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Abstract  
We discuss the SimTK toolset for multibody dynamics (a.k.a. 
internal/torsion/relative coordinate modeling, rigid body mechanics). 
This toolset, called “SimTK Simbody,” is intended to be useful in coarse 
grain molecule modeling, neuromuscular gait simulation, and many 
other biologically relevant models. SimTK Simbody is structured as a 
library, not a standalone application, and is intended to work easily 
from programs written in a variety of languages and styles. 

This document describes the important concepts and mathematics 
involved in Simbody.  It does not describe the details of programming 
with it.  To learn that, see the SimTK Tutorial, the SimTK Advanced 
Programming Guide, and the SimTK API Reference Documentation. 
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1 Preface 
SimTK Simbody provides a powerful multibody mechanics capability for use 

in biosimulation. It is designed for use by programmers who are not experts 

in multibody mechanics. Simbody provides a sophisticated, robust, high 

performance, open source option for mechanical simulation, as well as the 

additional functionality and performance needed for effective modeling of 

large molecular systems in internal coordinates. It is accessible through a 

stable API* to programmers who work in a variety of languages. The API is 

object-oriented C++. C and FORTRAN APIs and wrappers for interpretive 

languages like Java and Python are planned. The full capability of this 

package will be built up in layers over time; this document covers the current 

capabilities and discusses future directions. 

A complete multibody mechanics simulation (a molecular dynamics 

simulation of a protein/RNA interaction, for example) requires many layers. 

At the lowest level are basic numerical methods like linear algebra, numerical 

integration, nonlinear root finding, and optimization. Next up is the 

multibody mechanics computation, which is where Simbody fits in. Alongside 

that are domain-specific force computations. Above that is a modeling layer 

for use in constructing these systems, and above that a user interface that 

provides model building, execution, and visualization of results. The figure 

below shows Simbody’s small but significant place in the SimTK framework. 

 

 

 

                                                        

 

* API: “Application Programming Interface,” i.e., a programming library. 
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Document conventions 

 

In order to allow myself the pleasure of delivering the occasional 

opinionated diatribe, while permitting the easily offended reader to 

avoid them, I have placed a “pontification warning” symbol like the one at 

the left at the beginning of such sections in the text. The end of these 

sections is marked with the “off my soapbox” symbol to the right. 

 

The symbol to the left is used to highlight sections which summarize 

earlier material. 

 

This one is used to mark discussions of capabilities which are planned 

but not yet implemented. 
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2 Background 
This is general material hopefully providing enough background for the rest 

of the document to make sense. Even for those familiar with multibody 

dynamics, it is probably worth reading to see how we are characterizing it for 

the broad uses it will serve for SimTK users. 

2.1 What is “multibody dynamics”? 

Multibody mechanics (of which multibody dynamics is a subset) is the field 

studying the classical mechanical properties, especially motion, of systems of 

bodies interconnected by joints, influenced by forces, and restricted by 

constraints. The key feature of a system that makes it suitable for multibody 

treatment is the observation that its motion is localized, that is, it is well-

described as a set of independently identifiable parts which undergo large 

motion with respect to one another, but are themselves rigid or nearly rigid. 

 shows some examples of the breadth of applicability of multibody 

mechanics, which has been used effectively to model machines, skeletal 

motion and gait, coarse-grained biopolymers, and many other systems 

relevant to a wide variety of scientific and engineering disciplines. 

Figure 1
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Figure 1: Some multibody 
systems. 

Protein backbone

 

Multibody mechanics is a generalization of several more-familiar modeling 

methods. It includes as special cases, for example, systems of point masses 

represented in Cartesian coordinates (e.g. molecular dynamics models) and 

systems of freely moving extended bodies (typically, rigid bodies) and these 

can be intermixed into systems which also contain bodies whose motion is 

defined with internal (relative) coordinates, that is, with respect to one 

another rather than with respect to the Cartesian frame. Multibody 

mechanics should be viewed as a basic numerical capability fundamental to 

any simulation system. It is in the same category as, say, a linear algebra 

library, not an end-user application. Simbody is for use by modelers and 

application developers as a basic building block. Computational researchers 

working to improve multibody simulation methods can use Simbody as a 

baseline source of correct answers for debugging and as a performance 

baseline to demonstrate the superiority of their new methods. 

2.2 Structure of a simulation in SimTK 

The figure below shows the primary objects involved in computational 

simulation of a physical system in SimTK, the infamous “three S’s of 

simulation”: System, State, and Study. Here’s our first equation: 
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Simulation(SimTK) = System + State + Study 

A System is a computational embodiment of a mathematical model of the 

physical world. A System typically comprises several interacting, separately 

meaningful subsystems. A System contains models for physical objects and 

the forces that act on them and specifies a set of variables whose values can 

affect the System’s behavior. However, the System itself is an unchangeable, 

state-free (“const”) object. Instead, the values of its variables are stored in a 

separate object, called a State, more about which below.* Finally, a Study 

couples a System and one or more States, and represents a computational 

experiment intended to reveal something about the System. By design, the 

results of any Study can be expressed as a State value or set of State values 

which satisfies some pre-specified criteria, along with results which the 

System can calculate directly from those State values. Such a set of State 

values is often called a trajectory. 

Study 

System 

Results 
states

S
ta

te
 

 

It is important to note that our notion of “state” is somewhat more general 

than the common use of the term. By state, we mean everything variable 

                                                        

 

* We will frequently use “state” (lower case) to refer to the values stored within a 

State object. This isn’t as confusing as it might seem—even if we get the capitalization 

wrong the meaning will be obvious from context. 
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about a System. That includes not only the traditional continuous time, 

position and velocity variables, but also discrete variables, memory of past 

events, modeling choices, and a wide variety of parameters that we call 

instance variables. The System’s State has entries for the values of all of these 

variables.  

This design allows the conceptually simple model depicted above to express 

every kind of investigation one may wish to perform. Here are some 

examples. The simplest Study merely asks the System to evaluate itself using 

values taken from a particular State. More interestingly, a dynamic Study 

produces a series of time, position and velocity State values which result from 

solving the classical dynamic equations representing Newton’s 2nd law, F=ma. 

An energy minimization is a Study which seeks values for the State’s position 

coordinates at which an energy calculation yields its minimum value. A 

Monte Carlo simulation is a Study yielding a series of states which satisfy an 

appropriate probability distribution. Design studies, also used for parameter 

fitting, are Studies which find values for instance variables such as lengths, 

masses, material properties, or coefficients which meet specified criteria. 

Modeling Studies select among models or algorithmic choices to improve 

defined measures of behavior, such as accuracy, stability, or execution speed. 

And so on. Since we know that all System variability is contained in the State, 

we can guarantee that any answers you seek regarding the System can be 

expressed in terms of state values, provided that a corresponding System is 

available to interpret them. 

2.3 Structure of a System 

Looking a little closer at a System, you will find that it is composed of a set of 

interlocking pieces, which we call subsystems. 
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Study 
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System 
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In this jigsaw puzzle analogy, you can think of the System as providing the 

“edge pieces” which frame the subsystems into a complete whole. 

In general any subsystem of a System may have its own state variables, as can 

the System itself. The System ensures that its subsystems’ state needs are 

provided for within the overall System’s State. The calculations performed by 

subsystems are interdependent in the sense of having interlocking 

computational dependencies. However, these dependencies can always be 

untangled by performing computations in “stages” as will be discussed below. 

It is the System’s responsibility to properly sequence its subsystems through 

the stages. 

2.4 Structure of a multibody system 

Let’s look at Simbody in this context. Simbody provides one computational 

component (one puzzle piece) of a complete multibody mechanics System. 

Simbody’s piece manages the representation of interconnected massive 

objects (that is, bodies interconnected by joints). Simbody can use this 

representation to perform computations which permit a wide variety of useful 

Studies to be performed. For example, given a set of applied forces, Simbody 

can very efficiently solve a generalized form of Newton’s 2nd law F=ma. On the 

other hand, Simbody is agnostic about the forces F, which come from 

domain-specific models. That is, Simbody fully understands the concept of 

forces, and knows exactly what to do with them, but hasn’t any idea where 
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they might have come from. Muscle contraction? Molecular electrostatic 

interactions? Galactic collisions? Whatever. 

A complete System thus consists both of the matter subsystem implemented 

by Simbody, and user-written or application-provided force subsystems. So 

for a multibody system, the general SimTK System described above is 

specialized to look something like this:  

Simbody Multibody System 

MatterForces #1 

Forces #2 

Forces #3 

S
ta

te
 

 

Although both the Simbody Matter subsystem and the force subsystems 

require state variables, as discussed above any SimTK System (including of 

course a Multibody System) is a stateless object once constructed. Its 

subsystems collectively define the System’s parameterization, but the 

parameter values themselves are stored externally in a separate State object. 

The force and mechanical subsystems are computationally interlocked. For 

example, a user-provided force will typically depend on position and velocity 

information (kinematics) returned by the Simbody subsystem, while 

accelerations (dynamics) calculated by Simbody will in turn depend on the 

values of the forces. Section 2.5 provides details on how these interlocking 

computations are performed.  
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2.5 Computation – realization of the State 

This section provides some details about how computations are performed in 

the System-State-Study architecture described in Section 2.2. 

During a Study, the System is used to realize a State. By realize we mean the 

process of taking a new set of values from a State and performing the 

computations that those new values enable. A simple example would be to 

take new position coordinate values from a State and use them to calculate 

new spatial locations for the bodies, and then distances between designated 

points on different bodies. Realizing a State enables three kinds of 

computations: responses, operators, and solvers, defined next. 

2.5.1 Responses, operators, and solvers 

A response is a numerical result which can be computed knowing only the 

values in the State. The above calculation of distance from position 

coordinates is an example of a response. An operator is a computation which 

requires knowledge of certain State variables, but then can be applied 

repeatedly to other input data (i.e., data not from the State) to produce 

numerical results. For example, once we know positions and velocities from 

the State, we can realize an operator which, when applied to a set of forces, 

efficiently calculates the accelerations that would be produced by those forces. 

Neither responses nor operators make changes to the State. A solver, on the 

other hand, both reads from and writes to the State. A given solver requires 

certain values from the State, and may make use of those values or responses 

and operators calculated from them. It then performs a computation which 

updates the State in some well-defined way. The simplest kind of solver is a 

method which just sets a particular State variable to a given value. A more 

elaborate example is a solver which takes current positions from the State and 

modifies them to find the nearest set of positions which satisfies particular 

constraints. 
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Subsystem

Response

2.5.2 Caching of computed results 

Realizing a State may require a large amount of expensive computation, and 

the computed results are typically used many times in calculation of 

subsequent results. Consequently it is crucial that these computations not be 

re-done once calculated for a particular set of State values. Given that a 

System is a read-only object, and that realization results are associated with a 

particular State, the obvious place to store these results is in the State object. 

That way when a Study provides a State to a System, all previously-calculated 

results are available as well, and one may be certain that those results were 

calculated using the values from the supplied State. This eliminates the 

possibility of bugs in which values computed at one state are incorrectly used 

as results at a different state. That is an extremely common error in 

simulation programs and is very difficult to fix, primarily because it often 

goes completely unnoticed. Errors of this type are hidden by the fact that 

sequentially-produced states tend to differ very little, making the computed 

values only a “little bit” wrong.  

Operators 

Solvers

Inputs 

Back to State 

Figure 2: After realizing a State, 
a subsystem provides responses, 
operators, and solvers. 

Results 



 

To take a brief pontification opportunity, I want to emphasize in the 

strongest possible terms that “little” bugs in simulation programs do 

not leave them “nearly” valid the way, say, small measurement errors 

affect real-world experiments. Simulation software is the most nonlinear 

thing in existence—one wrong bit in a billion can completely destroy any 

relevance it might have had to the real world. The resulting simulation 

results, unfortunately, may still appear plausible, especially where human 

intuition is of limited use such as with molecular systems. And statistical 

reduction methods used to calculate physical properties from a simulation 

(e.g., population distributions, free energies, radii of gyration, 

transition times, etc.) are almost certain to turn meaningless garbage 

into “intriguing” results which “should be researched further.”  

Although cached results are stored in the State object, it is important to note 

that those results (that is, responses, operators, and solvers) are not logically 

part of the system state. They are simply intermediate calculations which 

have been derived from the state, and can easily be discarded and re-created 

when necessary. They are needed only for efficient computation using the 

System-State-Study architecture, and so can be viewed as “merely” a hint. 

They exist as a kind of shadow behind the actual state variables, whose values 

do matter. We call this shadowy construct the realization cache, or more 

often, just the cache. 
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Figure 3

Figure 3: A subsystem (part of a 
System), showing its use of part of 
the State to realize responses, 
operators and solvers. The 
realization cache adds no new 
information but shadows the state 
variables for efficiency. 

Subsystem

Realization 
State 

Response

Operators 

Solvers

Stat

 combines the concepts just described. It shows a subsystem (one of 

the pieces making up a System) and how its responses, operators, and solvers 

make use of the realization cache. Note that responses require no input other 

than the State, while operators and solvers can have additional inputs (the 

blue arrows in the figure). Operators and solvers then differ by the disposition 

of their outputs (red arrows), with only solvers’ output able to update the 

State. 

To summarize briefly: A System (or subsystem) by itself is stateless 

once constructed. The values of state variables stored in a 

particular State object completely determine the behavior of 

the System. That behavior is produced by realizing the State. 

The results of realization, which are responses, operators, and solvers, are 

stored in a hidden cache which is physically contained in the State object, but 

is not logically part of the state in the sense that cache values are not 

permitted to alter the behavior of the System, except for the speed with which 

it can perform computations involving that State. 
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2.5.3 Computing in stages 

State variables are naturally ordered in stages, and realization of a State is 

done one stage at a time, in order. This structure allows interdependencies 

among the subsystems in the System, without requiring any subsystem to 

know any internal details of other subsystems. Of specific relevance for 

Simbody, user-supplied forces depend on values provided by the Simbody 

multibody subsystem (such as positions and velocities), but Simbody dynamic 

calculations (e.g., accelerations) likewise depend on the user-supplied forces. 

Thus complete realization of a State requires sequences like (1) the 

SimbodyMatterSubsystem realizes its “Position” stage, then (2) each force 

subsystem independently realizes its Position stage to calculate position-

dependent forces (repeat for Velocities), and then (3) 

SimbodyMatterSubsystem realizes its accelerations (reactions) using 

computations cached by the force subsystems. This staging approach allows a 

composite System computation to be performed efficiently from isolated 

subsystems, with each subsystem mediating access to its own state variables 

and cache. 

System or 
subsystem 1.  Topology 

3.  Instance 

4.  Time 

6.  Velocity 

5.  Position 

2.  Model Figure 4: The conceptual 
organization of a computation into 
ordered stages. A given stage is fully 
realized by each subsystem in a 
System before the next stage is 
realized by any subsystem. For many 
purposes, construction of the (read 
only) System can be viewed as the 
initial stage of computation. 

S
tages

State 

8.  Acceleration 

7.  Dynamics 

 

9.  Report Study  
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3 Fundamental concepts of multibody 
mechanics 

There are only a few general concepts required to completely specify a 

multibody system. These are closely related to physical concepts for which the 

reader is likely already to have a good intuition. This is both blessing and 

curse, since our intuitive understanding of these concepts is almost, but not 

quite, general enough or precise enough to serve as a basis for general 

simulation. Nevertheless we will plunge ahead using familiar concepts, 

adding precise definitions and suitable generalizations where needed. 

The concepts we’ll need are: coordinate frame, body, mobilizer, constraint, 

and force. 

3.1 Coordinate frames 

We define a coordinate frame (syn: reference frame or just frame) F to be a 

set of three mutually orthogonal directions (called axes) and a point (called 

the frame’s origin). We will denote the axes as unit vectors xF,yF,zF and follow 

a right-handed (“dextral”) convention so that zF=xF×yF. In our notation, a 

right superscript “F” indicates a physical quantity which is attached to, or 

fixed in, frame F. We label frame F’s origin point OF. 

Coordinate frames are used for measuring things. We can express the location 

of a point P in frame F, for example, by constructing the vector r=P–OF 

(which points from OF to P) and then expressing it in frame F by writing down 

the components of r in each of the three axis directions. These numerical 

values are called the measure numbers of r in F denoted Fr=F[rx,ry,rz] ≡ 
F[r•xF,r•yF,r•zF]. That is, the measure numbers are the scalars obtained by 

taking the dot product of a vector with each of the three axis directions of a 

frame. We use a left superscript to indicate the “measured in” frame (the 

frame defining the physical quantity of interest), and unless otherwise 

specified that is also the “expressed in” frame (the frame whose axes are used 

to decompose the measured quantity into scalars). Note that the same vector 

will have different measure numbers when expressed in different frames. 

Here’s a picture: 
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I suspect the above has not been much of a stretch for most readers, since this 

is a perfectly ordinary example of a conventional coordinate frame. Possibly 

the notation and the term “measure number” are new, but everyone is 

familiar with these concepts. We are just being excruciatingly precise in 

distinguishing the physical quantities of direction and location from their 

expression in a particular frame of reference. 

This next idea may seem a bit odd if you haven’t encountered it before: the 

concept of a frame makes perfect sense even if we can’t say where it is or 

which way its axes are pointing. Once we have a frame F, for example, like the 

one defined above, we can start measuring things in frame F without the 

slightest idea how F is placed with respect to other things. We can even 

measure frame F in itself—the measure numbers of its axes are FxF=F[1,0,0], 
FyF=F[0,1,0], FzF =F[0,0,1] and its origin point is FOF =F[0,0,0]. In a sense F 

defines its own self-consistent universe without reference to anything else. 

Note that this universe extends infinitely in every direction. In multibody 

mechanics we have another name for such an independent universe: a body. 

3.2 Bodies 

Fundamentally, a body B is just a moving reference frame, called the body 

frame B. You probably aren’t used to thinking of a body this way! We will 

shortly connect this back to more intuitive “body” concepts like mass and 

geometry; however, it is the frame that is a body’s most fundamental 

characteristic. One implication of this is that a body extends infinitely in all 

directions. Before you completely reject this idea, answer this question: is the 

OF 
xF 

yF 

zF 

P 

r rx

ry 

rz 

Figure 5: Coordinate frame F, and how 
to express the location of a point P in F. 
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hole part of the doughnut?* In any case the infinite extent of bodies will turn 

out to be very convenient when we start connecting them together. 

The ith body is Bi and its body frame is Bi with origin OBi. In practice we’ll only 

have to talk about a few bodies at a time so we can use different letters for 

them and avoid subscript bloat. In particular, body G is the distinguished 

body Ground representing the inertial (non-accelerating, non-rotating) 

reference frame.† The ground frame provides a global origin OG (we’ll usually 

drop the frame superscript in this case and just say O) and fixed orthogonal 

directions x, y, z. By convention, we identify ground with the “0th” body, that 

is, B0≡G. 

Bodies typically have associated features which can be measured in and 

expressed in the body frame. These include other frames, directions (unit 

vectors) and stations (point locations). The body frame B origin is the station 

whose measure numbers when expressed in the body frame are B[0,0,0], and 

its axes are the directions with measure numbers B[1,0,0], B[0,1,0], and 
B[0,0,1]. Mass properties include the total mass (a scalar), the center of mass 

(a station, represented numerically by a vector), and an inertia tensor 

(numerically a 3×3 symmetric matrix) which expresses rotational inertia 

about a particular station. When the inertia tensor is defined about the center 

of mass it is called the central inertia. For rigid bodies, mass properties are 

constant; for deformable bodies (not presently supported by Simbody) the 

mass is constant but the center of mass and inertia will be seen to vary when 

measured in the body frame. 

3.3 Mobilizers 

A mobilizer connects a body to its unique parent body,‡ and defines the 

relative mobility (degrees of freedom or “dofs”) allowed between those bodies. 

                                                        

 

* Thanks to Paul Mitiguy for the doughnut analogy. 
† Other names sometimes used for the ground frame are: Cartesian frame, Newtonian 
frame, world frame, inertial frame, laboratory frame, and experimenter’s frame. 
‡ Recall that Ground is a body. 
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These are often imprecisely called “joints”; we reserve the term “joint” to refer 

to the physical-world concept of that name, as illustrated in Figure 6.  

 

Figure 6: a mechanism with four joints; at most three can be mobilizers 

A mobilizer is one way to implement a joint, but not all joints are mobilizers. 

For example, when a joint forms a loop as in the figure, it reduces the total 

mobility, requiring implementation as a constraint rather than a mobilizer. 

While the physical system is uniquely described in terms of its bodies and 

joints, in general there will be many ways to decompose that system into 

mobilizers and constraints for purposes of building a Simbody model. 

There can be from 0 to 6 relative mobilities (degrees of freedom) between a 

pair of bodies. The parameterization of these mobilities is a set of generalized 

coordinates q representing the mobilizer’s configuration, and generalized 

speeds u representing the mobilizer’s motion. 

The three fundamental mobilizer types are sliding, torsion, and orientation. A 

sliding mobilizer (syn: prismatic) provides a single degree of freedom 

representing translation along a defined axis, and adds a single coordinate 

with units of length to the system’s set of generalized coordinates. A torsion 

mobilizer (syn: pin) provides a single degree of freedom representing rotation 

about a defined axis and adds a single generalized coordinate with angular 

units. An orientation mobilizer (syn: ball, spherical) permits unrestricted 

relative orientation between its pair of bodies, that is, three degrees of 

freedom and at least three corresponding generalized coordinates (for 

dynamics these require a four-element quaternion). 
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Most other mobilizer types can be viewed as compositions of the three basic 

types. For example, a Cartesian mobilizer is a composition of three sliding 

joints with orthogonal axes and thus permits unrestricted relative translation 

(three degrees of freedom) between the bodies it connects. A free mobilizer is 

a composition of a Cartesian and an orientation mobilizer and permits six 

degrees of freedom (completely unrestricted motion) between its bodies. A 

free mobilizer serves to introduce independent rigid bodies into the system 

and simply provides a convenient reference frame and corresponding 

coordinates with which to express their motion. Note that, like all other 

mobilizers, a free mobilizer can be placed between any two bodies—it does 

not have to connect a body to ground. This allows very convenient relative 

coordinates to be used for collections of independent bodies. For example, 

one can express a protein domain that carries its local waters and ions along 

with it when it is moved kinematically. 

Complex joints can be built up from mobilizers and constraints (see below). A 

“screw joint” for example can be composed of a coaxial sliding and torsion 

mobilizer, providing one translational and one rotational coordinate, plus a 

constraint enforcing a defined relationship (the screw’s “pitch”) between the 

time derivatives of these coordinates. The Simbody mobilizer concept is 

extensible (internally only, in this release) in the sense that arbitrarily 

complicated ones can be constructed. For example, a knee joint could be built 

as a 1-dof mobilizer so that a single unconstrained coordinate would be used 

to represent the complicated coordinated motion of a knee. 

3.4 Constraints 

Constraints may represent arbitrary restrictions on the generalized 

coordinates and generalized speeds, and linear restrictions on accelerations. 

Constraints arise, for example, if the body/joint connectivity graph contains a 

loop as in Figure 6. Constraints generate one or more constraint equations. 

Each independent constraint equation removes one degree of freedom from 

the system. In this sense constraints are the complement of mobilizers, whose 

generalized speeds each add one degree of freedom to the system. And in fact 

any n-dof mobilizer can be represented instead as a free mobilizer plus 6−n 

constraint equations.  
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Constraints among the moving bodies of a physical system act by introducing 

non-working internal forces and moments. These forces act in the same 

manner as the applied forces described below—they can act on bodies or 

along joint axes, and as with applied forces they can always be reduced to a 

system of forces acting only along the mobilities. The only difference between 

constraint forces and externally applied forces is that the constraint forces are 

unknown and must be solved for simultaneously with the system 

accelerations. 

3.5 Forces 

By forces we mean generalized forces which include both forces and torques 

(moments).* Force vectors can be applied to the multibody system at any 

body station and moment vectors can be applied to any body (or 

implemented as pairs of forces). Scalar forces or torques can also be applied 

directly to the system’s mobilities, that is, directly along the generalized 

speeds. All systems of forces can be reduced to an equivalent set acting only 

along the mobilities, and Simbody provides an operation which efficiently 

performs this useful conversion.  

Forces can be functions of time, position, velocity, and their own internal 

states. They may be local effects or result from spatially distributed fields or a 

constant gravitational field, or act pairwise between distant stations (e.g. 

atoms) in the system. Forces which depend only on time and configuration 

are called conservative forces, and are the gradient of some potential energy 

function. Non-conservative forces may depend on velocities as well. 

4 Simbody Matter Subsystem reference guide 
The lowest-level Simbody API (application programmer interface) assumes 

that the caller has made all modeling decisions and simply wants to perform 

calculations on the model. The primary decisions to be made are (1) how the 

                                                        

 

* The term loads is often used as an alternative with less ambiguity. However we will 
continue to use the more familiar term forces, usually meaning both forces and 
torques. 
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physical model is to be decomposed into a particular set of rigid bodies, (2) 

what kinds of mobilizers are to be used to interconnected them in a tree 

structure, and (3) what constraints, if any, should be present to restrict the 

allowable mobility. A variety of higher-level automated modelers for specific 

domains can be provided which can make these decisions and then use the 

low-level interface. 

4.1 Vectors and Matrices 

Simbody makes use of lower-level SimTK toolsets to simplify its interface and 

internals. The SimTK general purpose Simmatrix™ package (part of the 

SimTKcommon libraryhttps://simtk.org/home/SimTKcommon) is used to 

handle basic vector and matrix objects. We follow the Simmatrix convention 

of using names containing “Vector” and “Matrix” to refer to large objects of 

variable dimension, and names containing “Vec” and “Mat” to mean small, 

fixed-size objects of known dimension. The basic types we use most are the 

fixed-size Vec3 and Mat33 types and the variable length Vector type. We use 

the basic Simmatrix types to build up a set of specialized vectors and matrices 

of particular use in manipulating physical objects, as described in the next 

sections. 

4.2 Geometry 

We provide a small set of specialized types for dealing with geometric 

quantities of interest in multibody dynamics. This is not intended to be a 

general purpose geometry package. For example, we happily assume that all 

geometry of interest is 3D. 

Given the fundamental existence of a rigid body frame B, we are primarily 

interested in stations, directions, and other frames fixed in B. These are 

represented by positions, rotations, and transforms (xforms) respectively, 

which locate these objects with respect to an existing frame.  

4.2.1 Stations 

Stations are simply points which are fixed in a particular reference frame (i.e., 

they are “stationary” in that frame). They are specified by the position vector 

which would take the frame’s origin to the station. A position is represented 
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by a Simmatrix Vec3 type. Simbody does not provide an explicit Station 

class; Vec3’s are adequate whenever a station is to be specified. 

4.2.2 Directions 

Directions are unit vectors, which are Vec3s with the additional property that 

their lengths are always 1. We define a class UnitVec3 which behaves 

identically to Vec3 in most respects but restricts the ways in which values can 

be assigned to ensure that the length is always 1. This has concrete 

performance benefits because this unit length guarantee means that we can 

track length-preserving operations at compile time and avoid unnecessary 

normalization checks, or worse, unnecessary normalizations which are very 

expensive. 

4.2.3 Rotations 

There are many ways to express 3D rotations. Examples are: pitch-roll-yaw, 

azimuth-elevation-twist, axis-angle, and quaternions. Many others are in 

common use. Each way of writing orientation has its own quirks and 

complexities. However, all of these are equivalent to a 3x3 matrix, called a 

rotation matrix (synonyms: orientation matrix, direction cosine matrix). 

Rotation matrices have a particularly simple definition and straightforward 

physical interpretation, and are very easy to work with. At the API level, 

Simbody uses the rotation matrix as a least common denominator, embodied 

in a class Rotation. Rotation provides a set of methods which can be used to 

construct a rotation matrix from a wide variety of commonly-used rotation 

schemes. 

Rotation matrices are simply 3x3 matrices whose three columns are mutually 

perpendicular directions (unit vectors) representing the axes of one 

coordinate frame, expressed in another. These are represented internally in 

objects of type Rotation as an ordinary Simmatrix Mat33, and behave 

identically except that their construction and assignment is restricted to 

ensure that certain properties are maintained. Those properties are: each 

column and row is a unit vector, the columns are mutually perpendicular, and 

the rows are mutually perpendicular, forming a right-handed set. That means 

that the third column (row) is the positive cross product of the first two 
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columns (rows). Such a matrix is orthogonal; hence its transpose is its 

inverse. Its determinant is +1, meaning that it is a pure rotation and not a 

reflection or scaling operation. 

We use the symbol R with left and right superscripts FromRTo to represent the 

orientation of the “to” frame (the right superscript) measured with respect to 

the “from” frame (the left superscript), like this: 

RG B G B G B G B⎡ ⎤≡ ⎣ ⎦x y z  

( )RG B B B B

G G G
⎡ ⎤ ⎡ ⎤ ⎡ ⎤≡ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦x y z  

(Remember that the notation vB indicates a (column) vector quantity v fixed 

to reference frame B, while the operator [ ]F
i  indicates that the measure 

numbers of some physical quantity are given in coordinate frame F.) So the 

symbol GRB should be read “the axes of frame B expressed in frame G,” or “the 

orientation of frame B in G,” or just “B in G.” We never use “R” alone for a 

rotation matrix; that is a recipe for certain disaster. Instead, we always 

provide the two frames. (When under tight typographical restrictions, as in 

source code, we write GRB as R_GB.) Using this notation, one can simply match 

up superscripts to rotate vectors or compose rotations. Also, since these are 

orthogonal, the inverse of a rotation matrix is just its transpose, which serves 

simply to swap the superscripts. Using the Simmatrix “~” operator to indicate 

matrix transpose, ~GRB = BRG. As an example, if you have a rotation GRB and a 

vector [v]B expressed in B, you can re-express that same vector in G like this: 

[v]G =GRB • [v]B. To go the other direction, we can write 

[v]B = BRG • [v]G = ~GRB • [v]G. As a C++ code fragment, this can be written 

Rotation R_GB;  //orientation of frame B in G 
Vec3     v_G;   //a vector expressed in G 
… 
Vec3     v_B = ~R_GB*v_G; //re-express v_G in frame B 
 

Composition of rotations is similarly accomplished by lining up superscripts 

(subject to order reversal with the “~” operator). So given GRB and GRC we can 

get BRC as BRC = BRG • GRC = ~GRB • GRC. Note that the “~” operator has a high 

precedence like unary “-” so ~GRB • GRC is (~GRB) • GRC, not ~( GRB • GRC ). 
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As is typical for Simmatrix operations on small quantities, the transpose 

operator is actually just a change in point of view and involves no 

computation or copying of data. That is, the operations BRG • [v]G and 

~GRB • [v]G are exactly equivalent in both meaning and performance: the cost 

is 15 floating point operations (three dot products), with no wasted data 

copying or subroutine calls. 

4.2.4 Transforms 

Transforms combine a rotation and a position (translation) and are used to 

define the configuration of one frame with respect to another. (Recall that we 

consider a frame to consist of both a set of axes and an origin point.) We 

represent a frame B’s configuration with respect to another frame G by giving 

the measure numbers in G of each of B’s axes, and the measure numbers in G 

of the vector from G’s origin point to B’s origin point, for a total of 4 vectors, 

which can be interpreted as a 3x3 Rotation (see above) followed by the 

origin point location (a Vec3). Following computer graphics convention, we 

call this object a transform (abbreviated xform) and conceptually augment 

the axes and origin point to create a 4x4 linear operator which can be applied 

to augmented vectors (4th element is 0) or points (4th element is 1), or 

composed using matrix multiplication. We define a type Transform which 

conceptually represents transforms as follows:  

0 0 0 1

B B B G B
G B

G G G G

p
X

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≡ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

x y z
 

(Recall that G BO OG Bp p≡ , that is, the vector from the origin of the G frame to 

the origin of the B frame.) Note that we use the symbol X for transforms, with 

superscripts FromXTo so GXB means “the transform from frame G to frame B,” 

or “frame B measured from and expressed in frame G.” Another way to 

interpret GXB is that it represents the operations that must be performed on G 

to bring it into alignment with B (a rotation and a translation). Then as for 

rotation matrices described above, we can interpret GXB•BXC as a composition 
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of operators yielding GXC, and ~GXB is defined to yield the inverse transform 
BXG.* 

The above transform matrix can be considered a matrix of four columns as 

shown: three augmented vectors and an augmented point. An alternate, and 

entirely equivalent, way to view this is as a rotation matrix, translation vector, 

and an extra row: 

( )0 0 0 1

G B G B
G B R p

X

⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟⎜ ⎟ ⎜≡ ⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎜ ⎟⎜ ⎟
⎝ ⎠

⎞
⎟
⎟
⎟
⎠

 

In our implementation, the physical layout of a Simbody Transform is just 

the three columns of the rotation matrix followed immediately in memory by 

the translation vector, that is, (
3 4

G B G B G BX R p
×

≡ )

                                                       

. There is no need for 

the fourth row to be stored in memory since it is always the same. 

Given a Transform, you can work with it as though it were a 4x4 matrix, or 

work directly with the rotation matrix R and translation vector p individually, 

without having to make copies. Although a transform defined this way is not 

orthogonal, its inverse is easy to apply with no additional calculation. As 

described above, we overload the normal matrix transpose operator “~” to 

recast a Transform to its inverse so that either the transform or its inverse 

can be used conveniently in an expression, for example, BXC = ~GXB•GXC. As is 

typical using Simmatrix objects, this inverse operator is just a change of point 

of view at zero cost, so the total cost is the same in either direction. For 

example, to transform a point measured and expressed in one frame to the 

equivalent one re-measured and re-expressed in another frame costs one 3x3 

matrix-vector multiply and one addition of 3-vectors per transformed point, 

 

 

* Note that this is actually a different definition for the “~” operator than is used in 
Simmatrix, since the inverse of a transform is not simply its transpose. However, the 
analogy with ~R (which is both the transpose and inverse of rotation matrix R), 
combined with the lack of any practical use for the transpose of a transform, makes 
this use of “~” very attractive and natural to use in practice. 
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for a total of 18 floating point operations (flops), and the cost is the same if we 

transform it back using a Transform inverse. A straightforward 

implementation of a 4x4 transform (i.e., as an actual 4x4 matrix times a 4-

vector) would require 28 floating point operations per transformed point. 

Composition of Transforms (using the ‘*’ operator for matrix multiply) is 

done in 63 flops but would take 112 using a 4x4 matrix multiply. Thus 

Transform provides the convenience of a 4x4 transformation matrix at 

substantially lower cost. 

4.3 Mechanics 

Some additional specialized quantities arise in mechanics for dealing with 

mass properties, which consist of a mass, center of mass, and inertia matrix 

for each body. Mass is a simple scalar and center of mass just a point so we do 

not define special classes for them. Inertia, however, is a tensor quantity (a 

3x3 matrix) which is expected to exhibit certain properties. Among these, it is 

symmetric, and the values of its elements must satisfy certain relationships. 

In addition, there are common operations on inertias which can be most 

efficiently and conveniently provided with a distinct inertia class. So we 

provide a class Inertia which is stored physically as a 3x3 symmetric matrix, 

i.e., a Simmatrix SymMat33 containing six real-valued numbers. This behaves 

like an ordinary matrix for read-only operations but its construction and 

assignment is restricted to enforce physical relevance, and additional 

operations are provided, such as shifting inertia taken about one point to the 

equivalent inertia about another point.  

For convenience we combine all the mass properties into a MassProperties 

class, which contains a mass, a center of mass location, and an inertia matrix. 

Note that there is implicitly a reference frame in whose axes the vector and 

tensor are expressed, and from whose origin the center of mass location and 

inertia distribution are measured. 

4.4 Spatial Notation 

We also build on the Simmatrix types to define some specialized vectors and 

matrices useful in mechanics. Following Jain and Rodriguez,13 we use spatial 

notation which combines translational and rotational quantities into a single 

  25  



 

object. Using Simmatrix we define the convenient type SpatialVec to mean a 

stacked vector of two ordinary 3-vectors, and SpatialMat to mean a 2x2 

matrix of ordinary 3x3 matrices, that is 

typedef Vec<2,Vec3>    SpatialVec; 

typedef Mat<2,2,Mat33> SpatialMat; 

Note that these convenient types have well-defined interpretations as packed 

arrays of real numbers, which means they have equivalent descriptions in C 

and FORTRAN, which we’ll address later. There is zero overhead in C++ for 

using the more expressive types.  

The first subvector of a SpatialVec is always the rotational component, and 

the second is the translational one. Some examples of spatial vectors: spatial 

velocity V, spatial acceleration A, and spatial force F, defined like this: 

, ,V A F
v a
ω

f
β γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

� � �  

where ω is an angular velocity vector, v a linear velocity,  β an angular 

acceleration, a is a linear acceleration, γ a torque (moment), and f is a force. 

Each of these elements is an ordinary 3-vector (Vec3). Sadly, orientation is 

not a vector quantity so we can’t use an analogous SpatialVec P
p
θ⎛ ⎞
⎜ ⎟
⎝ ⎠
� to 

represent configuration (orientation and position) of a rigid body (that is, of a 

reference frame). However, it can be useful to think of position this way in 

some circumstances. 

Unless otherwise indicated, all quantities are measured with respect to the 

ground frame G, and linear quantities are referred to the body origin. That is, 

the default symbols above represent 

, ,
B B

G B G B G B
G B G B G B

O OG GV V A A F F
v a
ω β⎛ ⎞ ⎛ ⎞ ⎛

= ≡ = ≡ = ≡⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ BOG f

γ ⎞
⎟
⎠

 

For spatial position, instead of the fanciful P we use the Transform class 

described above, where 

  ( )G BO OG B G BX R p≡  
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with rotation matrix R playing the role of P’s θ. 

The above notation and somewhat atypical use of Greek symbols was chosen 

so that there would be an obvious way to represent these using the restrictive 

typographical capability of a programming language. For Greek letters we use 

the correspondence w=ω, b=β, g=γ, q=θ, so we can represent the above 

symbols in code with 

V=[w,v], A=[b,a], F=[g,f], P=[q,p], X=[R,p] 

(Although as mentioned above there is no actual P like this, orientation angles 

and quaternions are part of the generalized coordinates q so this notation is 

conceptually right even if pragmatically flawed.) 

4.4.1 Cross product matrix 

For any vector quantity v, we use the notation  to indicate a 3x3 skew-

symmetric cross product matrix such that for any vector w, . 

Spelled out in scalars, the cross product matrix is  

×v

× ⋅ = ×v w v w

0
0

0

z y

z x

y x

v v
v v
v v

×

⎛ ⎞−
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

v  

Note that  .  × ×= −v vT

We will occasionally make use of the following identities: 

  (4.1) ( )× ×= +v + w v w×

T  (4.2) 2
3× × × × ×= − = −v v v v v v v1 vv� T T

 ( is a 3x3 identity matrix.) Note that  is a symmetric matrix with non-

negative diagonal elements. Spelled out in scalars, 

31 × ×v vT

2 2

2 2 2

2 2

y z

x y x z

x z y z x

v v
v v v v
v v v v v v

× × ×

⎛ ⎞+
⎜ ⎟= − +⎜ ⎟
⎜ ⎟− − +⎝ ⎠

v v v� T

T T

T

y

 

where T indicates that the element is the same as the transposed one. 
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  (4.3) 
3 3

( ) ,
where  is orthogonal.

×

×

⋅ ⋅ = ⋅U v U U v
U

T
×

Since rotation matrices are orthogonal, equation (4.3) is particularly useful 

when transforming spatial quantities from one frame to another. 

4.4.2 Spatial mass properties 

The mass properties of a rigid body conventionally consist of the body’s mass 

m, the mass center location p, and its inertia tensor I. It is convenient to view 

the inertia tensor as the product of the mass and a gyration tensor G, such 

that I=mG. Then a spatial inertia matrix M can be written as a spatial gyration 

matrix (giving the mass distribution) scaled by the total mass: 

3

M m ×

×

⎛ ⎞
≡ ⎜ ⎟−⎝ ⎠

p
p 1
G

 

For the spatial inertia matrix BM  of a body B about its origin OB we have 

B BO Cp=p  so 

3

B B

B B

O C
B

B B O C

p
M m

p
×

×

⎛ ⎞
= ⎜ ⎟−⎝ ⎠1

G
 

Note that when the spatial mass properties are given about the center of mass 

CB we have  so 0=p

3

0
0

B
B

C
C B
B BM m

⎛ ⎞
= ⎜ ⎟

⎝ ⎠1
G

 

Where the central inertia , 

using the parallel axis theorem and then cross product matrix identities 

2
3( )BC

B B B B× × ×= − − = − = −p p1 pp p p pT T TG G G G

(4.2). 

If we have the spatial velocity VC also referred to the center of mass, i.e. 

, then we can define another spatial vector quantity, spatial 

momentum of a body “referred to” its center of mass: 

C
C

V
⎛ ⎞

= ⎜
⎝ ⎠

ω
v ⎟

⎞
⎟
⎠

0
0

C C
C C C

C C
P M V m m

⎛ ⎞ ⎛⎛ ⎞
≡ = =⎜ ⎟ ⎜⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝

ω ω
v1 v

G G
 

28 



 

In the more general (and typical) case where the body origin OB≠CB we 

compute spatial momentum the same way with the result being the spatial 

momentum referred to OB, which is not the same quantity: 

0

C
CP MV m m P m× × ×

× ×

+ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
≡ = = = + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

p ω p vω p v
p 1 v p ωv
G G

 

(Because  and .) A body’s kinetic energy (a scalar) 

is calculated from spatial momentum like this: 

C
×= +v v p ω C

× ×= + p pTG G

1 1 1
2 2 2 ( )

( ) 2

KE V MV V P m ρ
ρ × × ×

= = = + +

≡ − =

2ω ω v

ω p v v p ω ω p v

T T T

T T T

G
 

Note that although the angular momentum must be referred to a specific 

point, kinetic energy is independent of that point. That is 

1 1 1
2 2 2

21 1 1
2 2 2

( 2

( )CC C C C C C

KE V MV V P m

V M V V P m
×= = = + +

= = = +

2ω ω v ω p v

ω ω v

T T T T

T T T

G

G

)
 

These can be shown equivalent by substituting  and 

 into the last expression. 

C
× ×= − p pTG G

C
×= −v v p ω

4.4.3 Re-expressing spatial quantities 

For any quantity Q we use the notation [ ]Z
Q  to mean “Q re-expressed in 

frame Z.” Note that this never changes the physical quantity being 

represented, just the frame in which the measure numbers of that quantity 

are expressed. If Q is a vector currently expressed in frame A, then 

[ ] Z A
Z

Q R ⋅�

[ ]

Q . If M is a tensor (matrix) currently expressed in frame A, 

then ( )Z A Z A Z A A Z
Z

M R M R R M⋅ ⋅ = ⋅ ⋅
T

0
0

Z A

Z A

R

R�

Z A

. We use similar definitions for 

spatial quantities. If Q is a spatial vector currently expressed in frame A, then 

we define  R Q Q
R

⎛ ⎞
⋅ ⎜ ⎟

⎝ ⎠
� ⋅  . For example, 
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0
0 B B

A BZ A Z A A B
ZA B Z A A B A B

OZ A Z A AZ OA

Z

R R
V R V V

R R v v

ωω ⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ ⎣ ⎦⎜ ⎟⎡ ⎤ = ⋅ = =⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟⋅ ⎡ ⎤⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎝ ⎠
� . 

To re-express a spatial inertia matrix M from frame A to frame Z, write 

[ ]

[ ] [ ]
[ ]

3

3

0 0

0 0

( )

( )
( )

Z A A Z

Z A A Z

Z A Z A
Z

Z A A Z Z A

Z A

Z Z

Z

R R

R R

M R M R

R R R
M m

R

m

×

×

×

×

= ⋅ ⋅

⎛ ⎞⎛ ⎞ ⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠

p
p 1

p
p 1

�

T

G

G

 

where we have made use of identity (4.3), the fact that if U is a 3x3 orthogonal 

matrix, then . (Recall that rotation matrices are 

orthogonal.) 

U U (U×⋅ ⋅ = ⋅v T )×v

4.4.4 Rigid body shifting of spatial quantities 

Rigid body shifting is used during processing of the multibody tree to transfer 

the effect of inboard kinematic quantities (velocities and accelerations) in an 

outboard direction, and to shift applied forces and spatial inertias from 

outboard bodies in an inward direction. The rigid body shift matrix P Qφ  is 

used to shift a spatial force acting at point Q to the equivalent spatial force 

acting at point P. The transpose of that matrix  is used to shift 

a spatial velocity or acceleration of point P to the equivalent spatial velocity or 

acceleration of point Q, and both forms are used when shifting inertias. The 

operators are 

(*Q P P Qφ φ�
T)

1
0 1

P Q
P Q pφ ×⎛ ⎞

⎜
⎝ ⎠
� ⎟       and      ( ) 1 0

*
1

Q P P Q
P Qp

φ φ
×

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

�
T

so that   
P Q Q

P P Q Q
P Q

p f
F F

f f
γ γφ

⎛ ⎞+ ×⎛ ⎞
= ⋅ = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
�   

and   . *Q PQ P
Q PV V

v v
ω ω

φ
ω

⎛ ⎞ ⎛
= ⋅ =⎜ ⎟ ⎜ + ×⎝ ⎠ ⎝

� P Qp
⎞
⎟
⎠
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To shift a spatial inertia matrix about a point Q to another point P of the same 

rigid body, use 

( ) ( )

( )

3

2 2

3

2

3

3

1 01

10 1
*

P Q

P Q

Q Q C
Q PP P Q Q

B Q C

Q Q C P C P C

B P C

C P C P C

B P C

P P C

B P C

p

p

p
M M m

p

p p p
m

p

p p
m

p

p
m

p

φ φ ×

×

×

×

× × ×

×

× ×

×

×

×

−

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅ ⋅ = ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− +⎜ ⎟=
⎜ ⎟−⎝ ⎠
⎛ ⎞+⎜ ⎟=
⎜ ⎟−⎝ ⎠
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

1

1

1

1

G

G

G

G

 

where P C P Q Q Cp p p= + . 

Note that there is no mention of expressed-in frame; the shifting operators 

assume that all quantities are expressed in the same frame. 

4.5 Topology 

In describing the “matter” side of a multibody system, the most fundamental 

property is the system topology. By topology we mean just these properties: 

• A set of bodies (that is, reference frames). One distinguished body 

Ground is always present. 

• The mass structure of each body. The five currently-supported mass 

structures are: (1) ground, (2) massless, (3) particle (inertialess), (4) 

line, and (5) rigid body. 

• For each body except Ground, a unique “parent” body with respect to 

which the body’s mobility will be defined. This leads to a tree topology 

for the system as a whole, with the ground body at its root. 

• A set of topological constraints, that is, constraints which are always 

present and active. These can impart a closed-loop topology to the 

system as a whole. 

A body’s mass structure defines the most general form that the body’s mass 

properties can take on. Ground and massless bodies have only a single 
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predefined set of mass properties: infinite and zero respectively. Particles can 

take only a point mass, and never have inertia about that point. A line body 

can be thought of as a linear arrangement of particles, and thus has mass, a 

meaningful center of mass along the line, and equal central inertias in two 

directions perpendicular to the line, but none about the line. A rigid body 

(representing a mass distribution on a surface or in a volume) can have a full 

inertia. 

4.6 Mobility 

Mobility expresses the allowable motion of a body’s frame with respect to its 

parent’s frame. Bodies start out with no mobility at all, meaning that the 

body’s frame and its parent’s frame are coincident and will stay that way 

forever. In Simbody, Mobilizers are used to provide between zero and six 

independent degrees of freedom between a body and its parent, allowing 

translation and/or rotational motion of the body frame with respect to its 

parent. We call these unrestricted degrees of freedom a body’s mobilities with 

respect to its parent. The unique Ground body has no mobility. 

Summing the mobilities of each body in a multibody system, the total of n 

mobilities defines an n-dimensional mobility space for the multibody system. 

The n mobilities are independent by construction and thus form a basis for 

mobility space. Only configurations in mobility space are representable by the 

multibody system. Typically there are many conceivable configurations which 

simply cannot be expressed. For example, consider a system composed of 

Ground and one moving body, a wheel, having a single mobility with respect 

to Ground consisting of just a rotation about a fixed axis. One can imagine a 

configuration in which the wheel is removed from the axis, but the chosen 

multibody system simply can’t express that. With just one coordinate, an 

angle, we can only talk about rotations of the wheel about an axis. Additional 

mobilities would have to have been granted to the wheel in order to express 

more general configurations. 

This ability to limit the mobility space of a multibody system is extremely 

powerful if you happen to know something about the space containing the 

solutions of interest to you. To continue the above example, if you are a car 

designer rather than a crash-test engineer, then you know that correct 
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solutions to your vehicle simulation problems will always exhibit wheels that 

are attached to their axles. Solutions in that smaller space are much easier to 

find than solutions in the much larger space where wheels may be found 

anywhere. Similarly, in molecular mechanics if you know that certain groups 

of atoms are always observed to move together as rigid bodies, problems are 

much easier to solve in a reduced space in which only those groupings can be 

expressed, than one in which the atoms could be anywhere. We know that 

correct solutions would always “rediscover” the known groupings (at great, 

and unnecessary, expense). 

However, we will often find that even mobility space is substantially bigger 

than our known solution space. Instead, we would like to focus on a lower-

dimensional subspace of mobility space, called constrained space. The 

dimensionality of constrained space is the net number of degrees of freedom 

possessed by the multibody system. So a multibody system’s net degrees of 

freedom can be smaller than the sum of its bodies’ individual mobilities. 

One might wish simply to redefine the mobility of the bodies so that only 

constrained space can be expressed (that is, mobility space=constrained 

space), and that is a very good thing to do if you can. Unfortunately, in 

general constrained space cannot be parameterized directly. Instead we 

create a system with a small but convenient-to-define mobility space, and 

then add a set of Constraints whose satisfaction implicitly defines the 

constrained space. 

4.6.1 Parameterization of mobility 

The mobilities of the bodies in a multibody system, taken together, define its 

mobility space. However, we must choose a particular parameterization of 

this space (that is, a basis) in order to express a particular configuration and 

motion of the multibody system and this choice is not unique. Conveniently, 

body mobilities are mutually independent so we may choose the 

parameterization for each body separately. The set containing all these 

parameters is then the parameterization of mobility for the multibody system 

as a whole. 

The independence of body mobilities localizes the parameterization issue to 

the Mobilizer for each body. Each Mobilizer must define two sets of scalar 
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parameters to express particular values for its mobilities, one set to specify 

the relative positioning (configuration) and the other to specify the relative 

velocity (motion) between the parent and child bodies. Parameters used for 

positioning are conventionally called generalized coordinates; parameters for 

velocity are called generalized speeds.* The symbol q is used to represent a 

vector of generalized coordinates, and u is a vector of generalized speeds.  

In Simbody, the number of a body’s generalized speeds u is always the same 

as that body’s mobility—e.g., if a body has five degrees of freedom with 

respect to its parent, then it will also have five u’s. The u’s are thus mutually 

independent. u’s have interpretations with direct physical meaning, and the 

system equations of motion are written in terms of the time derivatives of u, 

which we denote u�  The generalized coordinates q, on the other hand, must at 

times be chosen for convenience or computational stability and do not always 

map directly to physical quantities, so in general q�  ≠ u. n fact, for many 

bodies there will be more q’s than u’s in which case the q’s are not always 

independent. However, the interdependence among a body’s q’s is always a 

localized relationship among only those q’s, and never involves other bodies. 

At any particular configuration, there is always a linear, invertible 

relationship between  and u, and each Mobilizer provides the necessary 

conversions. As a specific example, during dynamic calculations Simbody 

Mobilizers that permit unrestricted relative orientation between a body and 

its parent use four quaternions to stably represent the orientations, while the 

three generalized speeds are just the elements of the relative angular velocity 

vector. The four quaternions must satisfy a normalization constraint, leaving 

only the expected three degrees of freedom for the four coordinates. 

.

 I

                                                       

q�

For the whole multibody system, the generalized speeds are aggregated in a 

vector whose length is the sum of the mobilities of each body. This vector is 

the set of generalized speeds for the multibody system and is also designated 

u. A vector q aggregating the individual bodies’ generalized coordinates forms 
 

 

* Generalized here refers to the inclusion of both translational and rotational 
coordinates. We similarly use generalized forces to mean both forces and torques 
when applied along or about mobilities. 
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the generalized coordinates for the whole multibody system. Together, q and 

u constitute the instantaneous state of the matter component of a multibody 

system. It will usually be clear from context whether we are referring to the 

coordinates of the whole system or just one body, but if we need to be specific 

we use qB and uB to indicate the mobilizer parameters for body B. 

4.6.2 Mobilizers are not joints 

When describing a multibody system, a joint is a higher-level (more abstract) 

concept than a Mobilizer, although they are easily confused. In general, joints 

are implemented as a combination of Mobilizers and Constraints, and may 

also introduce force elements (e.g. friction or soft stops). It is possible to 

create topological loops with joints but not with Mobilizers, as the latter are 

restricted to connections between bodies and their unique parents. So a 

Mobilizer can only add degrees of freedom to a system, while a joint may add 

or remove them. 

4.7 Bodies and their Mobilizers 

The primary Simbody representation of matter is a multibody tree, that is, a 

tree-structured collection of interconnected bodies, which we call a 

SimbodyMatterSubsystem. On initial construction, a 

SimbodyMatterSubsystem contains just a single body, the inertial frame 

Ground (body 0) which is the root of the multibody tree. To add a body B to 

an existing SimbodyMatterSubsystem, you will need to be able to specify the 

following properties: 

• The parent body P (with body frame P), which must already be in the 

multibody tree. 

• A reference frame (axes and origin) for the body (this is implicit, but 

you need to have it in mind). We call that the body frame B. (See 

 for an example.) Figure 5

• Mass properties for the body, with the center of mass location 

measured from OB and expressed in B, and the inertia (actually the 

gyration matrix G) measured about OB and expressed in B. 
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• The mobilizer’s mobilized frame M attached to B. You must be able to 

express M’s configuration on B as a transform BXM from B to M.  

• The mobilizer’s fixed frame F, attached to P, which will be connected 

to M by the mobilizer. You must be able to express F’s configuration 

on P as a transform PXF from P to F. 

• The kind of mobilizer to be used to connect B to its parent body P. 

Figure 7 shows a body B being added to a tree already containing its parent P. 

Not shown are the body’s mass mB, its inertia IB= mBGB about OB and the 

transforms BXM and PXF. 

When this information is supplied to the appropriate Simbody method, the 

new body becomes part of the growing tree, and a unique, small integer body 

number is assigned which can be used to refer to the body later. The specified 

mobilizer is the unique inboard mobilizer of body B, that is, the mobilizer 

which connects it to a body which is closer (in a graph path-length sense) to 

the Ground body. When defining the sense (sign) of mobilizer coordinates 

later we will refer to the frame F on P as the “fixed” frame, and frame M on B 

as the “moving” or “mobilized” frame, although these terms are arbitrary and 

do not imply anything of physical significance except when P is ground in 

which case it really is “fixed.” 
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Figure 7: Adding body B to a 
multibody tree already 
containing parent body P. 

 

4.7.1 The reference configuration 

The frames M and F are used to define a reference configuration for each 

body with respect to its parent. For most mobilizers, that is the configuration 

in which M and F are overlaid, and corresponds to a value of zero for the 

mobilizer’s generalized coordinates*. Figure 8 shows the reference 

configuration for the mobilizer defined in Figure 7. For any mobilizer type, 

the values of the generalized coordinates q express a transform FXM which 

gives the current location and orientation of the M frame, measured from and 

expressed in the F frame. The definition of each mobilizer type specifies the 

meaning of each of the q’s for that mobilizer and the kinds of transforms that 

can be expressed. For example, a Cartesian mobilizer would permit arbitrary 

translation of M, but its axes must remain forever aligned with those of F. A 

ball (spherical) mobilizer’s coordinates express the complementary motion in 

                                                        

 

* Certain sets of mobilizer coordinates may define their own “zero” which does not 
necessarily correspond to numerical values of zero for all coordinates. For example, 
zero (“no rotation”) for a quaternion is a four-vector (1,0,0,0). 
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which the origins of the two frames must remain coincident forever, but the 

orientation of M can be arbitrary with respect to F. A sliding mobilizer 

permits translation along one axis only, and a torsion (pin) mobilizer permits 

only rotation about a single axis. Other mobilizers permit various 

combinations of rotation and translation, with the extremes being the Free 

mobilizer which permits all possible motion (six degrees of freedom) and the 

Weld (im)mobilizer which permits no motion at all (zero degrees of freedom). 

Regardless of the mobilizer type, setting all the coordinates to zero expresses 

that the M and F frames are in the reference configuration. 

 

Those users familiar with SD/FAST’s reference configuration should note that 

the above is a different method for defining the reference configuration. It is 

in fact the opposite approach: SD/FAST requires the bodies to be entered 

already in the reference configuration, and then defines the mobilizer 

(SD/FAST joint) frames from the reference configuration. We think it is much 

more natural to express the joint frames separately in their bodies’ frames, 

and then define the reference configuration from the joint frames. It is always 

possible to choose mobilizer frames to reproduce the ones used by SD/FAST if 

you want, but it is no longer necessary to calculate them that way. 

P

OP

F

Figure 8: The reference 
configuration for the 
mobilizer added in the 
previous figure. 
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4.8 Constraints 

Constraints in Simbody are the complement of Mobilizers. Mobilizers add 

mobility to a multibody system; Constraints reduce mobility by introducing 

one or more constraint equations. Mobilizers are local, granting degrees of 

freedom to a single body, while Constraints are global and remove degrees of 

freedom from the multibody system as a whole by introducing restrictions on 

the allowable relationships among the generalized coordinates, speeds, or 

accelerations. A simple example is a distance constraint which says that a 

particular point fixed on one body must always be at a certain distance d from 

a point fixed on another body. If those bodies are far apart in the graph of the 

multibody topology, this simple restriction is actually expressing a 

complicated relationship that must hold among the mobility coordinates of 

many bodies. As mentioned earlier, it is much more efficient to define less 

mobility in the first place than to grant the bodies their freedom and then 

take it away later! However, as with the distance constraint above, that is not 

always possible or convenient, so we have Constraints.  

In the same way that a single Mobilizer may introduce several mobilities, a 

single Constraint may generate multiple constraint equations. Unlike 

mobilities, which are globally independent, the constraint equations 

generated by Constraints may be mutually interdependent making some of 

the constraints ineffective, redundant or inconsistent. A trivial example of a 

redundant constraint would be adding the same Constraint twice—nothing 

changes since mobility coordinates which satisfy the first Constraint also 

satisfy the second. An example of an ineffective constraint would be 

restricting the distance between a point on the outside of a wheel and the 

point of the parent at the wheel’s center. If the specified distance is equal to 

the wheel’s radius, the single mobility automatically meets this restriction at 

all times and the system has the same net mobility with or without the 

restriction. Changing the required distance to anything other than the wheel’s 

radius creates an inconsistent constraint which can never be satisfied by any 

setting of the mobility coordinates. 

Simbody initially supports only a small selection of Constraints. These are: 

Rod (distance) Constraint, Ball (coincident points) Constraint, and Weld 
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(coincident frames) Constraint. A Rod constraint generates one constraint 

equation which maintains a user-specified constant, non-zero separation 

distance between a station on one body (that is, a point fixed on the body) and 

a station on another body, as measured along the line between the two 

stations. Each nonredundant distance constraint removes one degree of 

freedom from the system. A Ball or “coincident points” constraint generates 

three constraint equations which together hold a station from each of two 

distinct bodies together at the same location in space, i.e., at a separation 

distance of zero, exactly like a Ball joint. A nonredundant Ball constraint thus 

removes three translational degrees of freedom from the system (all 

translation between the two points), while a Ball mobilizer adds three 

rotational degrees of freedom (all rotation about the connected points). A 

Weld constraint maintains frames (both location and orientation) from each 

of two bodies coincident in space, generating six constraint equations and 

thus removing six degrees of freedom from the system. Weld Constraints are 

the primary means by which we take a system that has loop topology and 

make it a tree—we cut one of the bodies in two to break the loop and then 

weld the two halves back together with a Weld constraint. 

The information needed for adding one of the above Constraints to a Simbody 

multibody system is as follows: 

• Two distinct bodies A and B. Either one (but not both) may be 

Ground. Both bodies must already be part of the multibody tree and 

are identified by the body number that was returned at the time they 

were added. 

• (Distance or Coincident Points Constraint) A station point PA fixed on 

body A and station point PB fixed on body B. These are measured and 

expressed in the bodies’ local frames, that is, PA is measured from OA 

and expressed in A while PB is measured from OB and expressed in B. 

The measure numbers of these vectors are thus constant during 

simulation. 

• (Weld Constraint) A frame FA fixed on body A and a frame FB fixed on 

body B. These are expressed in the bodies’ local frames, that is, FA is 

40 



 

given by a transform 
AA FX  while FB is given by transform 

BA FX . The 

measure numbers of the transforms are thus constant. 

• For a Rod (constant distance) Constraint you also need to supply a 

scalar distance. This is the physical separation d=|PB–PA| between the 

stations that you would like Simbody to maintain at all times. This 

separation must be significantly larger than zero; zero distance 

between stations is obtained using a Ball Constraint rather than a Rod 

Constraint. 

Note that nonredundant constraints cannot be satisfied by arbitrary values of 

the mobility coordinates. Prior to a simulation, you must find an initial set of 

generalized coordinates q and speeds u that satisfies all the constraint 

equations. Occasionally this can be done by inspection or hand calculation, 

but in general it is a difficult nonlinear problem to be solved numerically prior 

to beginning a simulation (this is called assembly analysis for q and velocity 

analysis for u). Given any set of mobility coordinates q and u, Simbody can 

efficiently calculate the constraint equation violations those entail. A variety 

of numerical methods can then be used to drive those constraint violations to 

below a desired tolerance, at which point the associated constraints will be 

satisfied. After that, valid numerical studies maintain the constraint 

equations, and thus satisfy the Contraints, as they advance from step to step. 

4.9 Generalized forces 

We can apply forces to bodies, or directly to the mobility coordinates 

represented by the generalized speeds u. In general these include both linear 

and rotational forces (torques). Forces applied to mobilities are called 

generalized forces or mobility forces. Forces applied to the bodies are called 

spatial forces or body forces. There is always a unique set of mobility forces 

equivalent to any set of body forces, in the sense that both sets will produce 

the same accelerations. Calculating this equivalent set is an important 

Simbody capability, since the equations of motion are written in terms of the 

mobilities, while forces are typically known in terms of their effects on the 

bodies. 

  41  



 

It is important to note that calculation of applied forces is not limited to the 

force types provided Simbody. Force calculation is a domain-specific 

modeling issue; Simbody’s job is to provide the information needed by the 

modeler to calculate the forces, and then to respond to those forces in 

accordance with Newton’s laws of motion. For convenience, the Simbody 

distribution does include a set of basic force subsystems to use in calculating 

simple forces such as gravity, springs, and atomic forces; however, this is by 

no means an exhaustive set. 

4.10  Kinematics 

Kinematics is usually defined as the study of motion without regard to mass 

or force. In practice, however, it is entirely concerned with the mapping 

between the mobility coordinates and spatial positions, velocities, and 

accelerations of the bodies. The mobility coordinates and speeds uniquely 

determine the spatial quantities so the mapping in that direction is fast and 

direct; this is called forward kinematics. Given a q we can immediately say 

where all the bodies are; with q and u we can say how they are moving; and 

with q, u, and u  (where u  is the time derivative of u) we can say how they are 

reacting (accelerating). The reverse direction is called inverse kinematics and 

is more difficult unless all bodies have been given unrestricted mobility (i.e., 

they are “free”). Given a set of observed spatial kinematic quantities, the goal 

of inverse kinematics is to find the “best fit” mobility coordinates and speeds 

that satisfy both the observations and the constraint equations generated by 

the multibody systems’ own Constraints. 

� �

4.11  Dynamics 

Dynamics is concerned with the relationship between forces and accelerations 

at a fixed value of the state variables q and u. This is determined by Newton’s 

second law, f=ma. Forward dynamics attempts to calculate accelerations and 

internal constraint forces, given a set of applied forces (which is equivalent to 

some set of joint forces). Inverse dynamics attempts to determine what set of 

joint forces explains a given set of joint accelerations. In practice it is often 

useful to specify some accelerations and some forces and calculate the 

remaining unknowns.  
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It is important to understand that the scope of the Simbody multibody tree 

(the “matter” subsystem) includes only the instantaneous evaluations 

performed at a particular system state. Advancing the state through time to 

produce a trajectory, or searching through the state to satisfy particular 

objectives, are higher-level operations which are facilitated by the multibody 

capabilities described here. They will be discussed elsewhere. 

4.12  Equations 

These are the equations represented by the Simbody multibody tree. 

 bias

q u
u

u
λ
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=
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(1)
(2)
(3)

Equation (1) (kinematic differential equations) relates the generalized 

coordinate derivatives to the generalized speeds via an invertible linear 

transform represented by block diagonal matrix N=N(q). This is typically an 

identity mapping except for some orientation coordinates. 

Equations (2) and (3) together constitute the dynamic equation in the 

presence of constraints, showing the unknown accelerations  and the 

unknown internal constraint force multipliers λ. Here M=M(q) is the system 

mass matrix, G=G(q) is the constraint matrix which couples the ’s and 

serves to map the constraint multipliers into mobility forces. Together with 

b=b(t,q,u), G provides the constraints among the ’s which must be satisfied 

in the solution. Some readers may prefer to think of equations 2 and 3 as a 

single matrix equation like this: 
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Equation 2a clarifies that the vector comprises a single set of 

unknowns to be solved for simultaneously when the right hand side is known. 

( ),u λ�
T

f=f(t,q,u) represents all applied forces and torques mapped to equivalent 

joint forces. fbias(q,u) includes velocity-dependent Coriolis and gyroscopic 

effects, and is zero if u=0. We partition f as follows: 
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   mob bodyJ •= +f f FT (4)

Here fmob and Fbody are the user-supplied system of forces and torques, while 

the kinematic Jacobian J=J(q) is managed internally by Simbody. Fbody is an 

nbx1 “stacked” vector of spatial forces consisting of one element per body 

(that is, the per-body net result of all the forces and torques applied to each 

body), where each element is a 6-element spatial vector combining body 

torque and force as described above. Fbody collects user-applied forces (such 

as Cartesian forces on atoms). If gravity has been specified, then Fbody 

includes the spatial forces resulting from a uniform acceleration field g (fixed 

in the Ground frame) acting through the centers of mass of each body. fmob is 

an  nx1 vector of user-supplied scalar forces applied directly to the mobilities, 

such as would be used for bonded forces in a molecular model. JT• is the 

Cartesian-to-internal conversion operator, conceptually an nxnb matrix of 

spatial vectors that maps spatial forces to their equivalent mobility forces 

(some authors call J the matrix of “partial velocities”). In practice the JT• 

operator is an O(n) algorithm, and J is never formed explicitly in Simbody. 
 

4.13 Operator form of Simbody interface 
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The Simbody subsystem follows the response/operator/solver scheme 

described elsewhere. Arguments in brackets indicate the stage at which the 

operator is available; other symbols are the runtime arguments. 
 

Operator Stage Method Description 

[ ]qq u= N�  Position void calcQDot(State, Vector 

u, Vector& qdot) 

Convert generalized 

speeds to generalized 

coordinate time 

derivatives. 
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[ , ] [ ]q u qq u= +N N��� � �u  
Velocity void calcQDotDot(State, 

Vector udot, Vector& qdotdot) 

Convert generalized 

speed time derivatives 

to generalized 

coordinate 2nd time 

derivatives. 

a [ ]

c [ ]

bias [ , ]

inv a c bias

q

q

q u

f a

f

f

f f f f

λ

=

=

=

= + +

M

G

τ

T

 

Dynamics void calcMa(State, Vector a, 

Vector& f) 

Inverse dynamics. Can 

use as residual 

(implicit) form of 

equations : 

inv applied
[q,u] [t,q,u]
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Dynamics void calcMInverseF(State, 

Vector f, Vector& a) 

void calcTreeUdot(State, 

Vector f, Vector& udot) 

Forward dynamics.

a [ ] [ , , ]q t qaε = +G b u  Dynamics void 

calcAccelerationConstraintErr

(State, Vector a, Vector& 

aerr) 

Maps accelerations a to 

the acceleration 

constraint errors they 

entail. 

a

[ , , , ]t q u u

ε
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

p
v
a �

��
�  

Acceleration const Vector& 

getAccelerationConstraintErr(

State) 

Maps accelerations  

to the acceleration 

constraint errors they 

entail. 

u�

v
[ , , ]t q u

ε ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

p
v
�

 
Velocity const Vector& 

getVelocityConstraintErr(Stat

e) 

Given a set of 

generalized speeds u, 

return the velocity 

constraint errors they 

entail. 

p [ , ]t qε = p  Position const Vector& 

getPositionConstraintErr(Stat

e) 

Given a set of 

generalized coordinates 

q, return the position 

constraint errors they 

entail. 
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[ ] a( ) qλ − += 1GM GT ε  Dynamics void calcMultipliers(State, 

Vector aerr, Vector& lambda) 

Given a set of 

acceleration constraint 

violations, calculate the 

multipliers needed to 

eliminate them. 

[ ]qf F= JT
 

Position void 

calcTreeEquivalentForces(Stat

e, Vector_<SpatialVec> 

bodyForces, Vector& 

jointForces) 

Given a set of body 

forces and torques, 

convert them to hinge 

forces ignoring 

constraints. 

[ ]qV u= J  
Position  Given a set of 

generalized speeds, 

compute the equivalent 

spatial velocities of each 

body. 

ke=ke[q](u) Position Real calcKineticEnergy(State, 

Vector u) 

Given a set of 

generalized speeds, 

calculate the resulting 

kinetic energy. 

 

5 Simbody Force Subsystems reference guide 
Simbody comes with a predefined set of commonly-used force subsystems. 

Each of these is an independent, self-contained set of related features, and 

users may add their own force subsystems as well. 

5.1 General Force Subsystem 

Simbody comes with a force subsystem called GeneralForceSubsystem.  It can 

be used to add a variety of standard forces to a system, such as linear springs 

and dampers.  It also provides a mechanism for adding user defined forces. 

5.2 Hertz/Hunt and Crossley contact model subsystem 

Simbody comes with a force subsystem class called HuntCrossleyContact. 

This section describes the theory behind it. 
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5.2.1 Motivation 

Most engineers, physicists and computer scientists are introduced to contact 

problems using the concept of coefficient of restitution. The idea presented is 

that when two objects collide, they will rebound in a predictable way with the 

rebound velocity being a known fraction e of the impact velocity.  

 

Unfortunately, it is rarely mentioned that this concept is only usable 

in the most limited cases. Many difficulties arise trying to apply this in 

a multibody dynamics context; in particular the presence and motion 

of the other bodies and the forces applied to them (which change constantly 

and are not know in advance) change the rebound velocity. Also, it is well 

known in the field of contact mechanics (and to anyone who has watched 

closely as a ball bounces) that the coefficient of restitution is very sensitive to 

the impact velocity. In fact, in contact mechanics the normal way to 

approximate the coefficient of restitution is  for small impact 

velocity , where c is a material property. An enormous amount of empirical 

data supports that—at low velocities, normal materials have a coefficient of 

restitution that drops linearly with impact velocity. The classic work in this 

field is reference 

1 ie c= − v

iv

3. Even with this improvement to the functional form of e, 

the results are rarely applicable outside the realm of freely falling bodies. In 

multibody dynamics, the coefficient of restitution is something to be 

computed, along with the rest of the system’s motion, not something that can 

be known in advance! 

To obtain usable results in a multibody context, we need a method that can 

calculate forces produced during contact, rather than impulsive velocity 

changes. That permits contact to be treated as yet another force among the 

many that influence the behavior of multibody systems, ensuring that 

accurate (or at least reasonable!) behavior will result. Only once you can 

obtain physically correct results with some model, should an 

optimization like “treat contact as an instantaneous event” be 

attempted, and even then one might wonder if it is worth the effort. 
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5.2.2 The model 

This model is based on Hertz theory of elastic contact,1 and the Hunt and 

Crossley model for damping.2 The idea is to predict contact behavior during a 

dynamic simulation working only from material properties and geometry. 

This is a frictionless model but it can be used as a starting point for several 

useful frictional models. 

To apply Hertz theory, we need two linearly elastic materials in non-

conforming contact, where the dimensions of the contact patch are small 

compared to the curvatures, and small compared to the overall dimensions of 

the object. Hertz theory can be used for general curved shapes (including 

cylinders) provided they can be approximated by paraboloids at the contact 

point; however, we will discuss only sphere-sphere and sphere-halfspace 

contact here. For Hunt and Crossley, the impact velocities should be small 

enough not to cause permanent yielding of the materials. Within these 

regimes, the model produces a good match for empirical data, such as that 

found in reference 3. Outside these limits, the model can still produce 

surprisingly useful results when fit to experimental data, because the form of 

the model has a structure which captures the most significant aspects of 

contact for many purposes. It is especially well-suited for soft contacts such as 

are common in biology, even though those are well out of the range that the 

rigorous theory presented here can support. I speculate that it works well in 

most applications because the results of interest don’t usually depend on 

precise details of contact, only that it behaves in a qualitatively correct 

manner. As an example, if you get a stiffness parameter too low, the model 

will compensate by allowing more deformation with the result being that you 

get the same forces (such as are needed to keep a foot going through the floor) 

although the precise deformation of the foot and floor are not obtained. This 

may be acceptable for researchers who are more interested in studying some 

other aspect of the model, knee flexion for example. 

For the rest of this section, please refer to  which defines the 

geometry of contact. We will consider a collision between two bodies, B1 and 

B2, in which a sphere attached to B1 contacts a sphere or halfspace attached to 

B2. During the collision (which will occur over an extended period of time, not 

Figure 9
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impulsively), our goal will be to determine instantaneous values for the 

contact force f, the contact patch orientation n and radius a, and a unique 

contact point P at which we can apply equal and opposite forces to the two 

contacting bodies. We will be given the spatial locations and velocities of the 

undeformed geometric objects in contact, and will easily be able to determine 

the total deformation x that must have occurred because of the apparent 

overlap between the undeformed objects. However, in order to find the 

contact point P and the compression rates of each body (needed to compute 

dissipation), we have to determine the individual deformations 1x  of B1 and 

2x  of B2, where 1 2x x x= +  and 1 2x x x= +� � � . 

The thin lines in the figure are intended to show the undeformed shape while 

the thicker lines give a (crude) depiction of the deformed shape. Note the 

assumption that the contact patch is planar, circular of radius a, centered at P 

and oriented with normal n pointing towards body B1. With these 

conventions, the scalar force f that we will calculate (applied equal and 

opposite to the two bodies at P) is always positive, and the vector force fn is 

applied to body B1 at P, while we apply −fn to body B2 at P. From the diagram 

one might think it doesn’t matter where along the line between the centers we 

apply the force. However, it is important to keep in mind that the colliding 

objects are in general only attached to a larger body—they do not constitute 

the whole body. That means the applied force is also generating moments on 

the bodies, and those moments depend critically on exactly where the force is 

applied. 
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Figure 9: Contact geometry for the 
Hertz/Hunt and Crossley model. R1 O1• B1 
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We expect to be given the following material properties for each body: 

Property Symbol Units Comments 

Radius of 
curvature 

R Length Measured at the contact point

Young’s modulus E Pressure stress/strain = (force/unit area) / (% 
deformation) 

Poisson’s ratio ν Unitless 
ratio 

ratio of transverse contraction to 
deformation (0–½ for normal materials); 
related to preservation of volume during 
strain; rubber has ν=½  

Dissipation 
coefficient 

c 1/velocity −slope of coef. of restitution vs. velocity at 
low velocities; i.e., coef. of restitution 
e=1−cvi for impact velocity vi 

 

For our purposes, we combine Young’s modulus E and Poisson’s ratio ν into a 

single “stiffness” property called the plane-strain modulus E*=E/(1−ν2). This 

is measured as the pressure per unit area induced by a fractional deformation 

(strain). The MKS unit is Pascals which are Newtons/m2. Below are some 

typical values as ballpark figures only; please don’t rely on them. (Note that 

the stiffnesses are given in gigapascals, i.e. 109 N/m2!) 

R2 

x x�
•P  

1

1

x 1

1 22 (1 )
s x
x s x s xxx

=
= − = − =

O2• 1 2

1 2

1 1 1

2 2 2

O O
O O

O (RP )
O (R )

x
x

−=
−

= − −
= + −

n

n
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*
2 2,E c

a← →

1 1
,x x�

B2 
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Material Young’s 

modulus E 

(GPa) 

Poisson’s 

ratio ν 

(unitless) 

Plane-

strain 

modulus E* 

(GPa) 

Dissipation 

coefficient 

(s/m) 

Rubber 0.01 0.5 .0133 0.05? 

Bacteriophage 

capsid 

2 0.4(?) 2.4 ? 

Nylon 3 0.4 3.6 ? 

Lead 14 0.42 17 0.4? 

Concrete 25 0.15 25.6 ? 

Steel 200 0.3 220 0.08? 

Diamond 1100 0.2 1150 ? 

 

Of these, Young’s modulus and Poisson’s ratio can be obtained easily from 

handbooks for most materials, but the dissipation coefficient is harder to get. 

It would be very useful to relate this to standard properties such as hardness 

and yield stress (if that’s possible) but for now it has to be measured or 

estimated as the slope of the coefficient of restitution-vs.-velocity curve at low 

velocities. References 2 and 3 provide or imply some values for c, but they 

should be taken with a grain of salt. Note that this situation is still better than 

the standard approach of supplying a coefficient of restitution e directly—at 

least c is a material property so can be expected to produce correct behavior 

over a range of velocities.  

Hertz contact theory says the relationship between force fHz and displacement 

x depends only on the relative curvature R of the two bodies at the contact 

point, and on an effective plane strain modulus E*, and the contact patch 

radius a is an even simpler function 

3 2 1 2*4
Hz 3 ,f RE x a R x= =  

Hunt and Crossley start with the above formula for fHz and add a dissipation 

term: 
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3
HC Hz 2(1 )f f c= + �x  

where c is an effective dissipation coefficient combining the material 

properties of the two contacting materials. 

Note that although the materials are assumed linear, the force-displacement 

relationship is nonlinear because of the changing geometry during contact. 

This complicates the calculation of the effective stiffness E*. The literature 

seems to suggest * * * * *
1 2 1 2(E E E E E= + )  but this would be inconsistent with 

the Hertz relationship, by the following reasoning. First, the relative 

curvature is a geometric property and is straightforward to calculate: 

1 2 1 2( )R R R R R= + . Looking at the figure, note that the contact situation 

depicted should be indistinguishable from one in which B1 (the top, red body) 

had met an infinitely rigid halfspace, with a displacement of 1x  instead of x, 

provided that B1’s radius were R instead of R1. The effective stiffness in that 

case would be just the stiffness  of B1. Hertz theory would then give *
1E

3 / 2*4
1 13 1f RE x= . By the same reasoning, we can view B1 as a rigid half space 

and see that the force on B2 (with radius changed to R) would be unchanged 

at 3 / 2*4
2 3 2 2f RE x= . But the forces must be the same on both bodies and the 

same as 3 2*4
3f RE x= . Recalling that 1 2x x x= +

*
2E

, we now have enough 

information to write E* in terms of  and : *
1E

( )
( )

3 23 2 3 2

2 / 3 2 / 3 2 / 3

3
22 / 3 2 / 3

2 / 3 2 / 3

* * *
1 1 2 2 1 2

* * *
1 1 2 2 1 2

* *
* 1 2

* *
1 2

E x E x E x x

E x E x E x x

E EE
E E

= = +

⇒ = = +

⎛ ⎞
⇒ = ⎜ ⎟+⎝ ⎠

 

Note that this combining formula is close, but not identical, to 
* * * * *

1 2 1 2(E E E E E= + ) . The general scheme is that if your force/displacement 

dependency has an exponent n, as in nf kx= , then the combining scheme for 

the material stiffness is 
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1/ 1/

1/ 1/

* *
* 1 2

* *
1 2

n n

n n

n
E EE

E E
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 

We can now rearrange this for our case where n=3/2 to determine how x is 

split into 1x and 2x  given the stiffnesses of the materials, the result we need to 

determine the contact point location P: 

2
3 2 / 3

2 / 3 2 / 3

2
3 2 / 3

2 / 3 2 / 3

*
2

1 *
1 1 2

*
1

2 1*
2 1 2

EEx x x
E E E

EEx x x
E E E

⎛ ⎞
= =⎜ ⎟ +⎝ ⎠

⎛ ⎞
= = =⎜ ⎟ +⎝ ⎠

x x−

 

By inspection, the time derivatives 1x�  and 2x� are split in the same ratios, 

which gives us a way to define an equivalent dissipation coefficient for x� : 

, where (1 1 2 11c c s c s= + − ) )(2 / 3 2 / 3

1E 2

1 2s E= / 3

2E+ . To summarize, here are the 

combining rules we use: 

3
22 / 3 2 / 3

2 / 3 2 / 3

2 / 3 2 / 3

2 / 3 2 / 3 2 / 3 2 / 3

* *
*1 2 1 2

* *
1 2 1 2

2 1
1 2

1 2 1 2

1 1 2 2

1 1 2 2 1 1 2 2

,

, 1

,

R R E ER E
R R E E

E Es s
E E E E

x s x x s x
cx c x c x c c s c s

⎛ ⎞
= = ⎜ ⎟+ +⎝ ⎠

= =
+ +

= =
= + ⇒ = +� � �

1s= −  

Now we can apply the Hunt and Crossley model, which starts with Hertz 

contact and adds a dissipation term: 

3 2* 34
3 2

max( , 0)

max( (1 ), 0)
HCf f

RE x cx

=

= + �
 

The max() is needed only when an active force is “yanking” two contacting 

bodies apart; the force will never be negative in normal contact/response 

conditions (see reference 4 for proof). The “yanking” situation corresponds to 

pulling the bodies apart faster than they can undeform.  
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5.2.3 Extension to include Friction  

TBD 

Friction models need to know the normal force, and sometimes the contact 

patch dimensions, and the Hertz/Hunt and Crossley model provides those.  

We hope to provide a simple, continuous model with functionality like that 

described in reference 5, which is able to accurately model sticking, pre-

sliding, and sliding friction behavior and exhibit empirically observed 

Stribeck, Coulomb and viscous friction effects without adding intermittent 

constraints to the multibody model and event detection to the numerical 

methods. 

 

5.3 DuMM — Molecular mechanics force field 

Simbody comes with a force subsystem class called 

DuMMForceFieldSubsystem, which we’ll abbreviate “DuMM” below. This is 

intended to provide a straightforward implementation of conventional 

molecular mechanics force fields, for use in experimenting with rigid-body 

molecule models, and to serve as sample code for someone who would like to 

write or port a good molecular mechanics force field for Simbody. It is not 

intended for production work! 

5.3.1 Background 

Molecular mechanics (MM) uses classical approximations of molecular 

interactions. It is thus suited only for circumstances in which quantum effects 

are not dominant; in practice that means simulations which do not form or 

break covalent bonds between atoms. Fortunately this includes a lot of 

biologically interesting behavior such as binding, aggregation, protein folding, 

and other cases where molecules rearrange rather than form or break. 

Atomic force models are conventionally divided into two categories: bonded 

and non-bonded. Bonded forces act between or among covalently-bound 

“neighbor” atoms. Since each atom can form only a small number of bonds, 

the number of bonded interactions is O(na) in the number of atoms na. Non-

bonded forces, on the other hand, represent interactions between each atom 
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and all the other atoms. These are electronic in nature and comprise Coulomb 

forces and van der Waals forces. Because the number of such forces is O(na2), 

these terms dominate the computational cost of the force field for all but the 

smallest systems. 

5.3.2 Basic concepts 

The primary concepts supported by DuMM are the force field, molecule, and 

body. The resulting model permits matter to be coarse-grained  (that is, large 

bodies interconnected by mobilizers and constraints) while retaining detailed 

atomic forces and geometry. The same methods are used to produce systems 

from ones where atoms are free to move anywhere in Cartesian space, to 

systems where all the atoms move together as a rigid body, to anything in 

between. Different molecules or pieces of molecules can be modeled at 

different granularity in the same simulation. 

5.3.2.1 Force field 

The force field provides broad atom classes providing van der Waals 

parameters for particular elements in particular covalent environments. All 

bonded terms are specified in terms of these atom classes. A larger set of 

charged atom types is defined which combine atom classes with particular 

partial charges. Each atom in the molecule is classified as a particular charged 

atom type, which implicitly provides the partial charge, van der Waals 

parameters, and element. Then the force field provides bonded terms for 

stretch, bend, and torsion, defined as a pair, triple, or quad of atom classes. 

The force field definition includes a few global parameters as well, such as 

how to scale charge and van der Waals forces for closely-bonded atoms, and 

how to mix van der Waals parameters for dissimilar atom classes. 

5.3.2.2 Molecules 

Molecules are built from three concepts: atoms, bonds, and clusters. The only 

information required in the definition of an atom is its charged atom type as 

described above. An integer atomId is assigned and returned to the caller, so 

that every atom in the system has a unique atomId. A bond connects a pair of 

atoms, with at most one bond allowed between any pair.  
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A cluster is a rigid grouping of atoms. When a cluster is defined it is assigned 

a unique clusterId, which is returned to the caller as a handle for future 

references to that cluster. Each cluster has its own reference frame, like a 

body, and when initially created a cluster consists only of that reference 

frame. Whenever an atom is placed in a cluster, it is given a station (position) 

with respect to that cluster’s reference frame. Clusters may be placed within 

larger clusters, in which case a Transform is used to specify the configuration 

(location and orientation) of the child cluster’s reference frame with respect 

to the parent cluster’s frame. An atom may appear only once within a cluster 

or any of its subclusters. However, an atom may be placed in multiple clusters 

as long as those clusters are independent. 

Once a cluster has been populated with atoms, it can calculate its own mass 

properties which can then be used in the construction of bodies. 

5.3.2.3 Bodies 

Once molecules have been constructed by adding atoms and bonds and then 

partitioning the atoms into clusters, a mapping of the atoms to 

SimbodyMatterSubsystem bodies can be made. Bodies serve as a “top 

level” cluster, and atoms and clusters can be attached to bodies. Any time an 

atom is attached to a body it is given a station in the body’s reference frame, 

and a cluster is given a configuration (Transform). 

Note that mass properties are not automatically determined by attaching 

atoms and clusters to bodies. Rather, bodies must have mass properties 

assigned at the time they are defined in the SimbodyMatterSubsystem. 

Typically, the mass properties as calculated by clusters, and the masses of 

individual atoms, will be used in calculating the appropriate mass properties 

but that is not required. 

Once the bodies are assigned, DuMMForceFieldSubsystem will figure out 

which of its atoms are on different bodies, and consequently which of the 

bonded terms cross bodies. Bonded and nonbonded terms that act only 

within a single body are ignored. 

There is no automatic mapping of mobilizer coordinates to bonds, and in fact 

there is not necessarily any direct mapping possible. Optionally, you may 
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assign particular mobilities to any of the cross-body bonded terms (such as a 

sliding mobility to a bond stretch term or a rotating mobility to a bond torsion 

angle). Bonded terms which depend directly on mobilities can be calculated 

very efficiently, and it can be very convenient to have a coordinate which 

corresponds directly to a bonded term.  (TODO: bond mapping not 

implemented yet). 

5.3.3 Units 

There are a number of molecular mechanics unit systems in popular use. 

DuMM supports a single “native” unit system but provides conversions to and 

from the others. The native unit system is sometimes called “MD units” and is 

defined by the following units: length in nanometers (nm, 10-9 m), mass in 

daltons (Da, g/mol, atomic mass units), and time in picoseconds (ps, 10-12 

seconds). Angles are measured as unitless radians. In this set of units, a 

typical bond has a length of about 0.15 nm, a hydrogen atom has mass about 1 

Da, and substantial motion occurs on a scale of about 1 ps. 

This is a particularly appealing set of units because when combined 

consistently into energy (mass x length2/time2) we get energy per mole in g-

nm2/ps2=103kg-m2/s2 =1kJ. That is, our energy unit is 1 kilojoule/mol which 

is one of the energy units popular among molecular mechanics practitioners. 

(Our consistent unit of force is then the kJ/nm = 1 Da-nm/ps2.) 

The other popular unit system, perhaps somewhat more chemist-friendly 

than ours, is the kcal-Ångströms (KA) system. It uses the kilocalorie (kcal) for 

energy, where 1 kcal = 4.184 kJ, and the Ångström (Å, 0.1 nm) for length 

(those are both exact conversions), degrees for angles, and ps for time. 

However, there is no reasonable consistent set of units in which energy is 

measured in kcals, so there is always a conversion involved in this system.* 

The DuMM subsystem provides alternate methods dealing directly in kcals, 

Ångstroms, and degrees so that users who think better in KA units can 

                                                        

 

* Typically, energy is calculated in the consistent unit of decajoules/mol (Da-A2/ps2) 

and then divided by 418.4 when no one is looking. 
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continue to do so, hopefully resulting in a smaller chance of errors being 

made. Whenever we use these nonstandard units we include “KA” in the 

method and argument names; any time no unit system is specified you may 

assume we are using MD units as described above. And no matter which 

methods were called initially, anyone who looks at internal data should be 

aware that our internal units are kJ, nm, ps, and radians. 

5.3.4 Defining a force field 

TODO 

5.3.5 Defining the molecules 

TODO 

5.3.6 Defining bodies and attaching the molecule to them 

TODO 

5.3.7 Running a simulation 

TODO 

5.3.8 Theory 

TODO 

6 Simbody Studies reference guide 
The system described by equations (7.28)–(7.31) is an overdetermined system 

since there are more equations than unknowns. The nq+n+nz+m unknowns 

are q,u,z and λ. The first line of equation (7.28) provides only nu independent 

equations, but the second adds nquat more for a total of nq kinematic 

equations. Then equation (7.29) provides n+m* with the first line and nz more 

with the second line. That leaves (7.30) and (7.31) as 2mp+mv “extra” 
                                                        

 

* When G doesn’t have full row rank (meaning some of the constraints are redundant 
or inconsistent), we introduce other conditions to select the “best” solution for the 
underdetermined λ. Specifically, we choose the value for λ that minimizes |λ|2 in the 
redundant situation, and the value which minimizes the 2-norm of the residual error 
in equation (7.29) if the constraints are (slightly) inconsistent. 
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equations. These equations define the position and velocity constraint 

manifolds on which the solutions q(t) and u(t) are expected to lie (that is, the 

values of q and u should always satisfy those equations). If equations (7.28) 

and (7.29) could be integrated perfectly, the solutions would indeed stay on 

the manifolds since they start out that way and equations (7.28) and (7.29) 

satisfy the constraint derivatives. However, truncation error inherent in 

methods for approximate numerical integration allows the solution to drift 

away from the manifolds. The “extra” equations can be employed rigorously 

to eliminate this drift, and in fact improve the solution overall, using the 

method of coordinate projection9 to be discussed below. But first we have to 

take a short detour to discuss scaling of variables, since that will be required 

to make rigorous notions like “improving the solution” or “making a small 

change.” 

6.1 Scaling, tolerance, and accuracy 

A multibody system is modeled using a set of state variables, and a set of 

differential and algebraic equations that those variables must satisfy. There 

are many mathematically equivalent ways to model the same system, and 

some of the modeling choices to be made are arbitrary. Some examples are: 

choice of units for various quantities; choice of which quantities to treat as 

independent and which dependent; and choice of which body is to serve as 

the base body for a chain. However, the resulting physically equivalent 

models are not numerically equivalent so can affect the actual solutions we 

obtain when doing computations, which are necessarily approximate. Such 

computations involve strong tradeoffs between CPU time and accuracy, so are 

typically performed to a level of accuracy chosen by the user based on his or 

her requirements. The goal of scaling is to ensure that an accuracy 

specification (e.g., “1% accuracy”) can be applied in a physically meaningful 

way so that the behavior of a study is not dominated by arbitrary modeling 

choices. That is, we would like a given accuracy specification to yield the same 

physical results for all the physically equivalent models, regardless of any 

arbitrary choices that may have been made during construction of those 

models. 
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There are two ways in which arbitrary modeling choices interact with 

accuracy requirements. These are: (1) scaling of system state variables, and 

(2) tolerance for errors in the algebraic constraints. Our goal is to be able to 

determine a physically meaningful “unit change” to each state variable, and a 

physically meaningful “unit error” for each algebraic constraint. Then when 

solving the system equations we can define “accuracy” to mean calculation of 

state variables to some fraction of that unit change, and satisfaction of 

algebraic equations to some fraction of that unit error. We deal with multiple 

variables and equations by defining a scalar norm representing “overall 

change” and “overall error” and then requiring our computations to maintain 

those norms at or below the requested accuracy. 

6.1.1 Scaling 

An important practical consideration for any multibody formulation is that 

the state variables y={q,u,z} vary widely in scaling, by which we mean the 

degree to which a change in the numerical value of a state variable affects a 

physically meaningful quantity. There are several causes for the uneven 

scaling of state variables. To begin with, they are expressed in different 

units—q’s are typically lengths, angles, or quaternions; u’s are typically 

length/time or angle/time; z’s can be anything at all. Scaling differences are 

even more pronounced in internal coordinate formulations like Simbody’s, 

since the effect of a state variable depends strongly on its position in the 

multibody tree. A change Δq to an angular coordinate near the system base 

will have a much larger effect (on almost anything you might care to measure) 

than the identical change made to a coordinate which rotates only a lone 

terminal body.  

P 

d1 

q2 
d2 

q1 

Figure 10: scaling of q1 and q2 are very 
different with respect to the position of the end 

i  
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Figure 10 depicts this situation. If we hope to achieve a given level of accuracy 

with regard to the positioning of the end point P marked with a red square, 

we need to calculate q1 more accurately than q2. For example, say d1=10 nm 

and d2=0.5 nm. Then an error ε=0.1 radians in q1 induces an error of 

d1ε=1 nm in P’s location, while that same error in q2 induces only 

d2ε=0.05 nm of positioning error. In this situation we say that state q1 has 

more weight than q2 with respect to the location of P. Scaling is thus the 

process of assigning a numerical weight wi≥0 to each state variable yi. States 

which are “more important” get a numerically larger weight, so that we know 

for each state variable what size perturbation would produce a unit change in 

the physical system. 

Even in the simple example of Figure 10 it is clear that the relative and 

absolute weighting of state variables are not constant but change as a function 

of system configuration. Thus weights may need to be recalculated 

periodically as a system moves during a study. Fortunately, in practice scaling 

does not need to be done perfectly to yield substantial improvements over 

unscaled variables. That permits us to treat weights as constants in the 

discussion to follow; in practice they are updated only occasionally. 

Say we want to make the “smallest” state change Δy that will satisfy some 

physically-meaningful condition, perhaps to reposition point P to a specified 

nearby location. It is unlikely that we mean “smallest” in the sense of a norm 

like 
2

yΔ on the unscaled numerical values of the state variables, since those 

numerical values to some degree reflect arbitrary modeling choices as 

discussed above. More likely we mean something like the smallest motion of 

the bodies, least change in energy, or some other physical consideration. This 

can be achieved by defining “smallest” in terms of a weighted norm 
W

yΔ , 

where the weights on each individual state entry reflect its scaling with 

respect to the physical parameter of interest. For this purpose we define a 

diagonal weighting matrix W, where the ith diagonal element is wi, the “unit 

weight” of state variable yi. For example, referring again to Figure 10, if we 

want to scale by the geometric consequences of the state variables on P’s 

location we could use w1=weight(q1)=d1 and w2=weight(q2)=d2. Then we 

would define W as follows: 
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1

2

0
0
d

d
⎡ ⎤
⎢ ⎥⎣ ⎦

W �  

Then we define the weighted norm 
W

yΔ W�
2

yΔ . The ideal weighting 

matrix would be such that, for a given scalar property of interest P(y), we 

would have  

(y) ,i
i

P w i
y

∂ = ∀
∂

. 

Another way to think of this is to imagine an alternate set of state variables 

such that ŷ W� y ˆ(y) y 1iP∂ ∂ =  for all i (with ). That is, a unit 

change in the numerical value of any state variable in  produces a unit 

change of the physical quantity P. 

-1 ˆdy= dyW

ŷ

We will primarily make use of the related RMS norm 

WRMS W
y

1y y
n

Δ Δ�  

where ny is the number of state variables, because the RMS norm does not 

grow with the problem size. Now if we let εy represent the vector of ny 

unweighted error estimates introduced by a step in the numerical solution for 

y(t), we can provide a precise meaning for the notion “solve for y(t) to an 

accuracy α”: y WRMS
ε ≤ α

u

q

 at each step during the study. 

We will assume below that an nyxny weighting matrix W=diag(wi) is available 

for the state y. We’ll defer discussion of how to compute W until later, 

however we note that the weightings on q’s cannot be independent of the 

weightings on their corresponding u’s, since we know that  (and 

). We can compute weighted least squares configuration changes 

about a nominal configuration using “instant coordinates” , which have the 

property that . Then the corresponding change to the real q’s is 

. 

( )q q= N�

( )u q+= N �

ˆq qΔ = ΔN

q̂

q̂ u=�

Weights are thus provided on the mobilities u, which are physical quantities, 

rather than on the generalized coordinates q which can be chosen somewhat 
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arbitrarily. So we work only with the nuxnu diagonal weighting matrix Wu; 

there is no separate Wq. Note that if there are auxiliary state variables z they 

will have independent weights Wz. 

6.1.2 Tolerance 

The nonlinear algebraic equations defining the system, such as equations 

(7.25) and (7.26), cannot be solved exactly by a numerical computation. 

Instead, they will be met with some residual error. We would like to keep that 

error below a specified “tolerance” level during a study. As with the state 

variable scaling problem above, we have to deal with the issue that there are 

many separate algebraic equations, and the errors they produce will not be 

measured in the same units. This is especially important when mixing 

position (holonomic) and velocity (nonholonomic) constraints, since velocity 

constraint errors need to be in units comparable to the time derivatives of the 

position constraint errors. Also, if any acceleration-only constraints are 

provided their errors must be in units comparable to the 2nd time derivative of 

the holonomic constraint errors. 

The formulation used by Simbody ensures that the acceleration-level 

constraints are solved to machine precision at the same time we solve for the 

accelerations. So our numerical integration methods do not need to deal with 

acceleration constraint tolerances; we’ll just take what we get from solving 

system (7.29). However, when there are redundant constraints the tolerances 

can affect how the constraint forces are distributed, although the 

accelerations are still unique. In any case we do need to actively control the 

errors in velocity, position, and quaternion normalization constraints. As with 

state variables, we want to be able to provide a consistent physical meaning 

for a statement like “solve the constraint equations to 1% accuracy.” 

To do this we define a set of tolerances ti>0, one for each of the mp position 

(holonomic) and mv velocity (nonholonomic) and ma acceleration-only 

constraint equations, and define a diagonal constraint weighting matrix T 

whose ith diagonal element is 1/ti. Each ti should represent the violation that is 

to be considered a “unit violation” of the ith constraint (“unit” doesn’t 

necessarily mean “small”). Note that “tolerance” has the inverse sense to 

“weight”—while a larger weight means “more important” a larger tolerance 
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means “less important,” which is why we invert them in T to create weights. 

We sometimes refer to these reciprocal tolerances “constraint weights.” If we 

need to refer separately to the position and velocity tolerances, we’ll consider 

T to be partitioned into diagonal submatrices T={Tp,Tv,Ta}. Unlike relative 

weights of state variables, which can change as the state variable values 

change, we expect T to remain fixed once specified since tolerances are 

absolute quantities. Now define εc as the vector containing the current, 

unweighted error for each constraint equation. We can calculate a norm like 

c 2
εT  which treats all constraint errors uniformly. We’ll call this the 

tolerance norm and write it c T
ε . In practice we will use the RMS norm 

c

1
c TRMS Tn

ε = cε  to remove effects due just to problem size, and define the 

phrase “meeting tolerance to accuracy α” to mean c TRMS
ε α≤ . 

To summarize, we now have a way to define what is meant by solving 

a multibody system to a given accuracy, say α=0.1%. We will have 

defined a locally-constant weighting matrix W on changes to the state 

variables u and z (and implying a weighting on changes to q) and a constant 

reciprocal tolerance matrix T on the absolute errors in the constraint 

equations. W defines a “unit change” for each state variable, and T defines a 

“unit error” for each constraint equation. Then we have solved a trajectory to 

an accuracy α =0.1% (for example) when both 

y c TRMSWRMS
0.001 and 0.001ε ε≤ ≤  

hold for each step of the solution. 

Although constraint accuracy is maintained throughout a simulation, it is 

important to emphasize that we define accuracy of the state variables as a 

local phenomenon. Many multibody systems are inherently chaotic, meaning 

that their long term behavior is arbitrarily sensitive to initial conditions and 

numerical errors and hence not predictable. Only local measures of accuracy 

make sense for such systems. One may think of this as ensuring that the 

simulation accurately simulates some system which is very similar to the one 

under study. Without such accuracy control there is no guarantee that any 

such system is being simulated. 
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6.2 Coordinate projection 

Given an arbitrary value for the state variables, some or all of the constraint 

equations may fail to be satisfied. Since accelerations are computed quantities 

rather than states, we can always calculate them to satisfy the acceleration 

constraint equations. However, since t, q, and u are independent states we 

may find position and velocity constraints are not satisfied. In cases where 

the equations are expected to be arbitrarily far from being satisfied (typically 

prior to the start of a study), we may need special analyses to attempt to find 

values which satisfy the constraints. However, during a dynamic simulation it 

will typically be the case that the constraints will almost be satisfied, meaning 

that q and u just need to be “cleaned up” a little. This cleaning up process can 

be thought of as taking state variables which have left the required constraint 

manifold and projecting them back to the manifold via the shortest path 

(smallest change in a weighted norm) we can make. 

We define 

 
1

n

n ( ) 1
( ) ( )

n ( ) 1nquat

q
q q

q

ε

⎛ ⎞−⎜ ⎟
= = ⎜
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q
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u�
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⎢ ⎥= ⎢ ⎥
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��
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where  are fixed at their current values. Note that these are unweighted 

errors; εp and εv need to be normalized using the tolerance matrix T discussed 

in section 

t,q,u

6.1.2 above. Then we would like to find the smallest change to q 

that will drive εp to 0, and the smallest change to u that will drive εv to 0. 

Those “smallest” changes correspond to a least squares projection in the 

weighted (W norm) direction, normal to the constraint manifold, for which a 

theorem given in reference 9 guarantees that this projection also improves 
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the solution to the differential equations. See section 6.1.1 for a discussion of 

the W norm. εa is satisfied exactly when we solve equation (7.29), and εn is 

always satisfied simply by normalizing the quaternions , which is a 2-

norm projection that can be done separately from everything else. 

n i q⊂

The projection equations are underdetermined, nonlinear equations, but we 

expect to be close to a solution so they can be solved efficiently with Newton 

iteration or similar methods. For example, the full Newton steps would be  

 ( ) ( ) ( 1) ( )i q+ = 1
p p uˆ ˆ( ) ( ),i i i

WLS WLSq q q q qε −
Δ Δ= −P T NW  (6.5) 

 final ( ) ( )n : n n | n |  (6.6) last last
k k k kq∀ ⊂ =

 

 p pfinal ( ) ( 1) ( )iu+V W 1
u

v v

ˆ( ) ( ),i i
WLS WLSq u u u u

ε
ε

−
Δ Δ

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦

T
T

�  (6.7) 

where  

 1
p u( ) ( )q q −=P T P W  

and 
1

p u
1

v u

( )
( )

( )
q

q
q

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

T P W
V

T V W
. 

We iterate (6.5) until we have calculated a final value  that satisfies the 

holonomic constraint equations 

( )lastq

(6.2) to within a specified tolerance, then 

using equation (6.6) project the quaternions in  via their normalization 

constraints 

(lastq )

(6.1). That gives us which satisfies all the constraints finalq (6.1) 

and (6.2). We then iterate (6.7) with V  calculated at  while solving for 

the final velocity value fiu hich satisfies the velocity constraints 

finalq
nal  w (6.3). Note 

that we must perform a least squares solution to the linear system at each 

iteration, and that the diagonal weighting matrices Wu, Tp, and Tv must be 

constant during the iteration.  

Normalizing a quaternion as in equation (6.6) is the least squares projection 

of the four-dimensional quaternion onto its constraint manifold, a three-

dimensional sphere of unit radius. However, quaternion projection is done in 

the unweighted norm since it is a constraint on the numerical values of the 

quaternion elements unrelated to the physical effect of those elements. By 
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construction, the physical effect of a change in the length of a quaternion in 

Simbody is zero. Note also that there are no velocity or acceleration 

constraints corresponding to the quaternion normalization constraint, 

because those constraints are satisfied exactly by the quaternion derivatives 

we calculate from the generalized speeds u. 

A very similar problem arises when we have a vector in the q or u basis, and 

we would like to remove the component of that vector which is normal to the 

constraint manifold, in the weighted norm. For example, when an integrator 

has computed a pre-projection absolute error estimate vector { }y q u z, ,ε ε ε ε=  

in its computation of state variables y={q,u,z}, we know that performing the 

above constraint projection will remove the component of the error in the 

weighted constraint-normal direction (for proof, see ref. 9 and ref. 6, §3.8.2), 

and also the component of error along the length of quaternions. So we can 

now reduce that error estimate by subtracting out any component it might 

have had in the directions we just fixed, which may allow us to take a bigger 

step. In that case the projections are 

 final final 1
wq u q q q u wq( ) ( ) ,q qε ε ε ε⊥ += = −P P W N NW ε− ⊥  (6.8) 

 final final
n n nˆ ( n )n

k k k k kε ε ε= − i  (6.9) 
 

 final final 1
wu u u u u u wuˆ( ) ( ) ,q qε ε ε ε⊥ = =V V W W ε− ⊥−  (6.10) 

Again we need to find least-squares solutions to the underdetermined 

systems (6.8) and (6.10). Then we set { }y q uˆ ˆ ˆ, ,ε ε ε ε=

yε̂

z  as the new (absolute, 

unweighted) error estimate. Note that these use the same (final) iteration 

matrices as above with a different right hand side. Equations (6.8) and (6.10) 

are linear systems so no iteration is needed. After this projection the 

integrator should use the revised estimate  as its error estimate instead of 

the original estimate  (using the W norm). yε

We can use a pseudoinverse to find the least squares solution at each step. 

The pseudoinverse A+ of an mxn matrix A, with m<=n and full row rank (i.e. 

rank(A)=m) is given by A+=AT(AAT)–1, although computing A+ that way can 

be numerically inaccurate. Using an SVD or faster complete orthogonal 
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factorization (QTZ) we can compute a numerically well-conditioned 

pseudoinverse even in the case of redundant constraints, i.e., rank(A)<m.  

Looking now at the weighted holonomic position constraint iteration matrix 
1

p u
−=P T PW , we see that the pseudo inverse we need is  

1
p u( )− +T PW  

The corresponding velocity constraint projection is 

1
p u

1
v u

+−
+

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

T PW
V

T VW
 

When there are no non-holonomic constraints, the velocity projection is just  

1
p u( )+ −=V T PW +  

The constraint projections can be performed sequentially (for proof, see ref. 

6, §3.8.3). First, with t fixed at  we must find some t̂ qq =  that satisfies the 

holonomic constraint equations to within a specified tolerance. Then we 

normalize the quaternions in  q  (which by construction cannot affect any of 

the holonomic constraints) and call the result . After that we freeze q at  

and proceed to find u that satisfies the velocity constraint equations to within 

a specified tolerance. Note that the holonomic velocity constraint equations 

(i.e., first time derivatives of the holonomic constraint equations) and 

nonholonomic constraint equations must be dealt with simultaneously since 

they can be coupled.  

q̂ q̂

6.2.1 What about zero-weight state variables? [TBD] 

When a weight wi=0 exactly, we can’t allow it in the above scheme because we 

depend on W to be invertible. (This isn’t a problem for tolerances; they are 

required to be positive.) For numerical reasons in practice we will set weights 

to zero whenever they fall below some threshold, typically expressed as some 

fraction of the largest weight. A zero weighting means that changes to that 

state variable are “free” in the sense that they have no effect on any physical 

quantities of interest. Such variables are never considered in the integrator’s 

step size choice; any error estimates for them are acceptable. 
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It is possible that zero-weight state variables can be used in solving the 

constraint equations. If so, this is a very good thing since the constraints can 

be solved without affecting the dynamics. In that case the state variables are 

really algebraic variables and the integrator is merely supplying a good initial 

guess for use in solving the algebraic equations. 

Sherm speculation: split the system into two smaller ones. Solve the 

constraints as best as can be done using only the zero-weighted variables. 

Then freeze those variables and use the new values to calculate the weighted 

constraint matrix for the other variables; solve those in the normal way to get 

rid of the remaining error. Note that the reduced systems may not have full 

row rank even if the original ones did, because we might have deleted the only 

columns of P with non-zeroes in them, or created some other kind of linear 

dependency. 

How should these systems be iterated? Should we revisit the free ones after 

changing the expensive ones? 

6.3 Simplified equations 

For use with a generic coordinate projection integrator, the Simbody 

equations can be viewed in the following simplified form: 

    differential eqns. ( , )y f t y=�  (6.11) 

    algebraic eqns.  (6.12) ( , ) 0c t y =

   initial conditions  (6.13) 0 0( , ) 0c t y =

with the guarantee that equation (6.11) is solved in such a way that any new 

constraints introduced by time-differentiating equation (6.12) are satisfied 

automatically; that is,  whenever equations ( , , ( , )) 0c t y f t y =� (6.11) and (6.12) 

are satisfied. There is an nyxny diagonal weighting matrix W and an ncxnc 

diagonal tolerance matrix T, and corresponding norms as discussed in section 

6.1 above. To solve this system to accuracy α, the following two conditions 

must be satisfied at each integration step: 
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  y WRMS
ε ≤ α  (6.14) 

   
TRMS

( , )c t y α≤  (6.15) 

where the  are the post-projection local state errors introduced by an 

integration step. When conditions 

yε

(6.14) and (6.15) are met, the integrator 

can accept the step. 

6.4 Modal analysis and implicit integration 

In this section we discuss the related needs of modal analysis (that is, normal 

modes in internal coordinates) and implicit integration. Both of these require 

that the system equations of motion be differentiated with respect to the 

generalized coordinates and speeds. That is we want to calculate the dynamic, 

internal coordinate Jacobian 

                             
qq qu qz

uq uu uz

zq zu zz

q q q u q z
u q u u u z
z q z u z z

⎡ ⎤ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

J J J
J J J J

J J J

� � �
� � �
� � �

 (5) 

Modal analysis is typically done with all speeds set to zero, so only the 

submatrix Juq is of interest. If q is such that the system is stable (at a local 

energy minimum), then the eigenvalues of this matrix are the normal modes 

of the system about that equilibrium point and the corresponding 

eigenvectors are the modal basis (that is, they represent the coordinated 

motion involved in each of the normal modes). 

Given the system equations of motion, note that one can easily obtain an 

approximation to J by perturbing the state variables (this is called a finite 

difference approximation to J). Simbody 1.0 should, at a minimum, support 

that method. However, it is both inaccurate and extremely expensive to 

compute. Finite differencing loses about half the available precision, and 

requires O(n) calculations of the system accelerations to form an n×n matrix. 

In molecular dynamics straightforward force calculations are typically O(n2), 

so this can mean the Jacobian calculation is a prohibitive O(n3). In any case 

the force calculations are very expensive and doing O(n) of them to get a half-

accurate Jacobian is not a very good deal. Analytical methods exist which 

allow Juq to be calculated from the spatial force derivatives (energy Hessian), 
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to full accuracy and in much less time, with the total calculation being O(n2). 

Note that this is within a constant factor of optimal for filling in a matrix with 

n2 elements. 

If possible, Simbody 1.0 should include a good modern method for calculating 

J analytically, but if that can’t be done it should at least provide an interface 

designed to support such a calculation in the next release. 

For implicit integration the required matrix is the full J (with nonzero 

velocities) rather than just Juq. However, that is not much worse. Calculating 

the Juq submatrix is by far the most difficult part since it involves the Hessian 

of the potential energy and (formally) the partial derivatives of the mass 

matrix inverse with respect to the q’s. 

6.5 Root finding and optimization 

The needed computations here depend on the kind of problems being solved. 

They typically require Jacobians of various calculations with respect to the 

generalized coordinates and speeds. J as defined above can be very useful for 

minimizations involving search for equilibria. For satisfying constraints, the 

partial derivatives of the constraint equations (7.25) and (7.26) are required. 

Simbody 1.0 should provide access to these matrices, which are needed 

internally anyway. 

Root finding problems can be difficult when the coordinates are constrained, 

so it is convenient to define a new set of fully-independent coordinates. In 

particular, Simbody 1.0 should do this at least for the case where the only 

constraints are the quaternion normalization conditions. It is easy to create a 

localized 3-coordinate representation for orientation about a current set of q’s 

which will remain valid even for large perturbations. Reduced sets of 

coordinates for more general constraints may have limited validity ranges and 

have to be recalculated periodically during a root finding or optimization run. 

7 Simbody theory 
Some readers may find this more-technical discussion helpful in defining the 

specific approach we have in mind; others will find it confusing and perhaps 

somewhat irrelevant and are invited to skip it! 

72 



 

7.1 Notation for multibody theory 

When discussing physical quantities that arise in multibody dynamics, we 

must be very precise. We need to describe exactly what quantity we mean, 

how it was measured, and in what coordinate system we have decided to 

express the result. In the worst case, this can result in a complicated forest of 

super- and subscripts, however there are defaults which cover most cases. 

Here is the worst-case, fully-decorated symbol: 

 

The type of quantity (the central black symbol) is the only required piece. The 

right subscript picks out a particular instance, so Bi might be the ith body. 

Here are the symbols we conventionally use for particular quantities: 

G 
 

G 
 

The unique Ground body, and the inertial (Cartesian) 
reference frame fixed to it. Technically this is a 
MobilizedBody, although it doesn’t do a lot of moving. 

B 
Bi 

B 
Bi 

The mobilized body under discussion. The same symbol is 
used to mean the body frame associated with that body. 

P 
PB 

P 
Pb 

The parent (inboard) body of the mobilized body under 
discussion, or the parent of a particular body B. 

M 
MB 

M 
Mb 

The mobilizer frame for the mobilized body under 
discussion, or for a particular mobilized body B. The M 
frame is fixed to the body, and is related to the body frame 
by the constant transform B MX . 

F 
FB 

F 
Fb 

The fixed (reference) frame for the mobilized body under 
discussion, or for a particular body B. The F frame is fixed to 
the parent body P, and is related to the parent’s body frame 
by the constant transform P FX . 

OF Of The origin point of some frame F. 

CB Cb The mass center (a point) of some body B. By default this is 
the vector from the B origin to the mass center, expressed in 
B.  

mB mb The mass of some body B. 

:: Q BM

F
i
BP PM⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

 

Measured-in/measured-about Fixed-in/taken about

Type of quantity 
and which 
instance 

Expressed-in, 
if not M 
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GB Gb The gyration matrix of body B. By default this is taken about 
the B origin and expressed in the B frame. 

IB Ib The inertia of body B, where IB=mBGB. By default this is 
taken about the B origin and expressed in the B frame. 

A BR  R_AB The 3x3 rotation matrix whose columns are the B frame’s 
axes expressed in the A frame. 

R Sp  
A Bp  

p_RS 
 

p_AB 

The translation vector from point R to point S, expressed in 
the same frame as R. If R or S are the names of bodies or 
coordinate frames, the origins of those frames are used as 
the points; that is, A BO OA Bp p= . 

A BX  X_AB The spatial transform (rotation and translation) expressing 
frame B in frame A. ( )A B A B A BX R p= . 

A BV  

:A B QV  

V_AB 
 

V_AQ 

The spatial velocity of frame B in A. This includes the 
angular velocity of B in A and the linear velocity of OB in A as 
a stacked pair of vectors expressed in A. A different point Q 
(fixed in B) can be specified as shown in which case the 
linear velocity is of Q in A rather than of OB. B:Q can be 
considered a coordinate frame parallel to B but with its 
origin shifted to Q. 

MORE 

TODO 

  

 

The right superscript defines the physical quantity by specifying the frame to 

which a physical quantity is attached, and optionally a point other than the 

frame’s origin to which the physical quantity is referred. The inertia of body 

B, taken about B’s origin would be IB, but if the inertia were instead taken 

about B’s center of mass point , the symbol would be BC B
B
CI .  

The left superscript specifies how we are to take the measurement of the 

physical quantity. Typically this is just a frame F, so that the measurement is 

done with respect to that frame’s coordinate system and from the frame’s 

origin, and by default the resulting measure numbers are expressed in F. 

However, a “measured about” point can be provided which is different from 

the origin. As an example, if body B’s center of mass point  is to be 

measured in the local frame of another body A, we would write  (a 

vector from body A’s origin to body B’s center of mass point). If instead we 

want the vector from A’s center of mass to B’s, the symbol would be  or 

BC

A:C

BA Cp

A BCp

74 



 

more simply  where the expressed-in frame A is inferred from . In 

both cases the vector would be expressed in A. If instead it was to be 

expressed in the ground frame G, we would write 

A BC Cp AC

[ ]A BC CG A
G

A BC Cp R p= ⋅ . 

Time derivatives with respect to the expressed-in frame are denoted with an 

overdot. For example 

[ ] [ ]( )
[ ] [ ]

[ ] [ ]

A B
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A B A B

A B A B

C C
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C C

G
C C

G G
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where for any quantity Q expressed in frame A and an arbitrary frame B: 
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7.2 Components of a multibody model 

All mass and geometric features of the system are associated with the bodies 

(with “Ground” viewed as an immobile body). Each body is associated with a 

unique mobilizer, which defines how that body may move relative to its 

parent body. Thus large scale motion is permitted only by mobilizers, whose 

mobilities (degrees of freedom) define generalized coordinates describing the 

system configuration in terms of relative translations and orientations of the 

bodies they interconnect, and generalized speeds describing the relative 

motion (velocities) of those bodies. Generalized coordinates are sometimes 
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referred to as “internal coordinates,” “relative coordinates,” or “torsion 

coordinates.” 

Forces (more properly generalized forces) include both forces and moments 

(torques) and may be applied to bodies or directly along the mobility 

coordinates.  

Constraints express algebraic restrictions on the allowed values of the 

generalized coordinates and speeds. One may reasonably think of constraints 

as “infinitely strong” forces. We distinguish two sets of constraints: 

topological constraints which are always present, and intermittent 

constraints, which may be added or removed as needed. 

As a practical matter, we consider bodies, mobilizers, and topological 

constraints to be the fundamental features of a multibody system, together 

defining the system’s topology which is invariant. A change in the number of 

bodies, connectivity or types of mobilizers, or connectivity or types of 

topological constraints results in a new multibody system. Forces and 

intermittent constraints, on the other hand, can be added, changed, and 

removed from a multibody system without changing its identity. This does 

not imply that topology must remain fixed during an investigation, just that a 

topology change is a more significant operation than a change in forces or 

non-topological constraints. 

7.3 A comment on deformable (flexible) bodies 

In general, the bodies of a multibody system do not have to be rigid. It is 

sometimes desirable to allow the bodies themselves to undergo small internal 

motions, called deformations. These add a new set of independent 

coordinates to the overall system coordinates and speeds, but we distinguish 

them from the generalized coordinates and generalized speeds introduced by 

mobilizers and refer to them instead as deformation coordinates and 

deformation rates. Various techniques can be used to determine the 

appropriate representation of deformable bodies. Such bodies can be used, 

for example, to supply “ring pucker” coordinates for molecules rather than 

modeling the mobility of every bond individually. Or, the techniques of 

76 



 

structural mechanics can be used to aggregate large nearly-rigid subsystems 

into deformable bodies with “assumed mode” linear deformations. 

We do not provide any deformable bodies in Simbody 1.5, but we allow for 

user created ones (e.g. by not building in an assumption that a body’s center 

of mass is in a fixed location in the body frame). Also, it is always possible to 

model body flexibility by partitioning the body into mobilizer-connected rigid 

bodies, with internal forces and constraints modeling the deformation 

behavior. 

7.4 Kinematics 

Kinematics is the study of motion in the absence of mass and force effects. In 

practice, it refers to the mapping between generalized coordinates and speeds 

and their spatial counterparts. For example, given values for the generalized 

coordinates, one should be able to obtain (cheaply) positions and orientations 

for bodies and spatial (Cartesian) locations of any stations (e.g. atoms). In the 

other direction, one should be able to solve for the set of generalized 

coordinates and speeds which most closely reproduces a given set of spatial 

configurations and velocities. 

Kinematic results available in Simbody permit the solution of kinematic 

problems such as finding the set of generalized coordinates which best 

approximates a given set of spatial locations. Such problems arise, for 

example, when fitting a reduced-coordinate molecular model to a set of atom 

positions determined with X-ray crystallography. More generally, there is a 

broad assortment of useful initial condition analyses which must be 

performed prior to the start of a dynamic analysis, and these are based on 

kinematic calculations. 

7.5 Dynamics 

Dynamics refers to the relationship between forces and motion. There are two 

flavors: forward dynamics, in which forces are known and motion calculated, 

and inverse dynamics where motion is known and forces are to be calculated. 

Various combinations of known and unknown forces and motions are 

possible. Simbody supports both of these operations and provides access to 

the basic O(n) operators that manipulate the associated quantities. 
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Note that Simbody itself focuses on instantaneous dynamics, that is, the 

relationship between forces and accelerations at a particular time and state. 

This capability is designed to be used in conjunction with numerical methods, 

primarily numerical integrators, to advance the time and state. These 

numerical methods exist independently of Simbody, however good methods 

can be very difficult to construct, so the SimTK Core TimeStepper and 

Integrator classes have been provided which are designed to work efficiently 

with Simbody. 

7.6 Equations of motion 

Given the above description, we can write down the system of equations 

defining a multibody system. A few conventions: We use n and subscripted 

n’s to count quantities related to coordinates (mobilities or degrees of 

freedom) and m and subscripted m’s to count constraint equations. We use 

overdot to represent differentiation with respect to time. We use a right 

superscript to denote a quantity which applies only to a particular body or its 

mobilizer. 

The equations of motion will be written in terms of the set of n generalized 

speeds , and the nq generalized coordinates , where uB and 

qB are the (disjoint for each B) sets of  speeds and  coordinates which 

arise from the presence of body B’s mobilizer.

B
Bu u= ∪

B
Bq q= ∪

B
qnBn

* Thus we have for the total 

number of u’s and q’s  B
u

B
n n n= =∑  and B

q
B

n = qn∑ . Typically there will also 

be a set of differential equations associated with force models which must be 

integrated along with the matter model’s generalized coordinates and speeds; 

we’ll call these nz auxiliary state variables z. In general a system will also 

include discrete-time (difference) equations and associated discrete states but 

we’ll only consider the continuous system here. 
                                                        

 

* We use n, representing the mobilizer’s of degrees of freedom, rather than nu to count 

generalized speeds, since there is necessarily the same number of generalized speeds 

as degrees of freedom. 
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The total number n of mobilities in a multibody system is just the sum of the 

bodies’ individual mobilities, that is Bn n=
B
∑ . Note that n is the number of 

e fundamen d to the

ood 

(7.1) 

hen the total number of quaternions in the system is 

unconstrained system mobilities; the net number of degrees of freedoms after 

constraints will be n n m= −  wh ≤  is the number of 

independent constraint equations generated by the system’s constraints.  

Generalized speeds u ar tally relate  physics of the system, 

while generalized coordinates q are chosen primarily to facilitate g

net net ere netm m

numerical behavior during computation. Thus the number of generalized 

speeds introduced by a mobilizer is always the same as the number of 

mobilities, that is, B B
un n=  so that the generalized speeds are always mutually 

independent. The number of generalized coordinates B B
qn n≥  so the 

coordinates qB may  independent. In Simbody, that occurs only when a 

mobilizer uses a quaternion to represent unrestricted ion. For 

convenience we introduce the symbol B
quatn  defined as follows: 

 B
quat otherw0, 

n ≡ ⎨
⎩

 

 not be

orientat

if mobilizer B uses a quaternion

ise

1,  ⎧

T B
quatnquat

B
n =∑ . 

It should be emphasized that our presentation of the equations of motion 

below is a formal description. It would be extremely inefficient to set up and 

In a system with no constraints, the equations of motion are 

u  (7.2) 
(7.3) 

  (7.4) 
  (7.5) 

solve the equations in the form they are presented here (although many lesser 

codes do that). The techniques of Order(N) multibody dynamics provide the 

solution of these equations without ever requiring their explicit formation. 

7.6.1 Unconstrained systems 

 q� ( )q= N
 ( ) 0q =n  

bias( ) ( , , , ) ( , )q u t q u z q u= −M f f�
( , , , )z z t q u z=� �
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H ss matrix which captures all the ere Mn×n is a symmetric, positive definite ma

ertial properties of the system in its cur

f all applied force and torques (including gravity) mapped in

et of n generalized forces acting along the mobili

 (≤n

 affect positions and velocities, although of course they do 

in rent configuration, and fn×1 is the set 

o to an equivalent 

s ties. fbias (nx1) is equivalent 

to the forces representing velocity-induced coriolis acceleration and 

gyroscopic terms. (fbias is quadratic in u, and is zero if u=0.) 
qn n×N  is a block 

diagonal, invertible mapping between generalized speeds and generalized 

coordinate derivatives. In practice this is used to convert angular velocities to 

scaled quaternion derivatives or to Euler angle derivatives. The rectangular 

system of equations represented by (7.2) has rank only n q), leaving 

quaternion lengths undetermined, so we need nquat additional normalization 

conditions represented by (7.3) to ensure a unique solution for trajectory q(t). 

Note that although equation (7.3) is formally a set of constraints, we consider 

this an unconstrained system since these constraints do not affect the 

physical solution. 

Equation (7.4) is just a version of Newton’s second law F=ma, relating forces 

to accelerations. The z’s are nz additional state variables whose values can 

affect the forces, which may themselves be modeled as differential equations. 

z’s cannot directly

affect accelerations which will ultimately affect velocities and then positions. 

Formally, we can solve equation (7.4) for the accelerations u�  with 

 bias( )u −= −1M f f�  (7.6) 

By formally we mean, “don’t take this literally!” There is always special 

e ns can be 

calculated directly in O(n) time, while a literal matrix inversion would take 

(n3) time and be prohibitive for large system

 arrayed along the diagonal. The q’s are the 

structure to M that can be exploited such that the acc leratio

O s. Even forming M would take 

O(n2) time since it has n2 elements, so Simbody neither forms nor factors M 

while solving equation (7.6). 

As an extreme example, consider the special case of a molecular system 

modeled with na point mass atoms and Cartesian coordinates, so that n=3na. 

M is then a diagonal matrix of dimension 3na×3na with the atomic masses 

(each repeated three times)
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Cartesian coordinates, and the u’s are the Cartesian velocities so nq=nu, N is 

an identity matrix, and q u=� . fbias is always zero for this system. f is simply 

the Cartesian forces acting on each coordinate of each atom, typically 

resulting from taking the gradient of the potential energy function. This 

represents a set of 3na uncoupled scalar equations for the Cartesian 

accelerations of each atom ich can clearly be solved in O(n)! 

In a more general multibody system M will be dense as a result of coupling 

produced by the internal coordinates. Use of quaternions for orientation 

results in there being more q’s than u’s and N is no longer identity and in fact 

not even square. However, equation (7.6) provides the solu

, wh

tion for the 

aints are introduced, for example, if there are topological loops created 

by the set of bodies and joints, or if the motion of some of the joints is known 

ed motion). The constraint forces involve 

accelerations in this case just as well, and the special structure of multibody 

systems permits a solution in O(n) time regardless of the amount of coupling 

in M. 

7.6.2 Constrained systems 

Constraints introduce unknown forces and torques into the system. 

Constr

in advance (this is called prescrib

additional unknowns (along with the non-prescribed accelerations). We call 

these unknowns Lagrange multipliers and represent them as a vector λ of 

length m. These are mapped to mobility forces with a coupling matrix G and 

thus modify acceleration equation (7.4) like this: 

 T
biasu λ+ = −M G f f�  (7.7) 

 u =G b�  (7.8) 

where Gm×n=G(q) and bm×1=b(t,q,u), m is the number of constraints and n=nu 

is the number of generalized speeds. Equations (7.7) and (7.8) are a system of 

+m equations in n+m unknowns ( and u λ�n ) so can be solved for the 

a uations. The solution of this system ccelerations that satisfy the constraint eq

makes use of the unconstrained result from equation (7.6). Note that because 
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we can directly solve for and eliminate λ, this is still just an ordinary 

differential equation, with .

u�

= ( , , , )u u t q u z� � * 

7.6.3 Constrained systems with prescribed motion 

Prescribed motion is a special case of constraint that can be handled very 

efficiently. In this case some of the generalized accelerations  are known 

explicitly as functions of time, q, and u. In this case we’ll partition the u’s and 

λ’s into two groups, subscripting those associated with prescribed motion 

with a p, and the free ones with an f: u =

u�

{ },f pu u , λ={ },f pλ λ . Substituting 

into equations (7.7) and (7.8) gives 

T
bias

u
u
⎛ ⎞

−⎜ ⎟
⎝ ⎠

f f
�
�

f f

p p

λ
λ
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

f

p

u
u
⎛ ⎞

=⎜ ⎟
⎝ ⎠

G
�
�

,

M G  (7.9)  

  (7.10) b

Now we’ll partition M and G into blocks corresponding to the free and 

prescribed variables as follows: 

 
0 1

ff fp

pp

⎛ ⎞
⎜ ⎟
⎝ ⎠

0
1

ff f

fp pf pp

⎛
= ⎜
⎝

G G
M GT=

M M
M M

p ⎞
⎟
⎠

 (7.11) 

Where “0” and “1” are zero and identity blocks of the indicated dimensions, 

respectively. Partitioning the right hand sides analogously, the equations of 

motion are now 

bias,

bias,

ff fp f f fffpff

fp pp p p p

u
u

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛
= −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝

M M f fG
M M f fG

�
�T

ppp

λ
λ

⎛ ⎞⎛
+ ⎜ ⎟⎜⎜ ⎟⎝⎝ ⎠

0 1

fp

⎞
⎟
⎠

T

T

⎞
⎟
⎠

 (7.12) 

ff fp f

pp p

u
u

⎛ ⎞⎛
=⎜ ⎟⎜

⎝ ⎠⎝

G G �
�

f

p

⎞ ⎛
⎟ ⎜
⎠ ⎝

b
bpf

⎞
⎟
⎠

                                                       

 (7.13) 

 

 

Cuu ��� −= 0

1
0 bias( )u −= −M f f� 1 T

Cu

* Knocking equations (7.7) and (7.8) around a little, one can verify that u , 

where , λ−= M G� 1 T
0

1( ) ( )uλ − −= −GM G G b�, and . In general the 
constraint matrix G can be singular, so there may be no solution, or an unlimited 
number of solutions, in which case least squares solutions for λ are typically used. 
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Multiplying the blocks out and moving the known terms to the right hand 

side gives 

  (7.14) pu = b� p

 ˆ
ff f ff f fu λ+ =M G� T f  (7.15) 

 ˆ
ff f fu =G � b

p

 (7.16) 

  (7.17) ˆ
pλ = f

where 

 bias,
ˆ

f f f fpu= − −f f f M �p  (7.18) 

 ˆ
f f fpu= −b b G �p

f

 (7.19) 

  (7.20) bias,
ˆ

p p p pp p fp f fpu u λ= − − − −f f f M M G� �T T

 

Equations (7.15) and (7.16) are solved for fu�  and fλ  in the same manner as 

equations (7.7) and (7.8), using the known value of  to evaluate the right 

hand sides in equations 

pu�

(7.18) and (7.19). Then the resulting values for fu�  

and fλ  are substituted into equation (7.20) giving the final unknown  via 

equation 

pλ

(7.17).  

As before the only matrix we must form and factor explicitly is the mfxmf 

matrix 1
ff ff ff

−G M G T , which takes worst case ( )f fO n m   time to form and 

3( )fO m  time to factor, with the worst case occurring when all the general 

constraints are coupled. All the other matrix-vector multiplies can be 

performed with O(n) and O(m) operators and the prescribed constraints do 

not contribute to this matrix. 

 

7.6.4 Constrained systems as specified to Simbody 

Equations (7.8) and (7.16) are written in terms of linear constraints on the 

accelerations . However, in most cases general constraints are known only 

at the configuration level, that is, as nonlinear algebraic relationships which 

must hold among the q’s or among quantities fully determined by the q’s. A 

u�
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constraint like “these two atoms must be a certain distance apart at all times” 

would be an example.In other cases the constraints may be expressed at the 

velocity level as restrictions on u. In these cases we time-differentiate the 

constraints twice or once, resp., until we have corresponding acceleration 

constraints, and then use them in equation (7.8) or (7.16), along with any 

constraints which may have been defined directly at the acceleration level. 

Similarly in the case of prescribed motions given at the position or velocity 

level, we differentiate twice or once and then use the resulting value in 

equation (7.14). 

Following this procedure yields correct accelerations, but with approximate 

numerical integration of those accelerations the original position or velocity 

constraints will not remain satisfied over time. In practice, any constraints 

that are not actively enforced will gradually drift apart during a dynamic 

simulation. To address this, we must keep the original algebraic constraints in 

the problem and solve them along with the ODE  (7.7), (7.8). That results in a 

system of mixed differential and algebraic equations, known as a DAE. 

Equations (7.21)-(7.27) shows the complete set of equations, including the set 

of auxiliary, unconstrained differential equations in z which may be required 

in the computation of forces. 

  (7.21) ( )q q= N� u
  (7.22) ( ) 0q =n

  (7.23) T
bias( ) ( , , , ) ( , )q u t q u z q uλ+ = −M G f f�

  (7.24) ( , , , ) 0t q u u =a �
  (7.25) ( , , ) 0t q u =v
  (7.26) ( , ) 0t q =p

  (7.27) ( , , , )z z t q u z=� �

Constraint coupling matrix Gmxn is obtained from equations (7.24)-(7.26) as 

discussed below. Note also that the constraint equations (7.24)-(7.26) 

combine both general constraints and prescribed motion constraints, each 

subject to different restrictions on the allowable forms for the constraint 

functions. 

Equations (7.21)-(7.27) show the system as it is defined to Simbody, including 

all the constraints that must be obeyed during a dynamic simulation, starting 
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with initial conditions t0, q(t0), u(t0), z(t0) such that constraint equations 

(7.22), (7.25), and (7.26) are satisfied. 

The function  specifies ma acceleration (index 1) constraints, which are 

required to be linear in the accelerations , with maxn coefficient matrix A. 

These have application, for example, in some models of Coulomb friction

a 1m ×a

u�
7 

and in producing simulations which must track measured accelerations or 

reaction forces. 

The function  specifies mv nonholonomic (velocity, index 2) constraints 

(usually, but not necessarily, linear or quadratic in u). These include, for 

example, “non slip” constraints like gears and rolling contact, and constraints 

involving kinetic energy. The mv time derivatives  of the nonholonomic 

constraints v must also be obeyed since, like a, they restrict the allowable 

values of u  and in general they will be coupled to a. 

v 1m ×v

v�

�

The function  specifies mp holonomic (position, index 3) constraints, 

which are arbitrarily nonlinear in t and q. The mp time derivatives , and mp 

second time derivatives  must also be obeyed since they impose restrictions 

on u and , respectively, and in general will be coupled to v and a. 

p 1m ×p

p�

p��

u�

Then a, , and p��  together constitute the acceleration-level constraints, so we 

have m=ma+mv+mp the total number of constraints at the acceleration level.  

v�

The system of equations (7.21)-(7.27) contains nq+nu+nz+m equations in the 

nq+nu+nz+m unknowns q,u,z and λ, and should thus yield a unique solution 

for the resulting trajectories q(t), u(t), z(t) and λ(t), given consistent t0, q(t0), 

u(t0), and z(t0) to start with. Unfortunately, obtaining that solution is easier 

said than done! Numerical analysts describe a system like this as a 

Differential Algebraic Equation (DAE) system of index 3, for which few 

entirely satisfactory solution methods exist. For a survey of methods, see 

reference 8. For Simbody we advocate the method known as coordinate 

projection,9 which is very accurate and reliable in practice. We also support 

the more conventional but less robust technique called Baumgarte 

stabilization,10 and Simbody is flexible enough to allow most other methods 
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to be used as well. In the next section we’ll discuss how we go about solving 

equations (7.21)-(7.27). 

7.6.5 Dynamic simulation solution method 

The previous section glossed over some details of the system formulation that 

we’ll need to deal with here. Let’s first revisit the several types of constraint 

equations. Holonomic constraint equations p (equation (7.26)) are those that 

are expressed at the q (position) level and represent meaningful physical 

properties of the system. Holonomic constraint equations involve only state 

variables at position stage or below, that is, q, t, parameters (instance 

variables), and modeling choices. Holonomic constraint equations can be 

differentiated once to produce holonomic velocity constraint equations , 

and again to produce holonomic acceleration constraint equations .  

p�

p��

Nonholonomic constraint equations v (equation (7.25)) are those that are 

directly expressed in terms of system velocities, that is, at the u level, and also 

represent meaningful physical properties. Typical examples are “non slip” 

conditions like rolling or gears, but these can also include more global 

restrictions such as a conservation of energy constraint. Nonholonomic 

constraint equations involve state variables at the velocity stage and below, 

which includes the entire list given above for holonomic constraints plus the 

generalized speeds u. Nonholonomic constraint equations can be 

differentiated once to produce nonholonomic acceleration constraint 

equations . v�

Acceleration constraint equations a (equation (7.24)) are those which are 

directly specified in terms of the system accelerations , or quantities which 

are linearly related to accelerations such as reaction forces or constraint 

forces. Like holonomic and nonholonomic constraints these are physically 

meaningful constraints. 

u�

Also at position level are quaternion normalization constraints n, each of 

which involves only the coordinates of a single mobilizer and is present for 

numerical reasons rather than physical. These are produced by mobilizers 

which use quaternions to permit unrestricted orientation. Simbody’s 

implementation ensures that violation of quaternion normalization 
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constraints has no physical effect on the system. That is, a change to q which 

serves only to satisfy a quaternion normalization constraint is not permitted 

to cause any change to the system configuration. Quaternion normalization 

constraints exist only to reduce the number of degrees of freedom of a 

mobilizer’s four quaternions down to the three physical rotational degrees of 

freedom represented by its three u’s.  

Unlike the holonomic and nonholonomic constraints, there are no constraints 

at the velocity or acceleration level corresponding to the quaternion 

normalization constraint. Equation (7.21) constructs the quaternion 

derivatives in terms of the three independent u’s, ensuring by construction 

that the velocity-level constraints are satisfied. 

As an aside, note that the system equations include a block diagonal invertible 

linear mapping between the u’s and the time derivatives of the q’s: 

. Although this is a rectangular matrix, it is invertible. Note that 

when the quaternion normalization constraints are not satisfied exactly, the 

4x3 blocks Ni on the diagonal of N which correspond to quaternion qi will be 

scaled by |qi| so that the resulting  is the derivative of the unnormalized 

quaternion. 

( )q q= N� u

q�

Table 1 provides details of the mathematical structure for each of the four 

types of Simbody constraints, and defines the symbols we’ll refer to below. 

Here is the system in the form we actually solve in Simbody: 

    kinematics  (7.28) 
( ) 0

q u
q

=
=

N
n
�

    dynamics 
bias

0
( , , , )

u

z z t q u z

λ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

=

f fM G
bG

�

� �

T

 (7.29) 

    velocity manifold  (7.30) 
0

( , , ) 0
u

t q u
− =

=
P c

v

    position manifold  (7.31) ( , ) 0t q =p
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We are given initial conditions t0, q(t0), u(t0) such that equations (7.30) and 

(7.31) are satisified, as well as initial values z(t0), and are asked in a dynamic 

simulation study to solve for q(t),  u(t), and z(t) for t0≤t≤tfinal. 
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Quaternion 
normalization 

position level 
only 

( ) 1i i iq q q= −n T   n = 0 

( )i iq t= q   Given: position  holonomic 

(index 3) 

Local to each 
prescribed 

mobilizer i. 

p, ( , )i iu t= u iq 1
p, ( , ) ( ) ( )i i i i it q q t−=u N q�  velocity (index 2) 

Prescribed 
motion 

 

prescribed 
coordinates 

p, ( , , )i i iu t q= m�
iu p, p,( , , ) ( , )i i i i it q u t q=m u�acceleration

(index 1) 
  

v ( , )u t= u q   q q⊆ Given: velocity   nonholo-
nomic u u⊆  

(index 2) acceleration
(index 1) v ( , , )u t q= m� u v v( , , ) ( , )t q u t q=m u�  

acceleration 
only (index 1) Given: acceleration  a ( , , )u t q= m� u   

Given: position 
 ˆ( ) 0q =p

ˆ( , , ) 0t q q =p   

General 
constraints 

free 
coordinates 

 
 

q̂ q⊆
û u⊆

holonomic 

(index 3) 

velocity 
(index 2) 

ˆ( ) 0u =p� ˆ ˆ ( , , ) 0u t q u− =P c

ˆ ˆ
ˆ ˆu q

∂ ∂= =
∂ ∂
p pP N
�    

u q
∂ ∂= =
∂ ∂

p pP N
�

u
t

∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠

pc P
 

 

acceleration p
ˆ ˆ ( , , , ) 0u t q u u− =P b� �

p
ˆ û= −b c P��ˆ( ) 0u =p ���

(index 1)  
 

Nonholo-
nomic 

Given: velocity 
 ˆ( ) 0u =v

ˆ( , , , ) 0t q u u =v  

(index 2) 

 

acceleration ˆ( ) 0u =v ��
(index 1) 

v
ˆ ˆ ( , , , ) 0u t q u u− =V b� �

 

ˆ
û

∂
=

∂

v
V      

u

∂
=

∂

v
V   

v u u
t q

∂ ∂
= − + +

∂ ∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

v v
b N �V  

acceleration 
only (index 1) 

Given: acceleration 
ˆ( ) 0u =a �  

a
ˆ ˆ ( , , , ) 0u t q u u−A b� � =

 

Note that a must be linear 
in . û�

All index 1 
constraints 

collect contributions from all the 
shaded rows above 

( , , )
ˆ ˆ ( , , , ) 0

u t q u

u t q u u

=

− =

m

G b

�
� �

 

ˆ
ˆ ˆ

ˆ
=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

P
G V

A
 b  

p

v

a

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

b
b
b

p

v

a

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

m
m m

m
 

Table 1: the three classes of constraint equations dealt with by Simbody. 
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7.7 Equations for general mobilizer 

A Simbody Mobilizer defines the permitted mobility of a body B with respect 

to a more-inboard (closer to Ground) body P, called its parent body. A given 

mobilizer provides n mobilities (degrees of freedom) for body B with respect 

to body P, with 0 6 . n≤ ≤

Each body has a unique parent so there is a one-to-one correspondence 

between bodies and mobilizers; in Simbody we call the combination of a body 

with its unique mobilizer a MobilizedBody. The permitted mobility is 

described in terms of n scalar velocity coordinates u (called generalized 

speeds), and  scalar position coordinates q (called generalized 

coordinates). The time derivatives of the generalized speeds serve as the 

generalized accelerations . The meanings of these quantities are defined by 

the following equations, which express the body’s allowed motion with 

respect to its parent in terms of q and u. This relative motion is defined using 

a pair of coordinate frames associated with the MobilizedBody B: the unique 

mobilizer “moving” frame M attached to B with constant transform 

qn ≥ n

u�

B MX  and 

“fixed” frame F attached to P with constant transform P FX . 

90 



 

 

B 

( ) (( ) ( ) ( )F M F M F M )X R p X q R q p q= = =  (7.32) 

( ( ))
F M

F M
F MV
v
ω⎛ ⎞

= =⎜ ⎟
⎝ ⎠

J X q u

u�

u

 (7.33) 

F M
F M F M

F MA V u
a
β⎛ ⎞

= = = +⎜ ⎟
⎝ ⎠

J J� �  (7.34) 

( )q q= N�  (7.35) 

n( ) 0q =  (7.36) 

where 

 ( ) ( )R( )F M F M F M F M F MX R p q vω= = ×� � �  (7.37) 

mobilizer B
q,u 

M OB 
B MX

OM

( )F MX q

body B
F 

OF 

Figure 11: Coordinate frames 
for use in describing the mobility 
of MobilizedBody B with respect 
to its inboard parent body P. 
Everything blue is associated 
with B. The origin point O of 
each frame is labeled. 

P FX  

P 

OP 

Ground 
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This implies a relationship that must hold among X(q), J, and N:  

 

R( )R( ) ( )

p( )p( ) v

qq u u
q
qq u u

q

ω
∂= = ×

∂
∂= =

∂

N J

N J

�

�

R q
 (7.38) 

where and are the upper and lower 3xn partitions of J. Intuitively, this 

is stating the requirement that the spatial velocity produced from u by the 

action of J is the time derivative of the spatial position and orientation 

produced from q by the nonlinear function X(q), with matrix N serving to 

mediate between u and . Note that J depends only on the transform (spatial 

position) represented by the set of q’s, not on the definitions of the individual 

q’s. 

ωJ vJ

q�

At times it is more convenient to deal with the mobilizer Jacobian describing 

the allowed motion of the body frame B with respect to the parent body’s 

frame P, rather than between the two mobilizer frames. This is related to the 

Jacobian defined above by the constant transforms P FX  and M BX . First, 

perform a rigid body shift of the spatial velocity from M’s origin outward to 

B’s, using the kinematic shift operator φT : 

( )
F B

F B M B F M

F

V p
u

φ∂ ⎡ ⎤= ⎣ ⎦∂
J � T ⋅ J  (7.39) 

where 

 M B F M M
F

Bp R p⎡ ⎤ = ⋅⎣ ⎦  

  
( )1

( )
0 1

B
B A

A
φ ×

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟⎡ ⎤ =⎣ ⎦ ⎜ ⎟
⎝ ⎠

v
v

 

Note that although we are shifting from one point on body B to another, the 

effect is time varying since we are expressing the shift vector in the parent 

body using the cross-mobilizer rotation matrix ( )F MR q  . 

Next, re-express the resulting spatial velocity (currently in F) to P: 
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P B
P B P FV R

u
∂ = ⋅
∂

J � F BJ  (7.40) 

This transformation involves only a constant rotation matrix, and the 

translation of the reference frame from F to P doesn’t affect the velocity. 

The time derivative taken in P is then 

P
P B P B P F F B F B

P

d R
dt

⎡ ⎤== ⋅ = ⎣ ⎦J J J J� �� �  (7.41) 

where 

( ) ( )
F

F B F B M B F M M B F M

F

d p p
dt

φ φ⎡ ⎤ ⎡ ⎤= ⋅ +⎣ ⎦ ⎣ ⎦J J J�� �� T T

F
J

⎟
⎟

 (7.42) 

and 

( )0
( )

0 0

A B B
B A

A

ω
φ ×

⎛ ⎞⎡ ⎤× ⎣ ⎦⎜⎡ ⎤ =⎣ ⎦ ⎜
⎝ ⎠

v
v�  (7.43) 

These matrices are related to the hinge matrix HT
 in reference 13 as follows: 

P B
P B G P PG

G

V
R

u

⎡ ⎤∂ ⎣ ⎦ ⎡ ⎤= = ⋅⎣ ⎦∂
H J�T BJ  (7.44) 

G
G P P B G P P B

G P P B P B

G G

d R R
dt

ω×

= ⋅ + ⋅

⎡ ⎤ ⎡ ⎤= ⋅ +⎣ ⎦ ⎣ ⎦

H H J J

J J

� ��

�

T T �
 (7.45) 

Note that H is not shifted to ground, but only rotated (re-expressed). That is, 

it still represents motion of B with respect to P (not with respect to G), 

however it has been re-expressed in the Ground frame. (Time derivatives are 

taken in the frame indicated by the expressed-in frame of the differentiated 

quantity.) 

7.8 Equations for general constraints 

A Simbody Constraint C is modeled with a set of mC scalar constraint 

equations which restrict the allowable values for mobilizer coordinates by 

enforcing algebraic relationships among them or their time derivatives. 

Constraints are usually written to directly affect only a very small number bn  

of bodies and nm of mobilizers, typically one, two, or three, which we call the 
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constrained bodies and constrained mobilizers. For efficient processing, 

Simbody must know the complete set { },C C
k lB M  of b

Cn  constrained bodies 

and  constrained mobilizers for each Constraint C. The set of constrained 

bodies and mobilizers is considered topological information and is thus 

frozen after the Constraint is specified. 

m
Cn

The set of mobilities which can appear in the corresponding constraint 

equations consists of all the mobilities  associated with the constrained 

mobilizers, plus all mobilities 

m
Cu

b
Cu  which can affect the relative motions of any 

the constrained bodies. Note that while the number of mobilities associated 

with a mobilizer is very small, the number which may affect a set of 

constrained bodies can be much larger, potentially including all the mobilities 

on the paths from the constrained bodies back to Ground. 

To avoid unnecessarily including a large number of mobilities in the 

constraint calculations for a Constraint C, Simbody searches the multibody 

tree from the constrained bodies in the inboard direction (towards Ground) 

to find the outmost common ancestor AC, which is the most-outboard 

(highest numbered) body shared by the inboard paths of all the constrained 

bodies. Ground can always serve as A if no other common body can be found. 

We call the path from the kth constrained body inward to AC the kth branch of 

the Constraint; these branches may overlap and may also overlap with 

constrained mobilizers. We call the set of all generalized speeds on the kth 

branch b,
C

ku , with b b,k

C
ku u= ∪ C ; the complete set of generalized speeds which 

can affect Constraint C is then { }m b,C C Cu u u= . These are the Constraint’s 

C Cn u=  participating mobilities. The  participating coordinates are 

similarly defined as 

q
Cn

{ }m ,C Cq q= b
Cqb b,kk

Cq = ∪ Cq  and , with q
Cn q= C  and 

.  q
C Cn n≥

Figure 12 depicts these quantities for a single Constraint C with three 

constrained bodies. The figure does not show the mC constraint equations 

that this Constraint generates; mC can’t be determined just from the number 

of constrained bodies. However, it does show how the body-affecting 
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mobilities b
Cu  are determined. Note that the mobilizers for the two black 

highlighted bodies are shared by branches 0 and 1. 

constrained 
bodies 1B

2B 
0B

 

 

For the rest of this section we’ll drop the superscript “C” except when 

necessary for clarity. Without the C, our Constraint generates m constraint 

equations in n mobilities. 

The most fundamental constraint equation is a relationship among the 

accelerations (the n participating generalized speed derivatives u ), called an 

acceleration constraint. Every Simbody constraint equation ultimately 

restricts accelerations, and these m acceleration constraint equations form 

�

A

branch 0 

b,0u  

outmost
common
ancestor

Figure 12: Constraint topology. This 
shows a single Constraint C with three 
constrained bodies kB , the 
corresponding branches, and the 
outmost common ancestor body A . The 
branches determine the participating 
mobilities bu ; mobilities of the two 
black-outlined bodies are shared 
between branches 0 and 1. Additional 
mobilities u  are introduced explicitly 
for constrained mobilizers. 

m

Ground 

b b,0 b,1 b,2

b m

u u u u
u u u

= ∪ ∪

= ∪

branch 1 

b ,1u  b ,2u  
branch 2 
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part of the dynamical equations of motion. The ith acceleration constraint 

equation has the following form: 

  (7.46) g ( , , , ) ( , , ) 0i i it q u u u b t q u−g� �� =

Where is a scalar function, gi=gi(q) is a row vector of length n, and bi is a 

scalar function. Every defined Constraint must provide a method for 

efficiently evaluating its m scalar acceleration error functions gi. For 

constraint equations involving only constrained mobilizers this can be done 

directly in terms of the mobilities um. But in the case of participating 

mobilities ub due to constrained bodies, the constraints are not normally 

known explicitly as in 

ig

(7.46), but rather in terms of some physical 

consequence of bu� , such as body accelerations. The user-written routine is 

expected to calculate the error in those terms in constant time, with the 

physical consequences of bu�  having been supplied by Simbody after an O(n) 

computation. 

Similarly, the meaning of the Lagrange multipliers λ is given by  

 ( , ) T
i i if q λ iλg�  (7.47) 

where fi is a column vector function giving the n generalized forces generated 

by the scalar multiplier λi allocated to the ith constraint equation. Every 

defined Constraint must provide a method for efficiently calculating its forces 

given its m multipliers λ. Again, except for participating coordinates due to 

constrained mobilizers, this is normally not known explicitly in generalized 

forces as in equation (7.47), but in terms of forces and torques applied to 

bodies. The user-written routine is written as a constant-time function in 

those terms, and then Simbody converts the result to generalized forces with 

a single O(n) computation. 

Constraint equations may differ in the level at which they are first defined: 

position, velocity, or acceleration. When a constraint equation is introduced 

at the position level (such constraints are called holonomic and are typically 

nonlinear), it is differentiated once to yield a (linear) constraint on velocities, 

and again to yield a (linear) constraint on accelerations. When a constraint is 

first introduced at the velocity level (a nonholonomic constraint, which can be 

nonlinear in velocities) it is differentiated once to yield a (linear) constraint 
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on accelerations. A constraint which appears only at the acceleration level (an 

acceleration-only constraint; not common) is required by Simbody to be 

linear in the generalized accelerations u . Here are the equations defining 

each of the three types of constraint equation: 

�

holonomic (position) constraints p(0 )j m≤ <  

  (7.48) p ( , ) 0j t q =

  (7.49) p ( , , ) ( , ) 0j j jt q u u c t q−⇒ p� � =

=

=

=

  (7.50) p,p ( , , , ) ( , , ) 0j j jt q u u u b t q u−⇒ p�� � ��
 

nonholonomic (velocity) constraints  v(0 )j m≤ <

  (7.51) v ( , , ) 0j t q u =

  (7.52) v,v ( , , , ) ( , , ) 0j j jt q u u u b t q u−⇒ v� � ��
 

acceleration-only constraints  a(0 )j m≤ <

  (7.53) a,a ( , , , ) ( , , ) 0j j jt q u u u b t q u−a� ��

where the row vectors are 

        
p p p

( ) j j j C
j q

u u q
∂ ∂ ∂

= = =
∂ ∂ ∂

p
�� �
�

N  (7.54) 

        
v v

( ) j j
j q

u u
∂ ∂

= =
∂ ∂

v
�
�

 (7.55) 

        
a

( ) j
j q

u
∂

=
∂

a
�

 (7.56) 

and NC is an   matrix assembled from a subset of the rows and 

columns of the global N such that . Note that the equations 

marked with blue arrows are implied by differentiation of the modeled 

constraint equations; they are not independent. These add another 2mp+mv 

equations to the mC modeled ones. 

q
Cn n× C

CuC Cq = N�

All mp rows pj stacked together form matrix PC, and all mv rows vi form matrix 

VC, which together are used for initial satisfaction of position and velocity 

constraints, as well as for constraint projection during numerical integration. 

All ma rows aj together form matrix AC, and PC,VC,AC stacked together form 
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the mC rows of constraint matrix 
C

C

C

C
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

P
G V

A
 as discussed above. Note that 

each of the mC rows gi in (7.46) is actually one of the rows pj, vj, or aj. 

7.8.1 Explicit calculation of constraint matrices 

For efficient calculation of constraint forces and for performing constraint 

projections, Simbody needs to be able to efficiently calculate matrix-vector 

products involving the constraint matrices and their transpose. We expect to 

be able to calculate either Gv or GTw in O(n+m) time, where G is mXn and v 

and w are conformant column vectors. (Note that a straightforward matrix 

multiply would be O(nm), much more expensive.) The Constraint writer is 

required to provide implementations of virtual methods which can be used to 

perform these operations efficiently. 

With the O(n+m) matrix-vector multiplies available, Simbody can calculate 

the constraint matrices P, V, and A (collectively G) explicitly in constant time 

per element. By making m calls to the provided routines, mXn matrices can 

be calculated in O(nm+m2)=O(nm)* time which is within a constant factor of 

optimal. 

Regardless of whether a constraint equation is initially specified at position, 

velocity, or acceleration level it will contribute a row g to the acceleration 

constraint matrix G above, which will also be a row of P, V, or A. So all the 

terms we need can be obtained by examining the constraint equation’s error 

function once it has been expressed at the acceleration level, that is, equations 

(7.50), (7.52), or (7.53). Taken together, these equations are just the 

equations (7.46), that is, g . So the rows of the 

explicit matrices we need are just 

( , , , ) ( , , ) 0i i it q u u u b t q u−g� �� =

g ( , , , )i t q u u u∂ ∂� � . An alternative is to use 

the constraint force functions (7.47) which can equivalently provide a column 

of T
ig at O(n) cost per column. Simbody thus calculates the constraint 

                                                        

 

* because m≤n, mn+m2≤2mn 
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matrices a row at a time by mC repeated calls to the O(nC) constraint force 

function (7.47), yielding an explicit GC matrix to machine precision in 

O(mC nC) operations, which is within a constant factor of optimal since the 

matrix has mC nC elements. The mC scalars 
0

1C

C

m

b

b −

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

b #

�

 from each Constraint 

form the vector b in the same equation, and can if necessary be determined 

explicitly in O(n) time using equation (7.46) with all u ’s set to zero. 

As discussed above, it is rare that an acceleration constraint equation will be 

conveniently written directly in terms of the generalized accelerations  

(prescribed motion is an exception). Instead, it will be written in terms of 

physically meaningful acceleration-derived quantities involving the 

constrained bodies. These may be complicated expressions, but they are 

always built from the following fundamental quantities: 

u�

• the accelerations of points and angular accelerations of vectors fixed 

on the constrained bodies, relative to the ancestor or to other 

constrained bodies in this Constraint, or  

• the cross-mobilizer accelerations directly in terms of the generalized 

accelerations u�  of the constrained mobilizers. 

Simbody’s Constraint base class provides utilities to efficiently obtain the 

constrained bodies’ accelerations relative to the outmost common ancestor A 

given a set of u ’s (for fixed q and u), relative velocities given u’s (for fixed q), 

and relative positions given q’s. The user’s constraint equation error functions 

are written using these utilities. 

�
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