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Introduction
• Population modelling spans many domains 

and techniques
• New technologies offer cutting-edge 

opportunities to a growing field
• The Population Modelling Working Group is 

active under the Interagency Modelling and 
Analysis Group (IMAG) umbrella

• Members meet annually at the IMAG 
meeting at the National Institutes of Health

• The working group maintains a web portal 
and a mailing list.



• An attempt to illustratively map the field of 
population modelling

• Motivated by problems in medicine and 
biomedical sciences

• Our working definition of population 
modelling:
“Tackling real-life problems that are relevant 

at the population level using a range of 
mathematical tools”

• However, this is imprecise, so we 
demonstrate by way of examples.

The project
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Melanie Prague (Harvard, USA)

Mechanistic modelling of cell population 
dynamics: targeting HIV drug doses
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Parameter Estimation for Population Dynamics

Matthias Chung (Virginia Tech, USA)

Parameter estimation for generalized Lotka-Volterra system 

​​​min$$┬%,'  ⁠‖((*)$−-‖ $$$subject$to$$$*↑′ =diag(*)(%+'*)
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Challenges: 
•  Complex population dynamics need to be captured leading to 

investigation of chaotic dynamical system 
•  Non uniqueness and ill-posedness of parameter estimation 

problem 
•  Numerical optimization difficult through non-existence of solution 

of the dynamical systems 



Robin Gras (University of Windsor, Canada)

• Very large populations of “intelligent”, evolving agents
• Three trophic levels: grass, prey, predators
• Genome coding for behaviour and physical properties
• Thousands of generations in a few weeks

– Speciation and species extinction
– Predator effects on prey behaviour and evolution
– Sexual/asexual reproduction
– Invasive species
– Emergence of communication
– Emergence of altruism
– Ecotoxicology.

EcoSim: An artificial world for exploring ecological questions



Linking effects of toxic chemicals from the 
organismal to population level

Valery Forbes (University of Minnesota, USA)

• Ecological protection goals usually 
involve populations, not individuals

• We measure effects of toxic 
chemicals on individual survival, 
growth and reproduction

• These have variable consequences 
for population dynamics

• Population models can extrapolate 
what we need to measure and what 
we need to protect.
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Heterogeneity in disease activity and cost-
effectiveness analysis

• An intervention’s cost-effectiveness can vary 
by subgroup due to patient heterogeneity

• We use finite mixtures of disease activity 
models to identify relevant 
subgroups

• Characteristics of subgroups 
and their cost-effectiveness 
inform decisions on 
resource allocation.

Sixten Borg (Lund University, Sweden)



Tracy Comans (Griffith University, Australia)

• Identify the gap between 
demand and service 
capacity

• Identify patients who would 
be suitable for 
physiotherapy-led 
management

• Develop recommendations 
to address current and 
future gaps in services.

Estimating demand for orthopaedic specialist 
services in Australia
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Visual PKPD Modelling Using EDSIM++

Neiko Punt (Medimatics, The Netherlands)

PK:$An'bio'c$Concentra'on$ PD:$Bacteria$Count$



Chemotherapy Systems Modelling

William J. Jusko (University of Buffalo, USA)

Evaluation & Optimization of combination therapy 
Drug-focused 

Biological system-focused 
Exploration of drug MoAs and underlying system 

Basic PD Model Mechanism-Based PD Model Network Model 

Cell culture studies Assessing 
cell-cycle 

drug effects 

Genomic and 
proteomic 

studies New targets or 
combinations 
for evaluation 



Lucas Brotz (University of British Columbia, Canada)

Examining population trends using fuzzy logic
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• Fuzzy logic represents 
variables according to a 
degree of membership

• Applied to global jellyfish 
populations

• Suggests populations are 
increasing in coastal 
ecosystems



Ayaz Hyder (Ohio State University, USA)

Systems Science in Epidemiology

• Systems science methods integrate data, 
develop explanatory models and evaluate 
solutions for better outcomes 

• Eg agent-based models of influenza spread
• Microsimulation models for cost-effectiveness 

of cancer surveillance
• Satellite-based predictions 

for air pollution exposure 
and risk of birth outcomes.



Discussion
• Through heterogeneous examples, we 

illustrate how the field has been 
conceptualised and evolved

• However, we are still not at the limit of the 
field’s potential

• We see a range of applications and tools
• Yet there is also unity, with a focus on 

utilising computation and theoretical 
methods as tools for tackling a multitide of 
problems

• We posit an alternate, two-dimensional view:



Contributor Disease 
spread

Resource 
allocation

Drug 
effects

Risk 
assessment

Ecosystem 
management

Testing 
theory

Epidemiology/ 
Public health Methods

Robert Smith? x x x Impulsive DEs, 
Latin hypercube sampling

Bruce Y. Lee x x ABMs

Aristides 
Moustakas

x ABMs

Andreas Zeigler x Random forests, support-
vector machines

Mélanie Prague x x x ODEs, control theory

Romualdo Santos x x Difference equations

Matthias Chung x Point-estimator methods for 
ODEs

Robin Gras x x ABMs, fuzzy maps

Valery Forbes x x Matrix models, ABMs

Sixten Borg x x x Finite mixtures, cost-
effectiveness analysis

Tracy Comans x x Discrete event simulation, cost-
effectiveness analysis

Yifei Ma x x x Network models, diffusion 
dynamics

Neiko Punt x PKPD modelling, Bayesian 
estimates

William Jusko x x PKPD modelling, ODEs

Lucas Brotz x x Fuzzy logic analysis

Ayaz Hyder x x x x ABMs, microsimulation models



Future challenges

• As data become increasingly available, 
questions of security become more prominent

• Big data are an excellent resource but can 
result in big privacy violations
– eg the Ashley Madison hack, Wikileaks, Edward 

Snowden’s NSA data release

• Gathering large amounts of data in one place 
opens that data up to susceptibility on an 
unprecedented scale

• This can be a force for good or a massive 
privacy violation.



Ethical implications

• As scientists, it behooves us to consider the 
ethical and moral implications of our work

• A growing challenge is the melding of the 
physical sciences with the social sciences

• If human behaviour is to be understood, 
modelling must draw upon fields that have 
expertise in the qualitative understanding of 
social, cultural and behavioural norms

• This cross-disciplinary understanding is 
necessary to improve our quantitative 
models.



Conclusion
• Any attempt at a comprehensive definition is 

of course futile
• However, through the examples given here 

and in a similar paper last year, we see 
snapshots of the field in time

• The mailing list is open to new members
• We encourage discussion and future 

contributions 
• In this way, we may eventually have a sense 

of the shadow of the field, if not its shape
• The project continues...

https://simtk.org/mailman/listinfo/
popmodwkgrpimag-news


