it to avoid 
an error. 

 
Select “Yes” radio button to indicate use the baseline model values. 
 
Click “Continue” 
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Because we chose to use the segment parameters from the baseline model as the 
mean value for each distribution, the means table will be populated. If you 
chose “No”, the means must be manually input into the table. 
 
Calculate the standard deviations using the coefficients of variation defined 
in the earlier section and enter standard deviations in the GUI. 
 

σ femur = CVfemur × µfemur = 0.171×8.5014 =1.454  

σ tibia = CVtibia × µ femur = 0.066 × 3.3886 = 0.223  
 

Click “Continue”. 
 
 
 
Initialize the Monte Carlo Simulation 
 
After the distributions are defined, the probabilistic simulation must be 
initialized to perform the probabilistic analysis. 
 

 
 
Select “Monte Carlo” radio button under Probabilistic Method. 
Click “Continue”. 
 
Enter 1 and 30 as the Monte Carlo iterations Start:Stop 
This will run the Monte Carlo simulation 30 times. 
 
Enter 5 and 95 as the lower and upper Probability Levels. 
This specifies the program to create lower and upper limits of a 90% confidence 
bound (between the 5th and 95th percentiles of the distribution). 
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Select “hip_flexion_r_moment”, “knee_angle_r_moment”, and 
“ankle_angle_r_moment” as the Probabilistic Outputs. 
This list is constructed from the possible outputs located in your Results File.  
 
Select “Yes” under “Would you like to visualize the results?”. 
 
Click “Save Probabilistic Setup File”. 
 
Name the file “Tutorial1_MonteCarlo30_Setup” and save 
This selection will generate an .xml file that can be loaded in place of the 
Probabilistic Plugin GUI. 

 
Click “Continue” 
The Monte Carlo Simulation will run and produce output information in the 
Matlab Command Window. 
 
On a PC with 16.0 GB of RAM and a 3.60 GHz processor, 30 iterations in the 
Monte Carlo Simulation will take approximately 60 seconds. 
 

Visualization from the Monte Carlo Simulation 
 

After the simulation has completed, several plots will be displayed that include 
interpretable results and information about the simulation. 

 
Confidence Bounds  
 
Confidence bounds represent the range in which the output of the simulation 
can lie. In this tutorial, we chose a two-sided confidence bound with limits at 5th 
and 95th percentile of the output distribution.  
 

“There is a 90% probability that that true result of this simulation 
lies between the lower and upper confidence bounds.” 

 
Currently, standards do not exist on selection of confidence bound sizes.  

 
Confidence Bounds versus a Confidence Interval 

 
Confidence Bounds approximate the value of a model output and is calculated 

from repeated numerical simulations whereas a Confidence Interval 
approximates the mean of an entire population mean based on a sample data set 

that includes multiple participants (Curran-Everett, 2009). The  
 

However, when the output distribution of your probabilistic simulation is 
Gaussian, the two-sided confidence bounds can be interpreted in a similar 
manner a confidence interval. For example, when the output distribution is 
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Gaussian you can test if the outputs from two different models, given the same 
input data, are different by stating the null hypothesis (h0) and alternative 

hypothesis (h1) as 
 

h0: Model A Output = Model B Output. 
h1: Model A Output ≠ Model B Output 

 
If the acceptable Type I Error is limited to 5%, then we reject h0 when the two-
sided 95% confidence bounds (2.5th percentile and 97.5th percentile) from each 

Monte Carlo Simulation do not overlap. 
 

 
Interpret sensitivity factors 
 
A Sensitivity Factor is generated for every combination of input varied and the 
output of interest. The value of the sensitivity factor is quantified by Pearson 
Product-Moment Correlation between the input parameter and the output.  
 

 
 

The value of Sensitivity Factor indicates the degree of sensitivity. For example: 
weakly sensitive (r=0.2-0.4), moderately sensitive (r=0.4-0.6), and highly 
sensitive (r=0.6-1.0).  
 
We recommend categorizing the degree of sensitivity on Sensitivity Factors that 
are statistically different from zero (when the 95% confidence interval of the 
correlation coefficient does not contain zero).  

 
In addition, the slope of the regression provides information about how the 
average change in the input will affect the output. Note that this interpretation 
assumes a linear relationship between the input and output. 
 
 
Output Distribution 
 
A plot is generated that shows the histogram of each output in the simulation 
and the normal probability plot. This information can be used to examine the 
qualitative features of your distribution.  
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If you intend to calculate a confidence interval (see panel above), the normal 
probability plot will help you decide if the data already satisfy the Gaussian 
criterion. If not, the value and histogram will assist deciding on an appropriate 
transform. 
 
 

Use the Probabilistic Setup File to generate results with different 
parameter distributions 

 
After completing the first simulation, the Plugin generated a new XML file that 
allows running the same or modified version of the probabilistic simulation 
without navigating the Plugin GUI each time. 

 
Modify the probabilistic setup file 
 
Navigate to the file named “filename.xml” which is located in the local 
directory with the Plugin files. 
 
Open the file in an XML viewer of your choice 
 
Explore the set up file created. 
You will recognize many of the decisions you made when using the PlugIn GUI  
 

 
 

Change the standard deviations for the mass of the femur and tibia to 2x 
the original value. 
<femur_r_SD>2.908<femur_r_SD> 
<tibia_r_SD>0.466<tibia_r_SD> 

 
Leave the number of iterations the same 
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Run the Monte Carlo Simulation with altered parameters 
 
Type ProbGUI_v8.m in the Matlab Command Window 

 
 
Select the “Yes” radio button, then “Continue”. 
 
Select the Probabilistic Setup file that you saved. The simulation will begin with 
the baseline simulation and then proceed to the Monte Carlo iterations.  
 
Examine New Results 
The updated plots of the 90% confidence bounds are now larger than in the 
initial simulation for the hip and knee. 
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How many iterations are necessary in a Monte Carlo Simulation? 
 

Accuracy of the Monte Carlo simulation improves 
with the number of iterations  

 
It is important to perform enough iterations in the Monte Carlo simulation to 
obtain the results for interpretation. The confidence bounds and sensitivity will 
change with additional iterations. 
 
There are multiple ways to examine convergence. The most common is to set a 
convergence criterion on the change on confidence bounds between iterations. 
 
The plot below demonstrates how the bound size changed with each successive 
iteration of a Monte Carlo simulation that used bound size of the Vastus 
Lateralis muscle force. In the Monte Carlo simulation shown, the results 
converged around 3000 iterations. 

 
 
Without prior knowledge of how a system will behave in the Monte Carlos 
simulation, selecting the convergence criterion may be difficult. As a result, 
convergence may be assessed after the simulation. 
 
To generate your own convergence for the inverse dynamics example, use the 
data in the results files created during the Monte Carlo Simulation, which are 
located in the results folder defined earlier and specified in the Probabilistic 
Setup File. The output you choose to converge upon must be plotted against the 
iteration using a custom Matlab script. 
 
Refer to Valente et al. (2013) for an excellent example of reporting convergence 
of a Monte Carlo simulation.  

 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000045

50

55

60

65

70

Monte Carlo trials

Va
st

us
 L

at
er

al
is

 B
ou

nd
 S

iz
e 

(N
)



16 

Monte Carlo Simulation Exercises  
 
Perform the following “homework assignments” to develop better 
understanding the Monte Carlo Simulation results and the file handling within 
the Probabilistic Plugin. 
 
Exercise 1: Run full Monte Carlo Simulation 

Modify the probabilistic input file to add 500 iterations to the last 
simulation. Did the 5th and 95th percentiles change compared to the 
simulation with 30 iteration? 

 
Exercise 2: Create convergence plot  

Write a Matlab script to plot the value of the 95th percentile for peak hip 
extension moment for iterations 1 through 500. Steps: 
1) Load the results file for an iteration from the output folder.  
2) Find value for peak hip extension moment. 
3) Using all previous iterations, calculate the 95th percentile for that iteration 
4) Plot results versus each iteration. 
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Tutorial 2: Muscle Force Prediction and 
Uncertainty in Muscle Properties 
(Advanced Mean Value) 
 

This self-guided tutorial will walk you through using the Advanced Mean Value 
(AMV) method of the OpenSim Probabilistic Plugin.  

 
Upon completing this tutorial, you will be able to: 
• Run the AMV method within the Probabilistic Plugin GUI  
• Create and interpret outputs of probabilistic analyses: confidence bounds 

and sensitivity factors 
• Characterize the tradeoff of computational efficiency and amount of 

information available between Monte Carlo and AMV (within the number 
of most probable points selected) 

• Generate and interpret importance factors 
 

Muscle force prediction and uncertainty in muscle parameters 
 
Static optimization and muscle force prediction 
 
Static optimization is currently the most common tool used to resolve the over-
determined system of muscles forces within a musculoskeletal model. In 
OpenSim, the Static Optimization Tool is standard in the GUI. 

 
Uncertainty in muscle parameters  
 
It is important to consider the effects of selecting muscle properties on force 
prediction processes. Muscles and parameters do not share equal importance in 
a given simulation. However, it is clear that muscles play an important role in 
accelerating segments they do not span (Zajac, 1993).  

 
Large number of parameters included in the 
simulations 
 
In a Hill-Type muscle model, multiple parameters must be quantified for each 
muscle. These include physiological cross-sectional area (PCSA), pennation 
angle, maximum velocity, tendon slack length. These values are specific to each 
muscle, and are quantified for each subject.  
 
Most current lower-extremity models include large numbers of muscles to 
actuate the system. For example, the gait2392 model we are using for these 
tutorials includes 92 muscles. If we are required to quantify four parameters per 
muscle, then 92x4=368 parameters, each with a level of uncertainty. 
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Perform Most Probable Point Analysis (Advanced Mean Value 
method) on Muscle Forces 

 
When the number of input parameters gets large, the computational expense can 
drastically increase. When this occurs, we can estimate the reliability metrics 
through an optimization procedure called the Most Probable Point (Wu et al., 
1990). Like the Monte Carlo Simulation, the results provide confidence bounds; 
however, sensitivity factors are not possible because the entire input probability 
density function is not considered. A metric of sensitivity called an importance 
factor is available in the MPP methods.  

 
Run the baseline simulation 
 
The Baseline Simulation is the initial deterministic simulation needed before the 
probabilistic methods can be performed. In this tutorial, the baseline parameters 
will be used as the mean values when defining the input distributions. 
 
Type ProbGUI_v8.m in the Matlab Command Window. 

 
 
Select the “No” radio button, then “Continue”. 
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Click “1. Select a Model File” and 
Select ProbModel_gait2392.osim. 
 
Click “2. Select Simulation Setup File” and  
Select the “ProbGait_StaticOp_Setup.xml” file. 
 

!! Important !! 
Before proceeding to the next step, open the simulation setup file and the 

external ground reaction force setup file and ensure that the file paths in these 
setup files are completely defined. 

 
Select “Static Optimization” from the OpenSim Tool dropdown menu. 
 
Click “Run Baseline Simulation”. 
 
Check that “_force.sto” was written in the “Results” folder located in the 
current Matlab directory. 
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Click “Select Baseline Simulation Results File”  
Select the “_force.sto” file located in the Results folder. 

 
Select the “Yes” radio button located under “Would you like to store output 
data?” 
The results from each iteration will be stored in the Results folder. The default 
is “Yes” to ensure future analysis.  
 
Click “Continue”. 

 
Select your static optimization results file for ‘_force.sto’. 

 
 
Select the Muscle Parameters radio button to analyze. 
 
Select the biceps femoris long head (bifemlh_r) and rectus femoris 
(rect_fem_r) on the right side from the list of muscles in the model. 
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Select Maximum Isometric Force from the list of parameters. 
 
Select the ‘yes’ radio button to use initial model values and continue. 

  
 
Enter values for standard deviations: 

σ BF = CVBF × µBF = 0.0682 × 960 = 65.45  
σ RF = CVRF × µRF = 0.0456 ×1169 = 76.71  

 

 
 

Select the Advanced Mean Value radio button. 
 
Enter 5 and 95 for the upper and lower probability levels. 
 
Enter 0.5 for the perturbation size. 0.5 is recommended but the user can 
use any.  
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Select the muscles that you chose in your analysis from the list of outputs to assess 
their results muscle force outputs. (bifemlh_r; rect_fem_r). 
 
Enter 1 for ‘# the time points for full motion’.  
When you continue you will be prompted to select where in the motion you would like 
the time point to be.  
 
Save the probabilistic setup file, continue. 

 

 
Use the cursor to select the point of maximum force outputs for each 
muscle, and click Continue. 
 
Evaluate Results 
Size of 5-95% bounds for the one time point are denoted by the height of the red line. 
Does it make sense for the rectus femoris bounds to be so small?  (Likely due to the 
peak force occuring during peak hip extension with the knee in a flexed position, 
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putting the rectus femoris in a strentched position where changes in maximum 
isometric force would have a small effect).  

 
 
Open the Probabilistic setup file and change the number of time points 
from 1 to 10. 

 
 
Re-run the simulation: evaluate results.  
In the graphs you will see the bounds for a more complete gait cycle. Ten time points 
for this simulation should take approximately 25 minutes.  
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Try with even more points to increase the detail over the gait cycle. Next, take some 
time and run a Monte Carlo of 250 trials replicating the same same inputs as the AMV 
(should complete in a little over 2 hours on a computer as decribed above). Compare 
the results for the size of the bounds.  How many time points in AMV were needed to 
adequately follow the Monte Carlo result? 
 
For Future analysis, results appear in three folders. First, the mean and each of the 
pertubations are run and stored in separate folders in the ‘pertubations’ folder. Second 
each muscle is run for the 5 and 95% probability level and results are stored for each 
time point.  

 
 
 
 
 
 
 
 
First Run: 
One time point (max) 
Two muscles (ham + quad) 
Max isometric force 
 
Second Time Point: 
10 time points Multiple time points  
Max isometric force 
 
Assigmnent: 
Run Monte Carlo Simualtion with Max isometric force 
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Appendix A: Literature that contain quantitative 
information for parameter uncertainty 
 
This list of peer-reviewed literature has been helpful for estimating the coefficients of variation 
for model parameters. 
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Gait Posture 24:152–64, 2006. 
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