
SimTK Simmatrix™
A SimTK Toolset for efficient manipulation

of vectors and matrices in C++

Michael Sherman

Version 0.7, January 7, 2008

Abstract
We describe the goals and design decision behind Simmatrix, the SimTK matrix and
linear algebra library (toolset) for C++ programmers, and provide reference informa-
tion for using it. The idea is to provide the power, naturalness, and flexibility of Mat-
lab™ from within a C++ program, but with maximal performance and convenient
interoperability with numerical libraries and custom code which may already exist in
various languages, including C and FORTRAN. [Note: this document is only partially
written at the moment.]

1 Purpose of this document ... 1
2 Goals .. 1

2.1 Speed ..1
2.2 Accuracy...2
2.3 Expressive power..2
2.4 API stability..3

3 Design issues .. 3
3.1 Naming ...3
3.2 Indexing..4
3.3 More design issues TBD...4

4 Scalars .. 4
4.1 Precision types ..4
4.2 Numbers ...4
4.3 Scalar types...5
4.4 Scalar summary ..5

5 Composite numerical types (fixed-size vectors &
matrices)... 5

5.1 Memory layout of CNTs; packed CNTs6
5.1.1 CNT packing vs. compiler packing7

5.2 Construction and assignment of CNTs7
5.3 Operators on CNTs ...8

5.3.1 Element access ..9
5.3.2 Arithmetic ...9

5.4 Summary of CNTs..11
6 Types for linear algebra.. 11

6.1 Large Vector and Matrix types11
6.2 Available storage types TBD..................................12
6.3 Matrix characteristics..13

6.3.1 Matrix character commitments13
6.3.2 Element type ...13
6.3.3 Shape...13
6.3.4 Size..14
6.3.5 Structure ..14
6.3.6 Conditioning ...14
6.3.7 Sparsity ...14
6.3.8 Storage formats ...14

6.4 Matrix views ...15
6 4.1 Element filters...15 .

6.5 Factorizations..15

6.6 Available factorizations TBD................................. 16
6.7 Operator reference TBD... 16

Acknowledgments .. 16
References .. 16

1 Purpose of this document
To describe the goals, design issues, theory, im-
plementation and use of the SimTK Simmatrix C++
toolset.

2 Goals
Simmatrix is a part of the basic infrastructure for
use of the SimTK Core tools. It is delivered as part
of the SimTKcommon library, and developed with-
in the SimTKcommon project on SimTK.org.

Here is what we hope to achieve with Simmatrix.

2.1 Speed
Perhaps it seems crass to start with this topic, but
computer simulations are dominated in practice by
performance considerations. As a result, few practi-
tioners will make use of a facility, however lovely,
that slows down their programs. A rule of thumb
among computational scientists is that anything
more than 20% overhead will begin to affect adop-
tion by high-end users.

When designing a system for dealing with matrices,
there are two completely different and mutually

© 2005-8 Stanford University and Michael Sherman 1
Simbios, SimTK, Simmatrix, Simmath, and Simbody are trademarks of Stanford University.

incompatible performance issues that must be ad-
dressed. Computations with small vectors and ma-
trices, such as the 3-element ones needed for
representing points and orientations in 3d, are dom-
inated by overhead because each calculation is so
small. Computations with large matrices, on the
other hand, are dominated by large-scale repetitive
computations and memory access patterns. Per-
formance of large computations can be dramati-
cally improved by a constant-time overhead spent
determining the optimal execution strategy.

To deal with these conflicting concerns success-
fully, we have adopted the commonly-used ap-
proach of building what are essentially two
completely independent facilities, one suited for
small objects, and one for large. In the former, we
do anything necessary to avoid overhead. In the
latter, we do whatever it takes to optimize computa-
tion and memory access patterns. The facilities are
then designed to work smoothly together, without
having to compromise performance. A purely in-
terpretive environment like Matlab can optimize
only the performance of the large computations,
while continuing to incur the same overhead on
small ones.

2.2 Accuracy
Performing linear algebra correctly on a computer
is a completely different field from linear algebra
as taught in mathematics classes. The finite preci-
sion of computers is the dominant issue in perform-
ing correct computation, while that issue is
completely irrelevant in mathematics. The best
strategy here is to stand on the shoulders of the
giants who have devoted their careers to computa-
tional methods for linear algebra. In current prac-
tice, that means performing linear algebra using
software produced by the decades-long U.S. De-
partment of Energy (DOE) effort to produce reli-
able linear algebra, as embodied in LAPACK and
related public domain facilities. This is the tech-
nique adopted by the extremely successful Matlab
package, and we use it here for our large-matrix
facility. We cannot use it directly for the small
matrix facility when overhead concerns dominate
everything else, but it is always available even for
small systems in those cases where highest accu-
racy is paramount.

2.3 Expressive power
The goal here is best stated in terms of Matlab, by
far the most successful matrix handling environ-
ment in existence. In fact, before you proceed fur-
ther you may wish to consider whether your needs
might be better met by using Matlab itself. Our
facility is not intended as a replacement for Mat-
lab—we are interested in supporting programmers
who need to work in C++ for one well-considered
reason or another. For those programmers, we
would like to provide a Matlab-like capability ac-
cessible in a natural way from within a C++ pro-
gram. We want to minimize the mental gymnastics
required to go from a mathematical statement of a
computation to its functional implementation.
Among other things, that means that real and com-
plex numbers should be supported equally so that
the occasional appearance of a complex result does
not present an insurmountable disaster.

Like Matlab, we take the mathematicians’ view-
point that a vector is a vertical object (a column)
that is distinct from a horizontal object of the same
dimension (a row or covector). We are able to en-
force that distinction at compile time with no over-
head and to do so provides significant benefits. A
matrix is then seen conceptually as a collection of
column vectors, making ours fully compatible with
both the mathematical treatment of matrices and the
computational treatment as embodied in today’s
best linear algebra software. However, the facility
is flexible enough so that anyone who prefers to
treat matrices as collections of rows (as is common
among computer scientists) can do so without pen-
alty, although we would advise computer scientists
not to do this reflexively—why not follow mathe-
matical conventions for mathematical objects?

As mentioned above, we have a goal of zero over-
head for dealing with small objects, something
which is not attainable in an interpreted system.
C++ is one of the very few languages in which such
a facility can be attempted. Its inheritance, tem-
plates, operator overloading, inline functions, and
naughty loopholes permitting direct hardware ac-
cess when necessary offer the opportunity to build
extensions which provide elegant, type-safe ab-
stractions with no runtime overhead whatsoever.
We are able to provide zero-overhead operators for
basic matrix operations like transpose, arithmetic,
extraction (without copying) of elements and ele-

2

ment subsets such as rows, columns, submatrices,
diagonals, real or imaginary parts, etc. As a con-
crete example, matrix transpose can be seen as a
change in point of view rather than a physical op-
eration and C++ is powerful enough to support that
concept so that our (Hermitian) transpose “opera-
tor” performs no computation or memory opera-
tions at all.

2.4 API stability
An interface (or API) must satisfy very restrictive
criteria compared to general programming. Stabil-
ity is probably the primary one—an interface
should be extremely stable once defined because
many programs will depend on it for their correct
functioning.

SimTK sets the bar higher by promising binary
compatibility. That means that software that de-
pends on the SimTK Core interface can take advan-
tage of new releases without being recompiled or
relinked in the case of dynamically linked library
upgrades. This level of stability requires that ob-
jects which appear in the interface must have either
very simple, obviously permanent implementations,
or opaque implementations which protect client
software from inevitable changes to the implemen-
tation.

All symbols introduced into a user program by
Simmatrix are in the SimTK namespace, except for
#define macros (used sparingly) which are pre-
fixed by “SimTK_” instead. So if we mention a
symbol named MyType below, its actual name is
SimTK::MyType.

3 Design issues
Here we discuss our thoughts on some of the choic-
es and dilemmas that are forced on anyone building
a system like this, and the resulting design deci-
sions we made.

3.1 Naming
Because there are two separate facilities, we are at
times in need of several names for similar concepts,
such as “matrix.” A great deal of information must
be embedded in the types of the small matrix ob-
jects, which in C++ risks either a proliferation of
obscure type names or frequent use of templates.
Further, there is a need to permit programs to be

written as generically as is appropriate. For exam-
ple, a programmer should not need to specify preci-
sion in a type name if the algorithm is precision-
independent. Vector length is a critical attribute in
programs which use the small-vector system; for
example, 3d simulation code is written using 3-
vectors and 3x3 matrices. Thus it is appropriate for
small-vector type names to include lengths. On the
other hand, for programs written to deal with large
matrices, the specific size is an unimportant run-
time specification and must not be embedded in the
type name.

To address these issues, we have adopted what we
hope is a suggestive convention of using short
names and abbreviations for short, fixed-size vec-
tors and longer ones for the large objects. Length
always appears in the short type names and never in
the long ones. So a 3-element vector is a Vec<3>
(abbreviated Vec3) while a long but size-
unspecified vector is called a Vector. Similarly,
Mat<3,4> (abbreviated Mat34) is a 3x4 fixed-size
matrix at default precision, while Matrix is an
mxn adjustable-size matrix at default precision. The
full set of names is provided later in this document.

One minor annoyance in C++ is that the standard
does not guarantee that a templatized type can ap-
pear without a template argument list, even if there
are defaults for all the arguments. Thus if we want
to allow Vector<Complex> some compilers will
insist on the default invocation being written Vec-
tor<>, which we deem too ugly for human con-
sumption. We want the simple name Vector to be
used for the by-far-most-common case, Vec-
tor<Real>. To address this, the templatized ver-
sion of the large vector and matrix types are written
with a trailing underscore, like Vec-
tor_<Complex>. Then Vector is a typedef to
Vector_<Real>, the default. This is not necessary
for small vector and matrix types since they always
have at least a length argument supplied. Typical
declarations look like this:

 3

 Vec<3> v; // a 3-vector of Reals
 Vec3 w; // same thing, using abbr.
 Vector b,x; // vectors of reals
 Matrix M; // mxn matrix of reals
 Matrix_<Complex> C; // mxn matrix of complex
 Vector_<Vec3> v3;// big vector of 3-vecs

 // This type is a 2-element vector whose elements
 // are 3-vectors. Memory layout and computational
 // efficiency are identical to Vec<6>.

 typedef Vec<2,Vec3> SpatialVec;

3.2 Indexing
One of the thorniest issues to decide is how to treat
indices, specifically, what is the index of the first
element? Scientific programmers used to
FORTRAN, Matlab, and general mathematical con-
ventions expect the first element to have index “1.”
C programmers expect indexing to begin with “0.”
Many packages address this by making the index-
ing offset a user choice. We have done this in past
designs and found it unsatisfying and extremely
prone to induce errors where some programmers
(typically at the upper levels of the code) use 1-
based indexing while others use 0-based. The re-
sulting awkwardness and uncertainty produces
either subtle off-by-one errors, or unnecessary co-
pying as responsible programmers move data into
compatibly-indexed vessels to avoid errors.

So we believe that a single indexing scheme must
be chosen and used exclusively. Following the
reasoning of the VXL design team (see
http://paine.wiau.man.ac.uk/pub/doc_vxl/books/cor
e/book_6.html) we have opted for 0-based indexing
as “least weird” in a C++ numerical package. This
does not preclude a FORTRAN-compatible 1-based
interface to the facility, but it prevents any leakage
of incompatible indices into the guts of the pack-
age. This will not please everyone, but in past ef-
forts to do so many packages have ended up
pleasing no one.

3.3 More design issues TBD
Topics: choice of indexing operators, subvector and
submatrix operations, layout of symmetric matri-
ces, mixed-precision operations, choice of trans-
pose operator, use of non-conforming operands,
why can’t large matrix and vector types be used as
element types, packing of data in memory, treat-
ment of scalar assignment.

4 Scalars
We start by describing the Simmatrix scalar types,
that is, types which represent a single floating point
number (real or complex). We take a somewhat
novel view of these types which allows us to
achieve some dramatic performance improvements
when we begin to aggregate them into matrices.
The Simmatrix scalar types comprise three levels
we call precisions, numbers, and scalars.

4.1 Precision types
The precision types are the built-in C++ floating
point types float, double, and long double
(called single, double, and quad or real*4,
real*8, and real*16 in FORTRAN). These con-
vey the level of accuracy required in computations
and stored values. On all currently supported plat-
forms, float is 4 bytes, and double is 8 bytes.
Depending on the compiler being used, long
double may be the same as double, or it may be
10 or 16 bytes. All SimTK-supported computers
must adhere to the IEEE 754 standard for floating
point arithmetic, and SimTK-compliant code may
depend on that fact, for example by depending on
the existence of NaN (not-a-number) and Infinity.

Under compile-time control, one of the precisions
is chosen as the default precision and given the type
name Real (reminder: this is really
SimTK::Real). We expect most SimTK code to
be written in terms of Real rather than the explicit
precisions, so that it may be compiled at different
precisions without changing the code. Our default
for this default is that Real is equivalent to dou-
ble, that is, an 8-byte floating point value with
approximately 16 decimal digits of precision and an
exponent range of about ±300 (base 10).

Contributors to SimTK code should avoid writing
precision-specific code whenever possible. In addi-
tion to our predefined default-precision types, C++
provides the standard template type
std::numeric_limits, and we provide all the
additional tools needed occasionally for writing
precision-independent code, such as generic-
precision constants and convergence limits.

4.2 Numbers
From the above precision types, we construct our
numbers, each of which can exist in all three sup-

4

http://paine.wiau.man.ac.uk/pub/doc_vxl/books/core/book_6.html
http://paine.wiau.man.ac.uk/pub/doc_vxl/books/core/book_6.html

ported precisions. The number types are the stan-
dard real and complex numbers, and a novel “fla-
vor” of complex number called a conjugate, which
is not typically used in user programs but is impor-
tant for the efficient implementation of matrix op-
erations.*

Each of the three precision types is also a real
number type, with the SimTK type Real prede-
fined equivalent to one of those as described above.
The C++ standard template type std::complex,
specialized as complex<float>, com-
plex<double>, and complex<long double>
serve as our complex numbers, with SimTK de-
fault-precision type Complex predefined as com-
plex<Real>.† The three conjugate types (from the
SimTK namespace) are conjugate<float>,
conjugate<double>, and conju-
gate<long double>, with default-precision type
Conjugate predefined as
conjugate<Real>.

4.3 Scalar types
Only Real and Complex, and vectors and matrices
defined in terms of them, will appear in typical user
programs. However, our complete set of scalar
numeric types consists of the nine number types
described above, plus a templatized adaptor class
negator<number>, which may be applied to any
number type to create a new type whose memory
representation is unchanged but whose value is to
be interpreted with the opposite sign. Like conju-
gate, negator is not expected to appear in user
programs but permits efficient implementation of
some matrix operations, in particular Hermitian
transpose of a complex matrix. The imaginary part
of a conjugate number has type
negator<real> for the appropriate precision real.

* Conjugate types have the same representation as com-
plex types, but the imaginary part is interpreted with
opposite sign.
† The one difference between our complex type and the
C++ standard is that we do not initialize unused values
in a Release build. That is, we treat complex identically
to real in this regard, while the C++ standard specifies
that complex variables are initialized to (0,0). We feel
that is an inappropriate default for large, complex matri-
ces where avoiding unnecessary memory accesses is of
primary concern.

4.4 Scalar summary
The above defines a set of exactly 18 scalar types:
three kinds of numbers in each of three precisions,
in normal or negated form. Despite the use of tem-
plates, this is not a user-extendable set.

Stated as a grammar, scalars are defined like this:
 scalar ::= number | negator<number>
 number ::= standard | conjugate
 standard ::= real | complex
 conjugate ::= Conjugate | conjugate<precision>
 complex ::= Complex | complex<precision>
 real ::= Real | precision
 precision ::= float | double | long double

That completes our discussion of the scalar types.
Next we’ll look at how these can be used to con-
struct the much more interesting composite numeri-
cal types.

5 Composite numerical
types (fixed-size vectors &
matrices)

SimTK defines the following composite numerical
types (CNTs), built up recursively from scalars and
other composite numerical types. As a consequence
of our definition of “scalar” above, all composite
numerical types support both real and complex
arithmetic equally.

CNTs can be scalars as described above, or small
fixed-size vectors and matrices whose elements are
scalars or other CNTs. For example, one may easily
define a 2-element vector whose elements are ordi-
nary 3-element vectors.‡ CNTs are characterized by
zero overhead and minimal storage requirements.
For example, an mxn matrix of scalars is stored as
exactly mn consecutive scalars (except when oth-
erwise requested), with no flags, counters, heap
pointers, or other sources of inefficiency. The exact
storage layout in memory is part of the definition of
these types (and is machine-, operating system-,
and compiler-independent), so they may be recast
to native machine types or other CNTs with pre-
dictable results. This implies, for example, that a

‡ That is very useful as the representation of a Spatial
Vector which collapses both rotational and translational
effects into a single quantity in the Spatial Operator
Algebra used by SimTK’s Simbody™ package.

 5

symmetric matrix has a different type from a gen-
eral one, so that the appropriate access pattern can
be determined at compile time. CNTs make exten-
sive use of C++ templates and inline functions, and
the fact that type casting is free, to permit compile-
time optimization into the optimal set of machine
instructions.

The table below presents the available Composite
Numerical Types, or more precisely the templates
available for constructing CNTs. Note that prede-
fined abbreviations are available for certain com-
mon combinations of template arguments (up to 9
rows and columns). We provide those because we
know from experience that programmers will de-
fine them to reduce the ugly “<>” clutter created by
the C++ template syntax, and we would like to
encourage a consistent set of common abbrevia-
tions. These abbreviations are not distinct types
(they are typedefs), so may be freely intermingled
with the spelled-out types. For example, a Vec3
can be passed to a routine written to take a Vec<3>
argument.

Type Description
Real
Complex

A floating point number at default
precision, either real or complex.

Vec<m>
Vec<m,C>
Vec<m,C,stride>

Vec2 Vec3 Vec4
Vec5 … Vec9

A short, fixed-length column vector of
m elements of composite numerical
type C (default Real) with optional
element-to-element stride (default 1).
Typedef abbreviations are provided as
shown, with Vec3 ≡ Vec<3>, etc.

Row<n>
Row<n,C>
Row<n,C,stride>

Row2 Row3 Row4
Row5 … Row9

A short, fixed-length row vector of n
elements of composite numerical type
C (default Real) with optional ele-
ment-to-element stride (default 1).
Rows are not typically used in user
programs, but occur as intermediate
results in expressions.

Mat<m,n>
Mat<m,n,C>
Mat<m,n,C,cs,rs>

Mat22 Mat33 …
Mat66 … Mat76
… Mat89 Mat99

A small, fixed-size matrix of m rows
and n columns of composite numerical
type C (default Real) with optional
column-to-column spacing cs (default
m), and row-to-row spacing rs (default
1).

These typedefs are provided, with
Mat33 ≡ Mat<3,3>, etc.

SymMat<m>
SymMat<m,C>
SymMat<m,C,rs>

SymMat22
SymMat33
SymMat44
… SymMat99

A small, fixed-size mxm symmetric
(Hermitian if complex) matrix of
composite numerical type C (default
Real) with optional element-to-
element spacing (default 1). Only the
elements of the diagonal and lower
triangle are stored.

These typedefs are provided, with
SymMat33 ≡ SymMat<3>, etc.

Note that the short Vec and Mat types are them-
selves Composite Numerical Types and can thus be
composed recursively. That is, it is reasonable to
have a 2x2 matrix of 3x3 matrices and in fact this
can be quite useful. This can be declared*
 Mat<2,2,Mat<3,3> >
or more pleasantly using a predefined typedef
 Mat<2,2,Mat33>
Note that these types are exactly equivalent and
thus interchangeable, and that the resulting type is
itself a CNT.

5.1 Memory layout of CNTs;
packed CNTs

The default layout for any CNT is to pack the ele-
ments into the least amount of consecutive storage
as logically required to hold the CNT’s value. We
refer to a CNT stored this way as a packed CNT. In
addition, each of the CNT templates provides ar-
guments which can be used to specify regular gaps
in the storage layout, where the gap size is always
an integer multiple of the storage requirement of
the CNT’s element type. For example, the Vec and
Row templates allow specification of a stride, which
gives the spacing between consecutive elements in
terms of those elements. So a packed Vec or Row
has stride 1, which is the default.

Non-packed CNTs exist to facilitate reinterpreta-
tion of existing data in terms of CNTs. For exam-
ple, if one has a Mat<4,3> stored as three
consecutive packed Vec<4> columns, the rows can
be viewed as a 3-element Row CNT with a stride of
4 (that is, four Real elements), which could be
specified as Row<3,Real,4>. However, such dec-
larations do not normally appear in user programs;

* C++ unfortunately requires the extra space for nested
templates, to avoid confusion with the operator “>>”.

6

instead, they are the hidden return types of methods
and operators which select out portions of an exist-
ing object. In this case, the row index operator m[i]
acting on a Mat<4,3> matrix m returns the ith row
of m as a 3-element Row with stride 4, meaning it
references the elements of m without copying, and
can serve as an lvalue (target of an assignment)
which alters the appropriate elements of m. Because
this type has the same semantics as any other
Row<3>, most users will never need to think about
how it is implemented.

When we discuss the large-matrix facility below,
the distinction between packed and non-packed
CNTs is somewhat more significant, since only
packed CNTs can serve as element types for the
large Vector and Matrix classes.

5.1.1 CNT packing vs. compiler pack-
ing

Some C++ compilers attempt to improve execution
speed by “rounding up” memory requirements to a
size which is particularly efficient for the targeted
hardware. For example, a class containing three 4-
byte float values (e.g., Vec<3,float>) might be
allocated 16 bytes rather than 12, by some compil-
ers on some machines, with some compile-time
options. That means that C++ arrays of such ob-
jects would contain 4-byte gaps between the ele-
ments.

Because a great deal of our performance comes
from the ability to change our point of view (i.e.,
recast) rather than copy or compute, we depend on
predictable storage layouts for our classes. To en-
sure that, we define packed CNTs in terms of the
storage requirements of their underlying scalar
types, which are packed the same way by all com-
pilers on all machines. We guarantee, for example,
that a CNT Vec<2,Vec3> can be recast to a
Vec<6> with the obvious interpretation and mem-
ory layout identical to a C++ array Real[6]. This
would not necessarily be possible if the CNT stored
the two Vec3’s in a C++ array Vec3[2] since the
compiler might choose to allocate space for two
Vec4’s instead!

The key point to remember is that CNTs are packed
internally as arrays of scalars, so that a composite
CNT whose elements are also composite CNTs
may occupy less storage than a C++ array of those

same elements. So while you can always cast a
CNT into a C++ scalar array with predictable re-
sults (for any of the supported scalar types includ-
ing complex), you cannot safely cast to a C++ array
of composite CNT types; cast to a CNT Vec of
those types instead.

5.2 Construction and assignment
of CNTs

All CNTs define a default constructor. In Debug
mode (that is, when the C++ standard NDEBUG pre-
processor symbol is not defined), the default con-
structor initializes all elements to NaN. In Release
mode (i.e., NDEBUG is defined), all elements are left
uninitialized, so that declaring CNTs, or arrays of
CNTs, has no cost if the variables are not used.

Constructors are also available for initializing data
elements from individual element values, or by
copying compatible CNTs. Initialization values can
be provided in the constructor or via a pointer (or C
array) to values of the appropriate type.

Assignment operators are available for copying one
CNT to another, and for setting single elements,
subvectors and submatrices.

One important convention we follow, which is
different than that of most similar systems, is the
treatment of scalar assignment. We follow this
convention: (1) when a scalar s is assigned to a
vector, every element of the vector is set to s (this
is the typical convention), and (2) when a scalar s is
assigned to a matrix, the diagonal elements of the
matrix are set to s while the off-diagonals are set to
zero. Examples:
 Vec3 v;
 Mat22 m;
 Vector b(10); // initial size 10 reals
 Matrix M(20,10); // initial size 20x10
 v=0; // v=(0,0,0)
 v=3; // v=(3,3,3)
 m=0; // m=(0,0)
 // (0,0)
 m=1; // m=(1,0)
 // (0,1)
 b=0; // b=10 zeroes
 M=1; // M=0, except M(i,i)=1, 0<=i<10

This convention is especially apt for matrices, be-
cause the matrix resulting from such a scalar as-
signment “acts like” that scalar. That is, if you
multiply by this matrix the result is identical to a
scalar multiply by the original scalar. Two impor-

 7

tant special cases are: (1) setting a matrix to the
scalar “1” results in the multiplicative identity ma-
trix of that shape, and (2) setting a matrix to the
scalar “0” results in the additive identity matrix of
that shape. In general, in any operation involving a
scalar s and a Matrix or Mat, the scalar is treated
as if it were a conforming matrix whose main di-
agonal consists of all s’s with all other elements
zero. So Matrix m += s will result in s being add-
ed to m’s diagonal, which is what would happen if s
were replaced by diag(s) of the same dimension as
m. m-=1 thus subtracts an identity matrix from m,
without touching any of the off-diagonal elements.
Note that for multiply and divide this convention
yields the ordinary scalar multiply and divide op-
erations: e.g., m*s (=m*diag(s)) multiplies every
element of m by s.

5.3 Operators on CNTs
There are numerous operators available which act
on CNTs, for element access, computation, reinter-
pretation of the data, and obtaining information
about the type and its contents.

8

5.3.1 Element access
These operators provide access to individual elements, or subsets of elements, of composite numerical types,
where we use letters to indicate types: s=scalar, e=element (of whatever CNT), v=Vec, r=Row, m=Mat,
sy=SymMat. i,j are integer indices, with i a row index and j a column index. An “Lvalue” can appear on the
left hand side of an assignment statement, with the result affecting the original element values.

Operator Applied
to

Meaning Lvalue? Cost Notes

v[i] v(i)
r[j] r(j)

Vec
Row

select ith (jth) element yes native array index all indexing is 0-based

m[i][j] m(i,j)

sy[i][j] sy(i,j)

Mat
SymMat

obtain i,j element of m.
Only diag & lower
triangle of SymMat;
i.e., i ≥ j.

yes same as native
matrix index for
Mat; extra integer
operations for
SymMat.

m[i] m.row(i)
m(j) m.col(j)

Mat obtain ith row or jth
column of m as Row or
Vec, resp.

yes native array index Size and spacing are taken
from Mat; typically col-
umns are packed while
Rows have stride>1.

m.diag()
sy.diag()

Mat
SymMat

obtain diagonal as a
Vec

yes zero For rectangular Mat<m,n>,
result has dimension
min(m,n).

sy[i] sy.row(i)
sy(j) sy.col(j)

SymMat obtain ith row or jth
column of SymMat as a
Row or Vec

no must copy ele-
ments to temporary
Row or Vec; avoid
if possible

Return type is packed
regardless of original
SymMat spacing.

v.getSubVec<m>(i)
v.updSubVec<m>(i)

Vec return a reference to a
Vec<m> whose 0th
element is v’s ith ele-
ment

get – no
upd – yes

native array index Element type and stride are
the same as the original
vector.

r.getSubRow<n>(j)
r.updSubRow<n>(j)

Row return a reference to a
Row<n> whose 0th
element is r’s jth ele-
ment

get – no
upd – yes

native array index Element type and stride are
the same as the original
row.

m.getSubMat<m,n>(i,j)
m.updSubMat<m,n>(i,j)

Mat return a reference to a
Mat<m,n> whose 0,0
element is m’s i,j ele-
ment

get – no
upd – yes

native array index Element type and spacing
are the same as the original
matrix.

m.getSubVec<m>(i,j)
sy.getSubVec<m>(i,j)

m.getSubRow<n>(i,j)
sy.getSubRow<n>(i,j)

(upd also available)

Mat
SymMat

return reference to a
Vec<m> or Row<n>
whose 0th element is
m’s i,j element. Only
strictly lower triangle
can be referenced for
SymMat; that is, i > j.

get – no
upd – yes

native array index Element type and stride are
the same as the original
vector.

5.3.2 Arithmetic
The expected arithmetic operators are overloaded for use with CNTs, plus probably some unexpected ones.
This includes add, subtract, matrix multiply, and divide for conforming objects and scalars, cross product for

 9

2- and 3- vectors, and the usual C arithmetic assignment operators like “+=”. Behavior for CNTs with scalar
elements are as expected; behavior for CNTs with composite elements are defined analogously and generally
work well, but most users will not have a well-developed intuition for those objects at first.

Operator Applied
to

Meaning Lvalue? Cost Notes

~ (transpose) Any CNT Transpose (Hermitian
transpose if elements
are complex).

yes zero (implemented
as a cast)

Has no effect on symmetric
matrices.

Acts as “conjugate” operator
on complex scalars.

+ - * /
+= -= *= /=

s=dot(v,w)
m=outer(v,w)

Any CNT

Dot and outer
work for any
combination
of Vec &
Row if
lengths match.

matrix arithmetic

Row*Vec is a dot
product (scalar result);
Vec*Row is an outer
product (Mat result).

Global methods dot()
and outer() are
provided as an explicit
alternative.

no same as explicit
code

Global methods
have the same
performance as the
corresponding
operators.

conformant matrices always
work; some non-conformant
operations are useful also

dot() uses the Hermitian
transpose of v’s elements times
w’s unchanged elements,
regardless of what is a Row or
Vec.

Similarly, outer()uses v
unchanged and the Hermitian
transpose of w.

% (cross product)

z=cross(v,w)

2- and 3-
element Vec
and Row.

Returns cross product.
Result is a scalar for 2-
element cross product,
and a 3-vector for 3-
element cross product.

Global method
cross() is provided
as an alternative.

no Same as explicit
code (3 flops for 2-
element, 9 flops
for 3-element).

Global method and
operator provide
the same perform-
ance.

If both arguments are Vec3,
result is Vec3. If either is
Row3, then result is Row3.

2-element cross product can be
understood as 3-element where
a zero z component has been
added and the final result is the
z component of the result.

m=crossMat(v) 2- and 3-
element Vec
and Row.

Returns the matrix
which acts as a cross
product operator. That
is, mw==vxw.

no same as explicit
code (a few nega-
tions and copies)

The result is a 3x3 skew-
symmetric matrix in the 3d
case, a 2-element Row in the
2d case. The same result is
produced regardless of whether
the argument is a Vec or Row.

10

5.4 Summary of CNTs
Stated loosely as a grammar, we build CNTs recur-
sively like this:
CNT ::= scalar
 | composite<size [,CNT [,packing]]>
composite ::= Vec | Row | Mat | SymMat
size ::= nrow [,ncol]
packing ::= stride | colSpacing,rowSpacing

The unbolded terminals nrow, ncol, stride,
colSpacing, and rowSpacing are integers, or
compile-time expressions that evaluate to integers.

This grammar permits unlimited nesting of these
constructs, and the implementation does work that
way, but we would counsel restraint here and note
that there is unlikely to be much utility (or clarity)
beyond two or three levels deep.

6 Types for linear algebra
[This part of the document is very sparse at the
moment (no pun intended).]

6.1 Large Vector and Matrix types
The “zero overhead” requirement on the Composite
Numerical Types limits their flexibility. For larger
vectors and matrices, some constant-time overhead
is acceptable since we expect time to be dominated
by floating point calculations and memory accesses
done on the (large) operands. In fact, this overhead
is desirable since it is used to set up optimal large-
scale operations which can then be performed at
machine speeds. The basic types, and general be-
havior, are modeled after the very successful Mat-
lab system with the expectation (but not
requirement) of LAPACK and BLAS style imple-
mentation. We assume that these objects will be
very large and the classes are carefully designed to
avoid unnecessary data copying and memory refer-
ences.

The underlying element type stored in our large
matrix objects can be any scalar type or other
packed composite numerical type (see section 5.1).
These elements will be packed adjacent in memory
in our large matrix objects regardless of whether
the C++ compiler would pack them that tightly
when creating its own arrays. Other data layouts are
available if explicitly requested, but packing of

elements is always done by packing the underlying
scalars as discussed for CNTs in section 5.1.1.

Type Description
Vector
Vector_<C>

An arbitrary-length column of Real
values, or of values of packed compos-
ite numerical type C (e.g.,
Vector_<Complex> or
Vector_<Mat<2,2,Mat33> >).

RowVector
RowVector_<C>

Same as Vector but horizontal.
Usually not used explicitly in code, but
is the type of a Matrix row or
Vector transpose.

Matrix
Matrix_<C>

An arbitrary-size, two dimensional
matrix of Real values, or of values of
packed composite numerical type C.

Standard linear algebra operations, matrix decom-
positions, and interconversions with composite
numerical types are provided. Note that SimTK
Vector and Matrix are not themselves composite
numerical types and may not be composed recur-
sively. A Vector may be considered an mx1 Ma-
trix, and a RowVector a 1xn Matrix when
convenient. Thus the discussion below which refers
to matrices applies to Vector and RowVector as
well.

Unlike the Composite Numerical Types, very little
is encoded in the type here—only the basic shape
(1 or 2d object) and the element type. Dimensions,
spacing, and internal data layout are determined at
runtime. This provides a great deal of useful flexi-
bility but imposes a constant-time cost for every
operation.

SimTK provides 0-based indexing using the []
operator. If the Matrix is modifiable (non-const)
then the indexed element can be modified and that
change affects the contents of the object. The []
operator applied to a Matrix returns a row, which
may in turn be indexed to obtain an element in C
style. SimTK also permits indexing using round
brackets () yielding identical results to [] for
Vector but selecting a column rather than a row
when applied to a Matrix. A two-argument round
bracket operator accesses a Matrix element, and
unlike for CNTs, it is more efficient to use the two-

 11

argument form here since the overhead cost is paid
only once.
 Matrix m; Vector v; …
 v[i] // ref to ith element of v, 0-based
 v(i) // same
 m[i][j] // ref to i,jth element of m, 0-based
 m(i,j) // same, but faster
 m[i] // ref to ith row of m, 0-based
 m(j) // ref to jth column of m, 0-based

There are also operators for selecting subvectors
and submatrices. Like the indexing operators, these
return references into the original object, not cop-
ies. Submatrices are thus “lvalues” (in C terminol-
ogy) meaning that they can appear on the left hand
side of an assignment.
 Matrix m; Vector v; …
 v(i,m) // ref to m-element subvector whose 0th
 // element is v’s ith element
 m(i,j,m,n) // ref to mxn submatrix whose (0,0)
 // element is m’s (i,j) element

References of this type are called views since they
provide alternate views of the same data. They
retain all properties of the original object except
that they cannot be resized. They are in fact repre-
sented identically to the original objects in the
sense that they can be used wherever a Vector or
Matrix reference is expected, without memory
allocation or data copying.

The implementations of these types are opaque to a
C++ program using them. That is, the header files
define these as “handle” classes which contain only
a pointer to an undefined type (essentially a
void*). The object referenced is an instance of a
hidden implementation class.* This permits use of
these classes in SimTK interfaces while preserving
binary compatibility. It also allows use of these
objects from other languages, since the void* can
serve as a “lowest common denominator” represen-
tation.

As in Matlab, there is a substantial performance
penalty to work with Vector and Matrix objects
element-by-element; “bulk” operators should al-
ways be used in performance critical code. For
some operations, matrices with structured CNT
elements will perform poorly compared to matrices

* This is a standard C++ design pattern usually called
“PIMPL” for “private implementation.”

of scalar elements. When used properly, Simmatrix
objects containing scalar elements are capable of
performing large-scale operations at full machine
speed; that is, as fast as LAPACK. Note that com-
plex and conjugate types are still scalars, not struc-
tured, and that a negated scalar is still a scalar. See
section 4 for more information about SimTK sca-
lars.

Many operations with structured CNT elements can
be performed at full speed also, provided that there
is an equivalent scalar operation. For example,
scalar multiplication on structured elements is
equivalent to the same operation done on the ele-
ments’ underlying scalars.

The underlying data representations for these ob-
jects are documented and stable, and in many cases
map directly onto standard dense storage. In those
cases a pointer to the raw data can be obtained if
necessary for performance or compatibility pur-
poses.

6.2 Available storage types TBD
Most Simmatrix physical data layouts are designed
to be directly compatible with one of the LAPACK-
defined layouts. The default layout assumes that an
mxn matrix is stored by columns using mxn ele-
ments. An option is to provide a “leading dimen-
sion” (≥ m) so that there are regular memory gaps
between the columns.

Our default for symmetric and triangular matrices
is what LAPACK calls “conventional” storage; that
is, space is allocated for the whole matrix, but only
half the space is used. The space-saving “packed”
format is also available but can be expected to run
significantly slower for many operations. Note that
many LAPACK operations pack two symmetric or
triangular results into a conventional matrix; that
provides both optimal speed and space.

Banded matrices are also available, always in
packed storage. These can be full, symmetric, or
triangular.

We provide direct support for permutation matri-
ces, which are permuted identity matrices resulting
from pivot operations required for numerical stabil-
ity during factoring. The underlying storage for
these is typically just a sequence of integers defin-
ing how the columns or rows were pivoted.
(TODO: I think LAPACK has two different layouts

12

of pivot matrices; we’ll have to support them both.
It should be possible to extract the underlying inte-
ger array and pass it straight through to LAPACK;
by hiding it under a Matrix handle we don’t have
to worry about whether the integer indices start at
zero.)

TODO: ideas for more: scalar matrices for zero and
identity and scalar*identity; sparse matrices in
some DOE-compatible format(?)

Where possible, similar storage options are avail-
able for any element type, however factoring, piv-
oting and so on are only defined for scalar
elements.

6.3 Matrix characteristics
A declaration like “Matrix m;” declares m as an
uncommitted matrix handle. That is, although m has
the semantics of a 0x0 matrix of reals, it has not yet
been committed to using a particular data layout. It
can be used to hold the results of any matrix opera-
tion, and will take on the characteristics of that
result. A subsequent use of the handle might leave
it with completely different characteristics; only the
element type can never change. If an uncommitted
handle is asked to allocate space for some data (for
example, via “m.resize(10,20);”) it will use a
dense, column oriented allocation identical to
LAPACK’s conventional matrix storage format.

However, handles can optionally be restricted to
narrower ranges of behavior, via commitments
which will be discussed below. First we’ll discuss
the kinds of characteristics that a matrix can pos-
sess.

A Simmatrix Matrix, Vector or RowVector
object is characterized by the following seven at-
tributes:

1. Element type (a CNT)
2. Shape
3. Size
4. Structure
5. Conditioning
6. Sparsity
7. Storage format

Collectively, we refer to a set of particular values
of these attributes as a matrix character. There are
two matrix characters associated with every matrix
handle: the handle’s character commitment, and its

current character. The current character always
satisfies the handle’s commitment.

6.3.1 Matrix character commitments
In general, a Matrix handle will be committed
with respect to some of the above attributes, and
uncommitted to the rest. A character commitment
specifies “minimum acceptable” properties for the
actual matrix referenced by the handle. For exam-
ple, a matrix handle committed to symmetric struc-
ture cannot be assigned to a nonsymmetric result,
but would accept a diagonal result, since every
diagonal matrix is also symmetric.

Every Matrix (and Vector and RowVector) is
committed to a particular element type, since an
element type is required as a template argument in
the Matrix type itself (recall that Matrix itself is
an abbreviation for Matrix_<Real>). In addition,
Vector and RowVector handles are committed to
a particular shape: column or row, respectively.

Any other desired commitments must be added
explicitly before the handle is used to hold any
data. Many of the characteristics represent catego-
ries of acceptable attributes, rather than specific
ones. For example, a commitment to a square shape
still permits flexibility with regard to the size, as
long as both dimensions are the same. The matrix
characteristics are not completely independent—
some imply others. For example, a symmetric
structure implies a square shape.

Next we’ll look at the individual matrix characteris-
tics one by one.

6.3.2 Element type
As mentioned above, every matrix handle is com-
mitted to a particular element type by its own tem-
platized type. Only packed CNTs are permitted as
element types.

Most operations require exactly matching element
types among the operands, with the exception that
operands which differ only in the negation or con-
jugation status of their underlying scalars can be
intermingled.

6.3.3 Shape
There are five possible shape attributes:

1. Rectangular (mxn)

 13

2. Square (nxn)
3. Column (mx1)
4. Row (1xn)
5. Scalar (1x1)

A matrix handle with no shape commitment can
hold a general (rectangular) matrix, which of
course includes all the other shapes as well.

Vector handles are always committed to column
shape, RowVector handles to row shape.

6.3.4 Size
Size can be variable or fixed, in one or both dimen-
sions. When a dimension is fixed, the matrix handle
must commit to a particular size for that dimension.

Vector handles are always committed to exactly
one column, RowVector to exactly one row. Even
a zero-length Vector has one column, that is, it is
0x1, a zero-length RowVector is 1x0.

6.3.5 Structure
Structure refers to an inherent mathematical (or at
least algorithmic) property of the matrix rather than
a storage strategy. Symmetry is the clearest exam-
ple of this; it is far more significant than just a way
to save storage and reduce operation count.

1. Full (the default)
2. Symmetric (includes Hermitian); implies

Square shape; Hermitian implies real di-
agonal.

3. Triangular (includes trapezoidal)
a. Upper/lower
b. Hessenberg (triangular except for

one sub- or super-diagonal)
c. Quasi-triangular (triangular except

for 2x2 blocks on the diagonal)
4. Diagonal (also symmetric & triangular);

rectangular shape is OK
5. Scalar (diagonal, and all diagonals have the

same value); doesn’t imply Scalar shape
6. Permutation (of rows or columns); implies

Square shape

6.3.6 Conditioning
Matrix condition is a statement about the numerical
properties of a Matrix. It can be set as a result of an
operation, or by a knowledgeable user. Simmatrix
is entitled to rely on the correctness of these asser-

tions, although it will try to check them when it is
possible to do so without sacrificing performance.

1. Unknown (the default)
2. Singular (expect terrible conditioning)
3. Full rank (for rectangular, this means rank

is the same as the shortest dimension)
4. Well conditioned (implies full rank)
5. Positive definite (symmetric only)
6. Orthogonal

Most operations will result in Unknown condition-
ing, which will not satisfy a more restrictive com-
mitment. In the case that a matrix handle commits
to particular conditioning, only operations which
preserve that conditioning will be successful.

6.3.7 Sparsity
This is a statement about the number and/or place-
ment of non-zero entries in a matrix. When we
know that few entries will be non-zero, exploiting
this fact can yield significant speed gains. It is par-
ticularly easy and efficacious to work with a matrix
whose non-zero elements cluster narrowly about
the main diagonal.

1. Full (default)
2. Banded: diagonal plus specified upper and

lower bandwidths
a. If symmetric or triangular struc-

ture, only one bandwidth
b. Bandwidth may be left uncommit-

ted or commit to particular band-
width

3. TODO: Sparse.

6.3.8 Storage formats
These refer to the physical layout of data in the
computer’s memory. Whenever possible we at-
tempt to store data in a format that enables use of
special high performance methods, such as those
available in the SimTK LAPACK/BLAS implemen-
tation.

1. Full (default for full, symmetric & triangu-
lar matrices)

a. Specify leading dimension (default
is number of rows)

b. Symmetric, triangular, diagonal
can exist within full storage

c. Specify upper/lower for symmetric
& triangular

14

d. Specify whether unit diagonal is
assumed

2. Packed (default for banded matrices, space
saving for symmetric & triangular but usu-
ally considerably slower than using full
storage)

a. Specify whether unit diagonal is
assumed

3. Householder product (LAPACK representa-
tion for orthogonal matrices)

4. Pivot array (set of integers used to repre-
sent Permutation matrices)

5. TODO: look into use of rectangular full-
packed storage (Gustavson & Wasniewski)
instead of LAPACK packed – claim is up to
20X faster.

6. TODO: should we include a stride as a data
storage option or is that just a view?

6.4 Matrix views
In addition to being an owner of element data, a
matrix handle can also serve as a view into some-
one else’s element data. A view provides a logical
matrix whose elements consist of a subset and/or
rearrangement of the elements described by the
data descriptor, sometimes augmented with a few
generic read-only data elements like 0, 1, and NaN.
Views are commonly used to select blocks or di-
agonals from within a large matrix or to provide a
matrix which appears to be transposed relative to
the original data. A Matrix view is an lvalue and
assignment to the view results in changes to the
actual elements of the original data.

The most commonly encountered views are those
created by operators such as transpose or row, col-
umn and submatrix selection.

A Matrix view is still a Matrix, and can be passed
to any Matrix argument. Views may be made of
views, with the logically correct result, however the
views are combined into a single view rather than
nested. So a Matrix always contains at most one
view.

Many views can be manipulated as efficiently as
the original data, particularly when the original is a
full-storage matrix. This applies only to bulk opera-
tions like multiplication and factoring; element-by-

element access may incur additional overhead
when going through a view.

6.4.1 Element filters
Whenever possible, we construct a matrix view
simply by finding another high-performance de-
scription of the desired subset of the data. For ex-
ample, a view which is a row of an ordinary dense
matrix can be represented as a “strided” one-
dimensional object, which is one of the formats
which can be manipulated efficiently by the BLAS
routines.

It is possible that a desired view cannot be ex-
pressed in one of the available high-performance
data descriptors. In that case the matrix supple-
ments the data descriptor with an element filter. An
element filter presents a logical matrix whose ele-
ments consist of a subset and/or reordering of the
in-memory elements, done in a way that does not
map to a supported high speed format. For exam-
ple, one could construct a view which picked out
particular elements, with arbitrary spacing and
ordering compared to the originals. These could
appear as a contiguous Vector, for example, al-
though the individual elements might be widely
scattered. Operations on such an object are unlikely
to be very efficient, but in many cases the clarity of
code will matter more.

6.5 Factorizations
For equation solving, one may always calculate a
matrix inverse and then multiply by it; however,
this is the mathematician’s approach rather than the
computational scientist’s and at times will not yield
acceptable results in finite precision arithmetic.
Simmatrix does allow that approach but it is not
recommended. As a better option for one-time use,
the divide operator is overloaded to allow casual
solution to Mx=b by writing x=b/M, which means
x=M-1b (or x=M+b if a pseudoinverse is neces-
sary). M can contain information about its condi-
tioning and structure which permits the operator to
make a reasonable choice of solution method; oth-
erwise, Simmatrix will make a conservative choice
yielding good numerical results but perhaps subop-
timal performance. In any case the divide operator
does not actually form the inverse, but works di-
rectly with the factorization which is numerically
preferable.

 15

For more control, or for repeated use of the same
matrix while factoring only once, one must con-
struct explicit factorizations and then solve equa-
tions using the factorization directly rather than
using it to invert the original matrix.

Matrix factorizations are objects which can be used
similarly to matrix inverses, but with optimal nu-
merical accuracy. The classes haven’t been defined
yet but will probably look something like
 Matrix M; Vector b1,b2,x1,x2; …
 FactorLU f(M); // LU factorization of M
 x1 = f*b1; // instead of x1=b1/M
 x2 = f*b2;

These can be made to yield the best possible results
with the highest efficiency, and the Factor classes
can provide many useful methods such as rank
determination. Typically the Factor constructor
will obtain the layout and known properties from M
and then call the appropriate LAPACK routines to
perform the factorization. Options exist to allow the
Factor class to steal the original memory from the
matrix being factored.

6.6 Available factorizations TBD
Square, well conditioned matrix: LU with pivoting

Symmetric, general matrix: LLT

Symmetric, positive definite: Cholesky (LDLT?)

Rectangular: QR with pivoting, LQ

Rectangular, ill conditioned: QTZ, SVD

Symmetric and nonsymmetric eigenvalues routines
and Schur factorization

Access to the underlying factors (without copy-
ing!).

Condition number, rank determination/setting, equ-
ation solve, inverse and pseudoinverse.

How error conditions are handled.

6.7 Operator reference TBD
Basic Matlab and BLAS equivalents.

Acknowledgments
This work was funded by the National Institutes of
Health through the NIH Roadmap for Medical Re-
search,1 Grant U54 GM072970.

References

1 Information on the National Centers for Biomedical
Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

16

http://nihroadmap.nih.gov/bioinformatics

	1 Purpose of this document
	2 Goals
	2.1 Speed
	2.2 Accuracy
	2.3 Expressive power
	2.4 API stability

	3 Design issues
	3.1 Naming
	3.2 Indexing
	3.3 More design issues TBD

	4 Scalars
	4.1 Precision types
	4.2 Numbers
	4.3 Scalar types
	4.4 Scalar summary

	5 Composite numerical types (fixed-size vectors & matrices)
	5.1 Memory layout of CNTs; packed CNTs
	5.1.1 CNT packing vs. compiler packing

	5.2 Construction and assignment of CNTs
	5.3 Operators on CNTs
	5.3.1 Element access
	5.3.2 Arithmetic

	5.4 Summary of CNTs

	6 Types for linear algebra
	6.1 Large Vector and Matrix types
	6.2 Available storage types TBD
	6.3 Matrix characteristics
	6.3.1 Matrix character commitments
	6.3.2 Element type
	6.3.3 Shape
	6.3.4 Size
	6.3.5 Structure
	6.3.6 Conditioning
	6.3.7 Sparsity
	6.3.8 Storage formats

	6.4 Matrix views
	6.4.1 Element filters

	6.5 Factorizations
	6.6 Available factorizations TBD
	6.7 Operator reference TBD

	Acknowledgments
	References

