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Abstract 
We describe the goals and design decision behind Simmatrix, the SimTK matrix and 
linear algebra library (toolset) for C++ programmers, and provide reference informa-
tion for using it. The idea is to provide the power, naturalness, and flexibility of Mat-
lab™ from within a C++ program, but with maximal performance and convenient 
interoperability with numerical libraries and custom code which may already exist in 
various languages, including C and FORTRAN. [Note: this document is only partially 
written at the moment.] 
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1 Purpose of this document 
To describe the goals, design issues, theory, im-
plementation and use of the SimTK Simmatrix C++ 
toolset.  

2 Goals 
Simmatrix is a part of the basic infrastructure for 
use of the SimTK Core tools. It is delivered as part 
of the SimTKcommon library, and developed with-
in the SimTKcommon project on SimTK.org. 

Here is what we hope to achieve with Simmatrix. 

2.1 Speed 
Perhaps it seems crass to start with this topic, but 
computer simulations are dominated in practice by 
performance considerations. As a result, few practi-
tioners will make use of a facility, however lovely, 
that slows down their programs. A rule of thumb 
among computational scientists is that anything 
more than 20% overhead will begin to affect adop-
tion by high-end users. 

When designing a system for dealing with matrices, 
there are two completely different and mutually 
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incompatible performance issues that must be ad-
dressed. Computations with small vectors and ma-
trices, such as the 3-element ones needed for 
representing points and orientations in 3d, are dom-
inated by overhead because each calculation is so 
small. Computations with large matrices, on the 
other hand, are dominated by large-scale repetitive 
computations and memory access patterns. Per-
formance of large computations can be dramati-
cally improved by a constant-time overhead spent 
determining the optimal execution strategy. 

To deal with these conflicting concerns success-
fully, we have adopted the commonly-used ap-
proach of building what are essentially two 
completely independent facilities, one suited for 
small objects, and one for large. In the former, we 
do anything necessary to avoid overhead. In the 
latter, we do whatever it takes to optimize computa-
tion and memory access patterns. The facilities are 
then designed to work smoothly together, without 
having to compromise performance. A purely in-
terpretive environment like Matlab can optimize 
only the performance of the large computations, 
while continuing to incur the same overhead on 
small ones. 

2.2 Accuracy 
Performing linear algebra correctly on a computer 
is a completely different field from linear algebra 
as taught in mathematics classes. The finite preci-
sion of computers is the dominant issue in perform-
ing correct computation, while that issue is 
completely irrelevant in mathematics. The best 
strategy here is to stand on the shoulders of the 
giants who have devoted their careers to computa-
tional methods for linear algebra. In current prac-
tice, that means performing linear algebra using 
software produced by the decades-long U.S. De-
partment of Energy (DOE) effort to produce reli-
able linear algebra, as embodied in LAPACK and 
related public domain facilities. This is the tech-
nique adopted by the extremely successful Matlab 
package, and we use it here for our large-matrix 
facility. We cannot use it directly for the small 
matrix facility when overhead concerns dominate 
everything else, but it is always available even for 
small systems in those cases where highest accu-
racy is paramount.  

2.3 Expressive power 
The goal here is best stated in terms of Matlab, by 
far the most successful matrix handling environ-
ment in existence. In fact, before you proceed fur-
ther you may wish to consider whether your needs 
might be better met by using Matlab itself. Our 
facility is not intended as a replacement for Mat-
lab—we are interested in supporting programmers 
who need to work in C++ for one well-considered 
reason or another. For those programmers, we 
would like to provide a Matlab-like capability ac-
cessible in a natural way from within a C++ pro-
gram. We want to minimize the mental gymnastics 
required to go from a mathematical statement of a 
computation to its functional implementation. 
Among other things, that means that real and com-
plex numbers should be supported equally so that 
the occasional appearance of a complex result does 
not present an insurmountable disaster. 

Like Matlab, we take the mathematicians’ view-
point that a vector is a vertical object (a column) 
that is distinct from a horizontal object of the same 
dimension (a row or covector). We are able to en-
force that distinction at compile time with no over-
head and to do so provides significant benefits. A 
matrix is then seen conceptually as a collection of 
column vectors, making ours fully compatible with 
both the mathematical treatment of matrices and the 
computational treatment as embodied in today’s 
best linear algebra software. However, the facility 
is flexible enough so that anyone who prefers to 
treat matrices as collections of rows (as is common 
among computer scientists) can do so without pen-
alty, although we would advise computer scientists 
not to do this reflexively—why not follow mathe-
matical conventions for mathematical objects? 

As mentioned above, we have a goal of zero over-
head for dealing with small objects, something 
which is not attainable in an interpreted system. 
C++ is one of the very few languages in which such 
a facility can be attempted. Its inheritance, tem-
plates, operator overloading, inline functions, and 
naughty loopholes permitting direct hardware ac-
cess when necessary offer the opportunity to build 
extensions which provide elegant, type-safe ab-
stractions with no runtime overhead whatsoever. 
We are able to provide zero-overhead operators for 
basic matrix operations like transpose, arithmetic, 
extraction (without copying) of elements and ele-
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ment subsets such as rows, columns, submatrices, 
diagonals, real or imaginary parts, etc. As a con-
crete example, matrix transpose can be seen as a 
change in point of view rather than a physical op-
eration and C++ is powerful enough to support that 
concept so that our (Hermitian) transpose “opera-
tor” performs no computation or memory opera-
tions at all. 

2.4 API stability 
An interface (or API) must satisfy very restrictive 
criteria compared to general programming. Stabil-
ity is probably the primary one—an interface 
should be extremely stable once defined because 
many programs will depend on it for their correct 
functioning.  

SimTK sets the bar higher by promising binary 
compatibility. That means that software that de-
pends on the SimTK Core interface can take advan-
tage of new releases without being recompiled or 
relinked in the case of dynamically linked library 
upgrades. This level of stability requires that ob-
jects which appear in the interface must have either 
very simple, obviously permanent implementations, 
or opaque implementations which protect client 
software from inevitable changes to the implemen-
tation. 

All symbols introduced into a user program by 
Simmatrix are in the SimTK namespace, except for 
#define macros (used sparingly) which are pre-
fixed by “SimTK_” instead. So if we mention a 
symbol named MyType below, its actual name is 
SimTK::MyType. 

3 Design issues 
Here we discuss our thoughts on some of the choic-
es and dilemmas that are forced on anyone building 
a system like this, and the resulting design deci-
sions we made. 

3.1 Naming 
Because there are two separate facilities, we are at 
times in need of several names for similar concepts, 
such as “matrix.” A great deal of information must 
be embedded in the types of the small matrix ob-
jects, which in C++ risks either a proliferation of 
obscure type names or frequent use of templates. 
Further, there is a need to permit programs to be 

written as generically as is appropriate. For exam-
ple, a programmer should not need to specify preci-
sion in a type name if the algorithm is precision-
independent. Vector length is a critical attribute in 
programs which use the small-vector system; for 
example, 3d simulation code is written using 3-
vectors and 3x3 matrices. Thus it is appropriate for 
small-vector type names to include lengths. On the 
other hand, for programs written to deal with large 
matrices, the specific size is an unimportant run-
time specification and must not be embedded in the 
type name. 

To address these issues, we have adopted what we 
hope is a suggestive convention of using short 
names and abbreviations for short, fixed-size vec-
tors and longer ones for the large objects. Length 
always appears in the short type names and never in 
the long ones. So a 3-element vector is a Vec<3> 
(abbreviated Vec3) while a long but size-
unspecified vector is called a Vector. Similarly, 
Mat<3,4> (abbreviated Mat34) is a 3x4 fixed-size 
matrix at default precision, while Matrix is an 
mxn adjustable-size matrix at default precision. The 
full set of names is provided later in this document. 

One minor annoyance in C++ is that the standard 
does not guarantee that a templatized type can ap-
pear without a template argument list, even if there 
are defaults for all the arguments. Thus if we want 
to allow Vector<Complex> some compilers will 
insist on the default invocation being written Vec-
tor<>, which we deem too ugly for human con-
sumption. We want the simple name Vector to be 
used for the by-far-most-common case, Vec-
tor<Real>. To address this, the templatized ver-
sion of the large vector and matrix types are written 
with a trailing underscore, like Vec-
tor_<Complex>. Then Vector is a typedef to 
Vector_<Real>, the default. This is not necessary 
for small vector and matrix types since they always 
have at least a length argument supplied. Typical 
declarations look like this: 
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 Vec<3>           v; // a 3-vector of Reals 
 Vec3             w; // same thing, using abbr. 
 Vector           b,x; // vectors of reals 
 Matrix           M; // mxn matrix of reals 
 Matrix_<Complex> C; // mxn matrix of complex 
 Vector_<Vec3>    v3;// big vector of 3-vecs 
 
 // This type is a 2-element vector whose elements 
 // are 3-vectors. Memory layout and computational 
 // efficiency are identical to Vec<6>. 

 typedef Vec<2,Vec3> SpatialVec;  
 

3.2 Indexing 
One of the thorniest issues to decide is how to treat 
indices, specifically, what is the index of the first 
element? Scientific programmers used to 
FORTRAN, Matlab, and general mathematical con-
ventions expect the first element to have index “1.” 
C programmers expect indexing to begin with “0.” 
Many packages address this by making the index-
ing offset a user choice. We have done this in past 
designs and found it unsatisfying and extremely 
prone to induce errors where some programmers 
(typically at the upper levels of the code) use 1-
based indexing while others use 0-based. The re-
sulting awkwardness and uncertainty produces 
either subtle off-by-one errors, or unnecessary co-
pying as responsible programmers move data into 
compatibly-indexed vessels to avoid errors.  

So we believe that a single indexing scheme must 
be chosen and used exclusively. Following the 
reasoning of the VXL design team (see 
http://paine.wiau.man.ac.uk/pub/doc_vxl/books/cor
e/book_6.html) we have opted for 0-based indexing 
as “least weird” in a C++ numerical package. This 
does not preclude a FORTRAN-compatible 1-based 
interface to the facility, but it prevents any leakage 
of incompatible indices into the guts of the pack-
age. This will not please everyone, but in past ef-
forts to do so many packages have ended up 
pleasing no one. 

3.3 More design issues TBD 
Topics: choice of indexing operators, subvector and 
submatrix operations, layout of symmetric matri-
ces, mixed-precision operations, choice of trans-
pose operator, use of non-conforming operands, 
why can’t large matrix and vector types be used as 
element types, packing of data in memory, treat-
ment of scalar assignment. 

4 Scalars 
We start by describing the Simmatrix scalar types, 
that is, types which represent a single floating point 
number (real or complex). We take a somewhat 
novel view of these types which allows us to 
achieve some dramatic performance improvements 
when we begin to aggregate them into matrices. 
The Simmatrix scalar types comprise three levels 
we call precisions, numbers, and scalars.  

4.1 Precision types 
The precision types are the built-in C++ floating 
point types float, double, and long double 
(called single, double, and quad or real*4, 
real*8, and real*16 in FORTRAN). These con-
vey the level of accuracy required in computations 
and stored values. On all currently supported plat-
forms, float is 4 bytes, and double is 8 bytes. 
Depending on the compiler being used, long 
double may be the same as double, or it may be 
10 or 16 bytes. All SimTK-supported computers 
must adhere to the IEEE 754 standard for floating 
point arithmetic, and SimTK-compliant code may 
depend on that fact, for example by depending on 
the existence of NaN (not-a-number) and Infinity. 

Under compile-time control, one of the precisions 
is chosen as the default precision and given the type 
name Real (reminder: this is really 
SimTK::Real). We expect most SimTK code to 
be written in terms of Real rather than the explicit 
precisions, so that it may be compiled at different 
precisions without changing the code. Our default 
for this default is that Real is equivalent to dou-
ble, that is, an 8-byte floating point value with 
approximately 16 decimal digits of precision and an 
exponent range of about ±300 (base 10). 

Contributors to SimTK code should avoid writing 
precision-specific code whenever possible. In addi-
tion to our predefined default-precision types, C++ 
provides the standard template type 
std::numeric_limits, and we provide all the 
additional tools needed occasionally for writing 
precision-independent code, such as generic-
precision constants and convergence limits. 

4.2 Numbers 
From the above precision types, we construct our 
numbers, each of which can exist in all three sup-
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ported precisions. The number types are the stan-
dard real and complex numbers, and a novel “fla-
vor” of complex number called a conjugate, which 
is not typically used in user programs but is impor-
tant for the efficient implementation of matrix op-
erations.* 

Each of the three precision types is also a real 
number type, with the SimTK type Real prede-
fined equivalent to one of those as described above. 
The C++ standard template type std::complex, 
specialized as complex<float>, com-
plex<double>, and complex<long double> 
serve as our complex numbers, with SimTK de-
fault-precision type Complex predefined as com-
plex<Real>.† The three conjugate types (from the 
SimTK namespace) are conjugate<float>, 
conjugate<double>, and conju-
gate<long double>, with default-precision type 
Conjugate predefined as 
conjugate<Real>. 

4.3 Scalar types 
Only Real and Complex, and vectors and matrices 
defined in terms of them, will appear in typical user 
programs. However, our complete set of scalar 
numeric types consists of the nine number types 
described above, plus a templatized adaptor class 
negator<number>, which may be applied to any 
number type to create a new type whose memory 
representation is unchanged but whose value is to 
be interpreted with the opposite sign. Like conju-
gate, negator is not expected to appear in user 
programs but permits efficient implementation of 
some matrix operations, in particular Hermitian 
transpose of a complex matrix. The imaginary part 
of a conjugate number has type 
negator<real> for the appropriate precision real. 
                                                      

                                                     

* Conjugate types have the same representation as com-
plex types, but the imaginary part is interpreted with 
opposite sign. 
† The one difference between our complex type and the 
C++ standard is that we do not initialize unused values 
in a Release build. That is, we treat complex identically 
to real in this regard, while the C++ standard specifies 
that complex variables are initialized to (0,0). We feel 
that is an inappropriate default for large, complex matri-
ces where avoiding unnecessary memory accesses is of 
primary concern. 

4.4 Scalar summary 
The above defines a set of exactly 18 scalar types: 
three kinds of numbers in each of three precisions, 
in normal or negated form. Despite the use of tem-
plates, this is not a user-extendable set. 

Stated as a grammar, scalars are defined like this: 
  scalar ::= number | negator<number> 
  number ::= standard | conjugate 
  standard ::= real | complex 
  conjugate ::= Conjugate | conjugate<precision> 
  complex ::= Complex | complex<precision> 
  real ::= Real | precision 
  precision ::= float | double | long double 

That completes our discussion of the scalar types. 
Next we’ll look at how these can be used to con-
struct the much more interesting composite numeri-
cal types. 

5 Composite numerical 
types (fixed-size vectors & 
matrices) 

SimTK defines the following composite numerical 
types (CNTs), built up recursively from scalars and 
other composite numerical types. As a consequence 
of our definition of “scalar” above, all composite 
numerical types support both real and complex 
arithmetic equally. 

CNTs can be scalars as described above, or small 
fixed-size vectors and matrices whose elements are 
scalars or other CNTs. For example, one may easily 
define a 2-element vector whose elements are ordi-
nary 3-element vectors.‡ CNTs are characterized by 
zero overhead and minimal storage requirements. 
For example, an mxn matrix of scalars is stored as 
exactly mn consecutive scalars (except when oth-
erwise requested), with no flags, counters, heap 
pointers, or other sources of inefficiency. The exact 
storage layout in memory is part of the definition of 
these types (and is machine-, operating system-, 
and compiler-independent), so they may be recast 
to native machine types or other CNTs with pre-
dictable results. This implies, for example, that a 

 
‡ That is very useful as the representation of a Spatial 
Vector which collapses both rotational and translational 
effects into a single quantity in the Spatial Operator 
Algebra used by SimTK’s Simbody™ package. 
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symmetric matrix has a different type from a gen-
eral one, so that the appropriate access pattern can 
be determined at compile time. CNTs make exten-
sive use of C++ templates and inline functions, and 
the fact that type casting is free, to permit compile-
time optimization into the optimal set of machine 
instructions. 

The table below presents the available Composite 
Numerical Types, or more precisely the templates 
available for constructing CNTs. Note that prede-
fined abbreviations are available for certain com-
mon combinations of template arguments (up to 9 
rows and columns). We provide those because we 
know from experience that programmers will de-
fine them to reduce the ugly “<>” clutter created by 
the C++ template syntax, and we would like to 
encourage a consistent set of common abbrevia-
tions. These abbreviations are not distinct types 
(they are typedefs), so may be freely intermingled 
with the spelled-out types. For example, a Vec3 
can be passed to a routine written to take a Vec<3> 
argument. 

Type Description 
Real 
Complex 

A floating point number at default 
precision, either real or complex. 

Vec<m> 
Vec<m,C> 
Vec<m,C,stride> 

 
Vec2 Vec3 Vec4 
Vec5 … Vec9 

A short, fixed-length column vector of 
m elements of composite numerical 
type C (default Real) with optional 
element-to-element stride (default 1). 
Typedef abbreviations are provided as 
shown, with Vec3 ≡ Vec<3>, etc.  

Row<n> 
Row<n,C> 
Row<n,C,stride> 

 
Row2 Row3 Row4 
Row5 … Row9 

A short, fixed-length row vector of n 
elements of composite numerical type 
C (default Real) with optional ele-
ment-to-element stride (default 1). 
Rows are not typically used in user 
programs, but occur as intermediate 
results in expressions. 

Mat<m,n> 
Mat<m,n,C> 
Mat<m,n,C,cs,rs> 

 

Mat22 Mat33 … 
Mat66 … Mat76 
… Mat89 Mat99 

A small, fixed-size matrix of m rows 
and n columns of composite numerical 
type C (default Real) with optional 
column-to-column spacing cs (default 
m), and row-to-row spacing rs (default 
1). 

These typedefs are provided, with 
Mat33 ≡ Mat<3,3>, etc. 

SymMat<m> 
SymMat<m,C> 
SymMat<m,C,rs> 

 

SymMat22 
SymMat33 
SymMat44 
… SymMat99 

A small, fixed-size mxm symmetric 
(Hermitian if complex) matrix of 
composite numerical type C (default 
Real) with optional element-to-
element spacing (default 1). Only the 
elements of the diagonal and lower 
triangle are stored. 

These typedefs are provided, with  
SymMat33 ≡ SymMat<3>, etc. 

 

Note that the short Vec and Mat types are them-
selves Composite Numerical Types and can thus be 
composed recursively. That is, it is reasonable to 
have a 2x2 matrix of 3x3 matrices and in fact this 
can be quite useful. This can be declared* 
    Mat<2,2,Mat<3,3> > 
or more pleasantly using a predefined typedef 
    Mat<2,2,Mat33> 
Note that these types are exactly equivalent and 
thus interchangeable, and that the resulting type is 
itself a CNT. 

5.1 Memory layout of CNTs; 
packed CNTs 

The default layout for any CNT is to pack the ele-
ments into the least amount of consecutive storage 
as logically required to hold the CNT’s value. We 
refer to a CNT stored this way as a packed CNT. In 
addition, each of the CNT templates provides ar-
guments which can be used to specify regular gaps 
in the storage layout, where the gap size is always 
an integer multiple of the storage requirement of 
the CNT’s element type. For example, the Vec and 
Row templates allow specification of a stride, which 
gives the spacing between consecutive elements in 
terms of those elements. So a packed Vec or Row 
has stride 1, which is the default. 

Non-packed CNTs exist to facilitate reinterpreta-
tion of existing data in terms of CNTs. For exam-
ple, if one has a Mat<4,3> stored as three 
consecutive packed Vec<4> columns, the rows can 
be viewed as a 3-element Row CNT with a stride of 
4 (that is, four Real elements), which could be 
specified as Row<3,Real,4>. However, such dec-
larations do not normally appear in user programs; 

                                                      
* C++ unfortunately requires the extra space for nested 
templates, to avoid confusion with the operator “>>”. 
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instead, they are the hidden return types of methods 
and operators which select out portions of an exist-
ing object. In this case, the row index operator m[i] 
acting on a Mat<4,3> matrix m returns the ith row 
of m as a 3-element Row with stride 4, meaning it 
references the elements of m without copying, and 
can serve as an lvalue (target of an assignment) 
which alters the appropriate elements of m. Because 
this type has the same semantics as any other 
Row<3>, most users will never need to think about 
how it is implemented. 

When we discuss the large-matrix facility below, 
the distinction between packed and non-packed 
CNTs is somewhat more significant, since only 
packed CNTs can serve as element types for the 
large Vector and Matrix classes.  

5.1.1 CNT packing vs. compiler pack-
ing 

Some C++ compilers attempt to improve execution 
speed by “rounding up” memory requirements to a 
size which is particularly efficient for the targeted 
hardware. For example, a class containing three 4-
byte float values (e.g., Vec<3,float>) might be 
allocated 16 bytes rather than 12, by some compil-
ers on some machines, with some compile-time 
options. That means that C++ arrays of such ob-
jects would contain 4-byte gaps between the ele-
ments. 

Because a great deal of our performance comes 
from the ability to change our point of view (i.e., 
recast) rather than copy or compute, we depend on 
predictable storage layouts for our classes. To en-
sure that, we define packed CNTs in terms of the 
storage requirements of their underlying scalar 
types, which are packed the same way by all com-
pilers on all machines. We guarantee, for example, 
that a CNT Vec<2,Vec3> can be recast to a 
Vec<6> with the obvious interpretation and mem-
ory layout identical to a C++ array Real[6]. This 
would not necessarily be possible if the CNT stored 
the two Vec3’s in a C++ array Vec3[2] since the 
compiler might choose to allocate space for two 
Vec4’s instead! 

The key point to remember is that CNTs are packed 
internally as arrays of scalars, so that a composite 
CNT whose elements are also composite CNTs 
may occupy less storage than a C++ array of those 

same elements. So while you can always cast a 
CNT into a C++ scalar array with predictable re-
sults (for any of the supported scalar types includ-
ing complex), you cannot safely cast to a C++ array 
of composite CNT types; cast to a CNT Vec of 
those types instead. 

5.2 Construction and assignment 
of CNTs 

All CNTs define a default constructor. In Debug 
mode (that is, when the C++ standard NDEBUG pre-
processor symbol is not defined), the default con-
structor initializes all elements to NaN. In Release 
mode (i.e., NDEBUG is defined), all elements are left 
uninitialized, so that declaring CNTs, or arrays of 
CNTs, has no cost if the variables are not used. 

Constructors are also available for initializing data 
elements from individual element values, or by 
copying compatible CNTs. Initialization values can 
be provided in the constructor or via a pointer (or C 
array) to values of the appropriate type. 

Assignment operators are available for copying one 
CNT to another, and for setting single elements, 
subvectors and submatrices. 

One important convention we follow, which is 
different than that of most similar systems, is the 
treatment of scalar assignment. We follow this 
convention: (1) when a scalar s is assigned to a 
vector, every element of the vector is set to s (this 
is the typical convention), and (2) when a scalar s is 
assigned to a matrix, the diagonal elements of the 
matrix are set to s while the off-diagonals are set to 
zero. Examples: 
 Vec3   v;  
 Mat22  m;  
 Vector b(10);     // initial size 10 reals  
 Matrix M(20,10); // initial size 20x10 
 v=0; // v=(0,0,0) 
 v=3; // v=(3,3,3)  
 m=0; // m=( 0,0 )  
      //   ( 0,0 )  
 m=1; // m=( 1,0 )  
      //   ( 0,1 )  
 b=0; // b=10 zeroes  
 M=1; // M=0, except M(i,i)=1, 0<=i<10 

This convention is especially apt for matrices, be-
cause the matrix resulting from such a scalar as-
signment “acts like” that scalar. That is, if you 
multiply by this matrix the result is identical to a 
scalar multiply by the original scalar. Two impor-
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tant special cases are: (1) setting a matrix to the 
scalar “1” results in the multiplicative identity ma-
trix of that shape, and (2) setting a matrix to the 
scalar “0” results in the additive identity matrix of 
that shape. In general, in any operation involving a 
scalar s and a Matrix or Mat, the scalar is treated 
as if it were a conforming matrix whose main di-
agonal consists of all s’s with all other elements 
zero. So Matrix m += s will result in s being add-
ed to m’s diagonal, which is what would happen if s 
were replaced by diag(s) of the same dimension as 
m. m-=1 thus subtracts an identity matrix from m, 
without touching any of the off-diagonal elements. 
Note that for multiply and divide this convention 
yields the ordinary scalar multiply and divide op-
erations: e.g., m*s (=m*diag(s)) multiplies every 
element of m by s. 

5.3 Operators on CNTs 
There are numerous operators available which act 
on CNTs, for element access, computation, reinter-
pretation of the data, and obtaining information 
about the type and its contents. 
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5.3.1 Element access 
These operators provide access to individual elements, or subsets of elements, of composite numerical types, 
where we use letters to indicate types: s=scalar, e=element (of whatever CNT), v=Vec, r=Row, m=Mat, 
sy=SymMat. i,j are integer indices, with i a row index and j a column index. An “Lvalue” can appear on the 
left hand side of an assignment statement, with the result affecting the original element values. 

 

Operator Applied 
to 

Meaning Lvalue? Cost Notes 

v[i]   v(i) 
r[j]    r(j) 

Vec 
Row 

select ith (jth) element yes native array index all indexing is 0-based 

m[i][j]   m(i,j) 

sy[i][j]  sy(i,j) 

Mat 
SymMat 

obtain i,j element of m. 
Only diag & lower 
triangle of SymMat; 
i.e., i ≥ j. 

yes same as native 
matrix index for 
Mat; extra integer 
operations for 
SymMat. 

 

m[i]     m.row(i) 
m(j)     m.col(j) 

Mat obtain ith row or jth 
column of m as Row or 
Vec, resp. 

yes native array index Size and spacing are taken 
from Mat; typically col-
umns are packed while 
Rows have stride>1. 

m.diag() 
sy.diag() 

Mat 
SymMat 

obtain diagonal as a 
Vec 

yes zero For rectangular Mat<m,n>, 
result has dimension 
min(m,n). 

sy[i]     sy.row(i) 
sy(j)     sy.col(j) 

SymMat obtain ith row or jth 
column of SymMat as a 
Row or Vec 

no must copy ele-
ments to temporary 
Row or Vec; avoid 
if possible  

Return type is packed 
regardless of original 
SymMat spacing. 

v.getSubVec<m>(i) 
v.updSubVec<m>(i) 

Vec return a reference to a 
Vec<m> whose 0th 
element is v’s ith ele-
ment 

get – no 
upd – yes 

native array index Element type and stride are 
the same as the original 
vector. 

r.getSubRow<n>(j) 
r.updSubRow<n>(j) 

Row return a reference to a 
Row<n> whose 0th 
element is r’s jth ele-
ment 

get – no 
upd – yes 

native array index Element type and stride are 
the same as the original 
row. 

m.getSubMat<m,n>(i,j) 
m.updSubMat<m,n>(i,j) 

Mat return a reference to a 
Mat<m,n> whose 0,0 
element is m’s i,j ele-
ment 

get – no 
upd – yes 

native array index Element type and spacing 
are the same as the original 
matrix. 

m.getSubVec<m>(i,j) 
sy.getSubVec<m>(i,j) 

m.getSubRow<n>(i,j) 
sy.getSubRow<n>(i,j) 

(upd also available) 

Mat 
SymMat 

return reference to a 
Vec<m> or Row<n> 
whose 0th element is 
m’s i,j element. Only 
strictly lower triangle 
can be referenced for 
SymMat; that is, i > j. 

get – no 
upd – yes 

native array index Element type and stride are 
the same as the original 
vector. 

 

5.3.2 Arithmetic 
The expected arithmetic operators are overloaded for use with CNTs, plus probably some unexpected ones. 
This includes add, subtract, matrix multiply, and divide for conforming objects and scalars, cross product for 
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2- and 3- vectors, and the usual C arithmetic assignment operators like “+=”. Behavior for CNTs with scalar 
elements are as expected; behavior for CNTs with composite elements are defined analogously and generally 
work well, but most users will not have a well-developed intuition for those objects at first.  

 

Operator Applied 
to 

Meaning Lvalue? Cost Notes 

~     (transpose) Any CNT Transpose (Hermitian 
transpose if elements 
are complex). 

yes zero (implemented 
as a cast) 

Has no effect on symmetric 
matrices. 

Acts as “conjugate” operator 
on complex scalars. 

+ - * / 
+= -= *= /= 

s=dot(v,w) 
m=outer(v,w) 

Any CNT 

Dot and outer 
work for any 
combination 
of Vec & 
Row if 
lengths match. 

matrix arithmetic 

Row*Vec is a dot 
product (scalar result); 
Vec*Row is an outer 
product (Mat result). 

Global methods dot() 
and outer() are 
provided as an explicit 
alternative. 

no same as explicit 
code 

Global methods 
have the same 
performance as the 
corresponding 
operators. 

conformant matrices always 
work; some non-conformant 
operations are useful also 

dot() uses the Hermitian 
transpose of v’s elements times 
w’s unchanged elements, 
regardless of what is a Row or 
Vec. 

Similarly, outer()uses v 
unchanged and the Hermitian 
transpose of w. 

%    (cross product) 

z=cross(v,w) 

2- and 3-
element Vec 
and Row. 

Returns cross product. 
Result is a scalar for 2-
element cross product, 
and a 3-vector for 3-
element cross product. 

Global method 
cross() is provided 
as an alternative. 

no Same as explicit 
code (3 flops for 2-
element, 9 flops 
for 3-element). 

Global method and 
operator provide 
the same perform-
ance. 

If both arguments are Vec3, 
result is Vec3. If either is 
Row3, then result is Row3. 

2-element cross product can be 
understood as 3-element where 
a zero z component has been 
added and the final result is the 
z component of the result. 

m=crossMat(v) 2- and 3-
element Vec 
and Row. 

Returns the matrix 
which acts as a cross 
product operator. That 
is, mw==vxw. 

no same as explicit 
code (a few nega-
tions and copies) 

The result is a 3x3 skew-
symmetric matrix in the 3d 
case, a 2-element Row in the 
2d case. The same result is 
produced regardless of whether 
the argument is a Vec or Row. 
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5.4 Summary of CNTs 
Stated loosely as a grammar, we build CNTs recur-
sively like this: 
CNT ::=    scalar 
        | composite<size [,CNT [,packing] ]> 
composite ::= Vec | Row | Mat | SymMat 
size ::= nrow [,ncol] 
packing ::= stride | colSpacing,rowSpacing 

The unbolded terminals nrow, ncol, stride, 
colSpacing, and rowSpacing are integers, or 
compile-time expressions that evaluate to integers.  

This grammar permits unlimited nesting of these 
constructs, and the implementation does work that 
way, but we would counsel restraint here and note 
that there is unlikely to be much utility (or clarity) 
beyond two or three levels deep. 

6 Types for linear algebra 
[This part of the document is very sparse at the 
moment (no pun intended).] 

6.1 Large Vector and Matrix types 
The “zero overhead” requirement on the Composite 
Numerical Types limits their flexibility. For larger 
vectors and matrices, some constant-time overhead 
is acceptable since we expect time to be dominated 
by floating point calculations and memory accesses 
done on the (large) operands. In fact, this overhead 
is desirable since it is used to set up optimal large-
scale operations which can then be performed at 
machine speeds. The basic types, and general be-
havior, are modeled after the very successful Mat-
lab system with the expectation (but not 
requirement) of LAPACK and BLAS style imple-
mentation. We assume that these objects will be 
very large and the classes are carefully designed to 
avoid unnecessary data copying and memory refer-
ences. 

The underlying element type stored in our large 
matrix objects can be any scalar type or other 
packed composite numerical type (see section 5.1). 
These elements will be packed adjacent in memory 
in our large matrix objects regardless of whether 
the C++ compiler would pack them that tightly 
when creating its own arrays. Other data layouts are 
available if explicitly requested, but packing of 

elements is always done by packing the underlying 
scalars as discussed for CNTs in section 5.1.1. 

 

Type Description 
Vector 
Vector_<C> 
 

An arbitrary-length column of Real 
values, or of values of packed compos-
ite numerical type C (e.g., 
Vector_<Complex> or 
Vector_<Mat<2,2,Mat33> >). 

RowVector 
RowVector_<C> 
 

Same as Vector but horizontal. 
Usually not used explicitly in code, but 
is the type of a Matrix row or 
Vector transpose. 

Matrix 
Matrix_<C> 
 

An arbitrary-size, two dimensional 
matrix of Real values, or of values of 
packed composite numerical type C. 

 

Standard linear algebra operations, matrix decom-
positions, and interconversions with composite 
numerical types are provided. Note that SimTK 
Vector and Matrix are not themselves composite 
numerical types and may not be composed recur-
sively. A Vector may be considered an mx1 Ma-
trix, and a RowVector a 1xn Matrix when 
convenient. Thus the discussion below which refers 
to matrices applies to Vector and RowVector as 
well. 

Unlike the Composite Numerical Types, very little 
is encoded in the type here—only the basic shape 
(1 or 2d object) and the element type. Dimensions, 
spacing, and internal data layout are determined at 
runtime. This provides a great deal of useful flexi-
bility but imposes a constant-time cost for every 
operation. 

SimTK provides 0-based indexing using the [] 
operator. If the Matrix is modifiable (non-const) 
then the indexed element can be modified and that 
change affects the contents of the object. The [] 
operator applied to a Matrix returns a row, which 
may in turn be indexed to obtain an element in C 
style. SimTK also permits indexing using round 
brackets () yielding identical results to [] for 
Vector but selecting a column rather than a row 
when applied to a Matrix. A two-argument round 
bracket operator accesses a Matrix element, and 
unlike for CNTs, it is more efficient to use the two-
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argument form here since the overhead cost is paid 
only once. 
    Matrix m; Vector v; … 
    v[i] // ref to ith element of v, 0-based 
    v(i)  //   same 
    m[i][j] // ref to i,jth element of m, 0-based 
    m(i,j)  //   same, but faster 
    m[i]  // ref to ith row of m, 0-based 
    m(j)  // ref to jth column of m, 0-based 

There are also operators for selecting subvectors 
and submatrices. Like the indexing operators, these 
return references into the original object, not cop-
ies. Submatrices are thus “lvalues” (in C terminol-
ogy) meaning that they can appear on the left hand 
side of an assignment. 
  Matrix m; Vector v; … 
  v(i,m)  // ref to m-element subvector whose 0th 
  //   element is v’s ith element 
  m(i,j,m,n)  // ref to mxn submatrix whose (0,0) 
  //   element is m’s (i,j) element 

References of this type are called views since they 
provide alternate views of the same data. They 
retain all properties of the original object except 
that they cannot be resized. They are in fact repre-
sented identically to the original objects in the 
sense that they can be used wherever a Vector or 
Matrix reference is expected, without memory 
allocation or data copying. 

The implementations of these types are opaque to a 
C++ program using them. That is, the header files 
define these as “handle” classes which contain only 
a pointer to an undefined type (essentially a 
void*). The object referenced is an instance of a 
hidden implementation class.* This permits use of 
these classes in SimTK interfaces while preserving 
binary compatibility. It also allows use of these 
objects from other languages, since the void* can 
serve as a “lowest common denominator” represen-
tation. 

As in Matlab, there is a substantial performance 
penalty to work with Vector and Matrix objects 
element-by-element; “bulk” operators should al-
ways be used in performance critical code. For 
some operations, matrices with structured CNT 
elements will perform poorly compared to matrices 

                                                      
* This is a standard C++ design pattern usually called 
“PIMPL” for “private implementation.” 

of scalar elements. When used properly, Simmatrix 
objects containing scalar elements are capable of 
performing large-scale operations at full machine 
speed; that is, as fast as LAPACK. Note that com-
plex and conjugate types are still scalars, not struc-
tured, and that a negated scalar is still a scalar. See 
section 4 for more information about SimTK sca-
lars. 

Many operations with structured CNT elements can 
be performed at full speed also, provided that there 
is an equivalent scalar operation. For example, 
scalar multiplication on structured elements is 
equivalent to the same operation done on the ele-
ments’ underlying scalars. 

The underlying data representations for these ob-
jects are documented and stable, and in many cases 
map directly onto standard dense storage. In those 
cases a pointer to the raw data can be obtained if 
necessary for performance or compatibility pur-
poses. 

6.2 Available storage types TBD 
Most Simmatrix physical data layouts are designed 
to be directly compatible with one of the LAPACK-
defined layouts. The default layout assumes that an 
mxn matrix is stored by columns using mxn ele-
ments. An option is to provide a “leading dimen-
sion” (≥ m) so that there are regular memory gaps 
between the columns. 

Our default for symmetric and triangular matrices 
is what LAPACK calls “conventional” storage; that 
is, space is allocated for the whole matrix, but only 
half the space is used. The space-saving “packed” 
format is also available but can be expected to run 
significantly slower for many operations. Note that 
many LAPACK operations pack two symmetric or 
triangular results into a conventional matrix; that 
provides both optimal speed and space.   

Banded matrices are also available, always in 
packed storage. These can be full, symmetric, or 
triangular. 

We provide direct support for permutation matri-
ces, which are permuted identity matrices resulting 
from pivot operations required for numerical stabil-
ity during factoring. The underlying storage for 
these is typically just a sequence of integers defin-
ing how the columns or rows were pivoted. 
(TODO: I think LAPACK has two different layouts 
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of pivot matrices; we’ll have to support them both. 
It should be possible to extract the underlying inte-
ger array and pass it straight through to LAPACK; 
by hiding it under a Matrix handle we don’t have 
to worry about whether the integer indices start at 
zero.) 

TODO: ideas for more: scalar matrices for zero and 
identity and scalar*identity; sparse matrices in 
some DOE-compatible format(?) 

Where possible, similar storage options are avail-
able for any element type, however factoring, piv-
oting and so on are only defined for scalar 
elements. 

6.3 Matrix characteristics 
A declaration like “Matrix m;” declares m as an 
uncommitted matrix handle. That is, although m has 
the semantics of a 0x0 matrix of reals, it has not yet 
been committed to using a particular data layout. It 
can be used to hold the results of any matrix opera-
tion, and will take on the characteristics of that 
result. A subsequent use of the handle might leave 
it with completely different characteristics; only the 
element type can never change. If an uncommitted 
handle is asked to allocate space for some data (for 
example, via “m.resize(10,20);”) it will use a 
dense, column oriented allocation identical to 
LAPACK’s conventional matrix storage format.  

However, handles can optionally be restricted to 
narrower ranges of behavior, via commitments 
which will be discussed below. First we’ll discuss 
the kinds of characteristics that a matrix can pos-
sess.   

A Simmatrix Matrix, Vector or RowVector 
object is characterized by the following seven at-
tributes: 

1. Element type (a CNT) 
2. Shape 
3. Size 
4. Structure 
5. Conditioning 
6. Sparsity 
7. Storage format 

Collectively, we refer to a set of particular values 
of these attributes as a matrix character. There are 
two matrix characters associated with every matrix 
handle: the handle’s character commitment, and its 

current character. The current character always 
satisfies the handle’s commitment. 

6.3.1 Matrix character commitments 
In general, a Matrix handle will be committed 
with respect to some of the above attributes, and 
uncommitted to the rest. A character commitment 
specifies “minimum acceptable” properties for the 
actual matrix referenced by the handle. For exam-
ple, a matrix handle committed to symmetric struc-
ture cannot be assigned to a nonsymmetric result, 
but would accept a diagonal result, since every 
diagonal matrix is also symmetric. 

Every Matrix (and Vector and RowVector) is 
committed to a particular element type, since an 
element type is required as a template argument in 
the Matrix type itself (recall that Matrix itself is 
an abbreviation for Matrix_<Real>). In addition, 
Vector and RowVector handles are committed to 
a particular shape: column or row, respectively. 

Any other desired commitments must be added 
explicitly before the handle is used to hold any 
data. Many of the characteristics represent catego-
ries of acceptable attributes, rather than specific 
ones. For example, a commitment to a square shape 
still permits flexibility with regard to the size, as 
long as both dimensions are the same. The matrix 
characteristics are not completely independent—
some imply others. For example, a symmetric 
structure implies a square shape. 

Next we’ll look at the individual matrix characteris-
tics one by one. 

6.3.2 Element type 
As mentioned above, every matrix handle is com-
mitted to a particular element type by its own tem-
platized type. Only packed CNTs are permitted as 
element types. 

Most operations require exactly matching element 
types among the operands, with the exception that 
operands which differ only in the negation or con-
jugation status of their underlying scalars can be 
intermingled. 

6.3.3 Shape 
There are five possible shape attributes: 

1. Rectangular (mxn) 
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2. Square (nxn) 
3. Column (mx1) 
4. Row (1xn) 
5. Scalar (1x1) 

A matrix handle with no shape commitment can 
hold a general (rectangular) matrix, which of 
course includes all the other shapes as well. 

Vector handles are always committed to column 
shape, RowVector handles to row shape. 

6.3.4 Size 
Size can be variable or fixed, in one or both dimen-
sions. When a dimension is fixed, the matrix handle 
must commit to a particular size for that dimension. 

Vector handles are always committed to exactly 
one column, RowVector to exactly one row. Even 
a zero-length Vector has one column, that is, it is 
0x1, a zero-length RowVector is 1x0. 

6.3.5 Structure 
Structure refers to an inherent mathematical (or at 
least algorithmic) property of the matrix rather than 
a storage strategy. Symmetry is the clearest exam-
ple of this; it is far more significant than just a way 
to save storage and reduce operation count. 

1. Full (the default) 
2. Symmetric (includes Hermitian); implies 

Square shape; Hermitian implies real di-
agonal. 

3. Triangular (includes trapezoidal) 
a. Upper/lower 
b. Hessenberg (triangular except for 

one sub- or super-diagonal) 
c. Quasi-triangular (triangular except 

for 2x2 blocks on the diagonal) 
4. Diagonal (also symmetric & triangular); 

rectangular shape is OK 
5. Scalar (diagonal, and all diagonals have the 

same value); doesn’t imply Scalar shape 
6. Permutation (of rows or columns); implies 

Square shape 

6.3.6 Conditioning 
Matrix condition is a statement about the numerical 
properties of a Matrix. It can be set as a result of an 
operation, or by a knowledgeable user. Simmatrix 
is entitled to rely on the correctness of these asser-

tions, although it will try to check them when it is 
possible to do so without sacrificing performance. 

1. Unknown (the default) 
2. Singular (expect terrible conditioning) 
3. Full rank (for rectangular, this means rank 

is the same as the shortest dimension) 
4. Well conditioned (implies full rank) 
5. Positive definite (symmetric only) 
6. Orthogonal 

Most operations will result in Unknown condition-
ing, which will not satisfy a more restrictive com-
mitment. In the case that a matrix handle commits 
to particular conditioning, only operations which 
preserve that conditioning will be successful. 

6.3.7 Sparsity 
This is a statement about the number and/or place-
ment of non-zero entries in a matrix. When we 
know that few entries will be non-zero, exploiting 
this fact can yield significant speed gains. It is par-
ticularly easy and efficacious to work with a matrix 
whose non-zero elements cluster narrowly about 
the main diagonal. 

1. Full (default) 
2. Banded: diagonal plus specified upper and 

lower bandwidths 
a. If symmetric or triangular struc-

ture, only one bandwidth 
b. Bandwidth may be left uncommit-

ted or commit to particular band-
width 

3. TODO: Sparse. 

6.3.8 Storage formats 
These refer to the physical layout of data in the 
computer’s memory. Whenever possible we at-
tempt to store data in a format that enables use of 
special high performance methods, such as those 
available in the SimTK LAPACK/BLAS implemen-
tation. 

1. Full (default for full, symmetric & triangu-
lar matrices) 

a. Specify leading dimension (default 
is number of rows) 

b. Symmetric, triangular, diagonal 
can exist within full storage 

c. Specify upper/lower for symmetric 
& triangular 
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d. Specify whether unit diagonal is 
assumed 

2. Packed (default for banded matrices, space 
saving for symmetric & triangular but usu-
ally considerably slower than using full 
storage) 

a. Specify whether unit diagonal is 
assumed 

3. Householder product (LAPACK representa-
tion for orthogonal matrices) 

4. Pivot array (set of integers used to repre-
sent Permutation matrices) 

5. TODO: look into use of rectangular full-
packed storage (Gustavson & Wasniewski) 
instead of LAPACK packed – claim is up to 
20X faster. 

6. TODO: should we include a stride as a data 
storage option or is that just a view? 

6.4 Matrix views 
In addition to being an owner of element data, a 
matrix handle can also serve as a view into some-
one else’s element data. A view provides a logical 
matrix whose elements consist of a subset and/or 
rearrangement of the elements described by the 
data descriptor, sometimes augmented with a few 
generic read-only data elements like 0, 1, and NaN.  
Views are commonly used to select blocks or di-
agonals from within a large matrix or to provide a 
matrix which appears to be transposed relative to 
the original data. A Matrix view is an lvalue and 
assignment to the view results in changes to the 
actual elements of the original data. 

The most commonly encountered views are those 
created by operators such as transpose or row, col-
umn and submatrix selection. 

A Matrix view is still a Matrix, and can be passed 
to any Matrix argument. Views may be made of 
views, with the logically correct result, however the 
views are combined into a single view rather than 
nested. So a Matrix always contains at most one 
view. 

Many views can be manipulated as efficiently as 
the original data, particularly when the original is a 
full-storage matrix. This applies only to bulk opera-
tions like multiplication and factoring; element-by-

element access may incur additional overhead 
when going through a view. 

6.4.1 Element filters 
Whenever possible, we construct a matrix view 
simply by finding another high-performance de-
scription of the desired subset of the data. For ex-
ample, a view which is a row of an ordinary dense 
matrix can be represented as a “strided” one-
dimensional object, which is one of the formats 
which can be manipulated efficiently by the BLAS 
routines. 

It is possible that a desired view cannot be ex-
pressed in one of the available high-performance 
data descriptors. In that case the matrix supple-
ments the data descriptor with an element filter. An 
element filter presents a logical matrix whose ele-
ments consist of a subset and/or reordering of the 
in-memory elements, done in a way that does not 
map to a supported high speed format. For exam-
ple, one could construct a view which picked out 
particular elements, with arbitrary spacing and 
ordering compared to the originals. These could 
appear as a contiguous Vector, for example, al-
though the individual elements might be widely 
scattered. Operations on such an object are unlikely 
to be very efficient, but in many cases the clarity of 
code will matter more. 

6.5 Factorizations 
For equation solving, one may always calculate a 
matrix inverse and then multiply by it; however, 
this is the mathematician’s approach rather than the 
computational scientist’s and at times will not yield 
acceptable results in finite precision arithmetic. 
Simmatrix does allow that approach but it is not 
recommended. As a better option for one-time use, 
the divide operator is overloaded to allow casual 
solution to Mx=b by writing x=b/M, which means 
x=M-1b (or x=M+b if a pseudoinverse is neces-
sary). M can contain information about its condi-
tioning and structure which permits the operator to 
make a reasonable choice of solution method; oth-
erwise, Simmatrix will make a conservative choice 
yielding good numerical results but perhaps subop-
timal performance. In any case the divide operator 
does not actually form the inverse, but works di-
rectly with the factorization which is numerically 
preferable. 
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For more control, or for repeated use of the same 
matrix while factoring only once, one must con-
struct explicit factorizations and then solve equa-
tions using the factorization directly rather than 
using it to invert the original matrix. 

Matrix factorizations are objects which can be used 
similarly to matrix inverses, but with optimal nu-
merical accuracy. The classes haven’t been defined 
yet but will probably look something like 
 Matrix M; Vector b1,b2,x1,x2; … 
 FactorLU f(M); // LU factorization of M 
 x1 = f*b1; // instead of x1=b1/M 
 x2 = f*b2; 

These can be made to yield the best possible results 
with the highest efficiency, and the Factor classes 
can provide many useful methods such as rank 
determination. Typically the Factor constructor 
will obtain the layout and known properties from M 
and then call the appropriate LAPACK routines to 
perform the factorization. Options exist to allow the 
Factor class to steal the original memory from the 
matrix being factored. 

6.6 Available factorizations TBD 
Square, well conditioned matrix: LU with pivoting 

Symmetric, general matrix: LLT 

Symmetric, positive definite: Cholesky (LDLT?) 

Rectangular: QR with pivoting, LQ 

Rectangular, ill conditioned: QTZ, SVD 

Symmetric and nonsymmetric eigenvalues routines 
and Schur factorization 

Access to the underlying factors (without copy-
ing!). 

Condition number, rank determination/setting, equ-
ation solve, inverse and pseudoinverse. 

How error conditions are handled. 

6.7 Operator reference TBD 
Basic Matlab and BLAS equivalents. 
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