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Structure-based methods predicting small molecule binding focus on large drug-like molecules and have limited 
ability to predict fragment binding. Fragments, however, can be a key starting point in drug design and 
screening for a protein target. We leverage the redundancy among small molecules at the substructure level to
develop a general structure-based predictor for fragment binding. 
 
INTRODUCTION 
Fragment-based drug design focuses on optimizing 
low affinity low-molecular-weight fragments into 
higher affinity lead molecules. Key in this process is 
the initial identification of fragments that bind to the 
protein target of interest. Existing computational 
methods (docking and virtual screening) are optimized 
for complex drug-like small molecules and do not 
perform with fragments. However, the availability of 
structural data for proteins whose bound ligands share 
substructures can enhance our understanding of 
fragment binding to facilitate binding predictions. 
We propose an unsupervised machine learning 
approach to automate the discovery of fragment 
binding preferences. For all protein residues involved 
in ligand binding, we characterize their local structural 
microenvironment and annotate them with the ligand 
fragments they bind. This serves as the knowledge 
base of protein-fragment interactions. Comparison to 
the knowledge base enables retrieval of fragments 
statistically preferred by the microenvironments of a 
target protein structure, giving insight for drug design. 
Our approach enables discovery of similar micro-
environments across diverse proteins and maximizes 
structural data usage by merging information across 
diverse ligands with shared substructures. Results on a 
dataset of proteins binding a variety ligands show 
strong ability to rediscover fragments corresponding to 
the bound ligand, validating the methodology.  

METHODS 
The foundation of the method is a knowledge base of 
protein-fragment interactions. From the Protein Data 
Bank (PDB)1, we retrieve high-resolution protein 
structures in complex with a ligand. We characterize 
the physicochemical environment (microenvironment) 
around each residue interacting with the ligand using 
FEATURE2. Each residue is also annotated with the 
ligand substructures (fragments) in close proximity. 
All ligands from the PDB are divided into overlapping 
fragments of 3-10 heavy atoms. Protein micro-
environments are thereby associated with ligand 
fragments, forming the knowledge base of protein-
fragment interactions (Figure 1). 
Given a protein structure with unknown fragment 
binding preferences, we first identify potential ligand 
binding pockets. We compute the microenvironments 
of the residues forming these pockets and compare 
them to the knowledge base to retrieve similar 
microenvironments and their bound fragments. There 
is a core assumption that similar microenvironments 
share similar fragment binding preferences. We use a 
hypergeometric distribution and Fisher’s method to 
assess the significance of fragments across 
microenvironments in spatial proximity. Groups of 
microenvironments thus have rank-ordered fragment 
binding preferences (Figure 1). A target protein pocket 
can yield multiple fragment predictions applicable 
towards fragment-based drug design. 

 
FIGURE 1. Schematic of method work flow. From a query protein, 
microenvironments of interest (colored circles) are compared to 
the knowledge base to retrieve the subset of similar 
microenvironments. Fragment binding information from similar 
microenvironments undergoes statistical tests to produce ranked 
predictions for each group of query microenvironments. 
 

RESULTS & CONCLUSIONS 
We evaluated the performance of our knowledge base 
and methodology by assessing their ability to 
rediscover known interactions between proteins and 
small molecules. From the PDB, we retrieve structures 
in complex with cofactors adenosine diphosphate 
(ADP), flavin adenine dinucleotide (FAD), 
nicotinamide adenine dinucleotide (NAD), and 
thiamine diphosphate (TPP). These ligands differ in 
occurrence in the database, have significant flexibility, 
contain a variety of chemical moieties, and share some 
moieties in different contexts, testing method 
robustness under multiple scenarios. We define 
method performance as the ability to predict fragments 
corresponding to the ligand bound. 
We analyzed 1,423 non-redundant protein chains 
binding ADP (597), FAD (389), NAD (399), and TPP 
(38). These proteins chains are scanned by fpocket3 to 
determine potential ligand binding sites to assess for 
fragment binding preferences. Not all portions of a 
ligand interact with the protein and predicted sites may 
entirely miss the ligand site. Of the chemical moieties 
interacting with the analyzed protein sites, we achieve 
recall of greater than 80% at precision of 70%. Sites 
not interacting with the ligand were excluded from the 
analysis. The chemical moieties differ in predictability 
with thiamine recall the lowest (54%) and phosphate 
the highest (90%). This behavior is also weakly 
context specific as the adenine moiety in ADP has 
70% recall compared to 80% for FAD and NAD. 
Thus, on a validation set of cofactors our unsupervised 
machine learning approach for predicting fragment 
binding achieves high performance. However, many 
of the proteins assessed are in complex with additional 
ligands that we also successfully predict. These 
ligands include organo-metallic complexes, enzyme 
substrates, heme, sugars (ie. glucose), and inhibitors 
(ie. tricolsan). While performance for these ligands is 
not yet fully validated, these examples nonetheless 
demonstrate the ability of our method to produce 
relevant fragment predictions for a structure of interest. 

REFERENCES 
1.    Berman, H. M. et al. Nucleic Acids Res 28, 235-242 (2000). 
2.  Halperin, I., Glazer, D. S., Wu, S. & Altman, R. B.. BMC 

Genomics 9 Suppl 2, S2 (2008). 
3. Le Guilloux, V., Schmidtke, P. & Tuffery, P.. BMC  

Bioinformatics 10, 168 (2009). 


