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Abstract 
We discuss the SimTK toolset for basic mathematical algorithms. This 
includes numerical integration and differentiation, constrained and 
unconstrained optimization, and so much more … [This document is a 
work in progress.] 
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1 Introduction 
SimTK Simmath is part of the SimTK Core toolset and provides a powerful set 

of open source numerical methods for performing basic mathematical 

algorithms that arise during physically-based simulation, with a particular 

emphasis on biological structures. Simmath is accessible through a stable 

API* to programmers who work in a variety of languages. The 1.5 API is 

                                                        

 

* API: “Application Programming Interface,” i.e., a programming library. 



 

2 

object-oriented C++. C and FORTRAN APIs and wrappers for interpretive 

languages like Java and Python are planned. The full capability of this 

package will be built up in layers over time; this document covers the current 

capabilities and discusses future directions. 

1.1 Simmath ancestry 

Simmath is built on the proverbial shoulders of giants. It inherits code from 

many public domain sources, and contains custom SimTK code as well. The 

Simmath effort is intended to bring the best of these ideas together (and 

avoid some earlier mistakes) in a form that is practical for use in physics-

based simulation of biological structures over a wide range of scales. 

Simmath depends on several other core SimTK tools, including SimTK 

LAPACK and Simmatrix. 

1.2 Document conventions 

 

In order to allow ourselves the pleasure of delivering the occasional 

opinionated diatribe, while permitting the easily offended reader to 

avoid them, we have placed a “pontification warning” symbol like the one at 

the left at the beginning of such sections in the text. The end of these 

sections is marked with the “off our soapbox” symbol to the right. 

 

The symbol to the left is used to highlight sections which summarize 

earlier material.     

 

2 Background 
This is general material hopefully providing enough background for the rest 

of the document to make sense. 
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2.1 What are “numerical methods”? 

Numerical methods are techniques for solving mathematical problems which 

are typically difficult or impossible to solve analytically. The techniques 

implemented in Simmath can be either iterative or closed techniques which 

find a solution in a fixed number of steps. All numerical methods are subject 

to errors produced either by round off or by approximations made in the 

computations.  

2.2 What can you do with Simmath? 

Simmath provides tools for solving optimization, numerical integration and 

differentiation problems as well as common linear algebra problems such as 

solutions to linear systems of equations, linear least squares, eigenvalue and 

singular value problems. 

2.3 SimTK software conventions and style 

TODO: Binary compatibility, error handling, etc. etc. 

In code examples, we use blue for language keywords, red for SimTK-defined 

symbols, green for comments and black for everything else. Code samples will 

be in typewriter font, with output from running the examples shown in 

bold typewriter font. 

All SimTK-defined C++ symbols are in the SimTK namespace, meaning that a 

SimTK class like Optimizer is really named SimTK::Optimizer. You can 

use the full name or introduce the unadorned one into your software via C++ 

using statements, either “using namespace SimTK;” to introduce all 

SimTK-defined symbols, or more narrowly-targeted statements like 

“using SimTK::Optimizer;” which allows use of only the name 

“Optimizer” without the prefix. 

In the (rare) cases where it is not possible to use a namespace, such as with 

preprocessor macro names, we always start the name with the characters 

“SimTK_”, capitalized exactly as shown. We use the same convention for our 

C interfaces, since there are no namespaces in C. This can make for some long 

names, but we feel it is more important not to introduce conflicts with 
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existing code. A user of SimTK code is always free to define some shorter 

names to use in invoking the longer ones. 

2.4 Scalars, vectors and matrices 

Simmath makes use of the lower-level SimTK core module Simmatrix which 

provides support for SimTK::Vector and SimTK::Matrix classes, and 

high-performance basic operations on those objects. For a full description of 

the Simmatrix package, see the SimTK Simmatrix User’s Guide [URL]. 

However, here is a quick description providing enough information to 

understand the examples in this document. 

The SimTK-defined numerical data types appearing in the Simmath APIs are 

these (dropping the SimTK:: prefix for brevity): 

 

Real A single scalar value represented as a floating 
point number at default precision (currently 
always double). This is a typedef, not a 
separate class. 

Vector A resizable mx1 column vector of Real 
elements. 

RowVector A resizable 1xn row vector of Real elements. 

Matrix A resizable mxn matrix of Real elements (m 
rows, n columns) 

 

All standard arithmetic operators are overloaded so that they work as 

expected on data of type Vector and Matrix, with strict attention paid to the 

need for conformable dimensions. The “~” (tilde) operator is overloaded to 

indicate the transpose operation, so that for example the expression ~m 

means mT for a Matrix m. A column of a Matrix has type Vector (mx1) 

which is distinct from the type of a row, which is a RowVector (1xn). The 

transpose of a Vector has type RowVector and vice versa.  

As in C, the square brackets operator [] is used for indexing, and all indexing 

is 0-based. So v[i] or r[j] selects the ith element of a Vector or RowVector, 

and m[i] selects the ith row (a RowVector) from a Matrix. Unlike C, round 

brackets () are also available for indexing, with the same effect when applied 
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to Vector or RowVector but selecting a column rather than a row when 

applied to a Matrix. That is, m(j) selects the jth column of a Matrix m (a 

Vector). The operator m(i,j) selects the i-jth element of m.* All indexing 

operations produce “lvalues,” that is, they can appear on the left hand side of 

an assignment operator and the assignment will affect the original object. 

3 Linear algebra 
Linear algebra techniques solve problems involving one or more equations 

whose coefficients are linear. The set of equations for a linear system is 

expressed as a SimTK matrix. Many times the most effective technique, both 

in terms of speed and accuracy is to factor the matrix into one or more 

matrices which have special properties from which the solution can be easily 

found. For example the FactorLU class, which is discussed in more detail in 

the following section, is used to solve the general problem: Ax=b where A is a 

matrix, b is the right hand side vector and x is a vector of unknowns. To find 

x, the matrix A is first factored into two matrices L and U. L is a lower 

triangular matrix with ones on the diagonal and zeros above the diagonal and 

U is an upper triangular matrix with all zeros below the diagonal. Once L and 

U have been computed x can be found easily by back substitution of U with 

the right hand side vector b.  The vector x could have also been found by 

computing the inverse of A and then multiplying it by the right hand side 

vector b. However this is usually twice as slow as computing L and U and back 

substituting and is subject to more round-off errors. 

                                                        

 

* You can also select elements with the more “C-like” construct m[i][j], but that 

requires two operations (one to select the row and one to index that row). The m(i,j) 

form is substantially more efficient and should be used instead. Better yet, use vector 

and matrix operators rather than accessing individual elements whenever possible. 
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3.1 Solving Linear Systems (SimTK::FactorLU) 

3.2 Linear Least Squares (SimTK::FactorQTZ) 

3.3 Singular Value Decomposition (SimTK::FactorSVD) 

3.4 Eigen Values (SimTK::Eigen) 

4 Numerical differentiation 
(SimTK::Differentiator) 

Say you are in possession of software which is able to calculate the value of a 

function f(y) where in general f and y are vectors of lengths nf and ny 

respectively. You would like to obtain the nf x ny Jacobian, or matrix of partial 

derivatives, = ∂ ∂J f y , evaluated at some y=y0. By far the best way to obtain 

J, if you can do it, is to write a new piece of software which calculates J by 

analytical differentiation of the equations which underlie the original code for 

f. This yields J calculated to machine precision in the shortest possible 

amount of CPU time. An alternative is automatic differentiation (e.g. ADIFOR 

or complex step derivatives), which operates on f’s source code to produce 

source for J. These also give full machine precision although are typically 

much more expensive computationally than a hand-derived computation. 

However, analytic or automatic differentiation can be difficult in practice, and 

at times only an approximation of J is needed, so one might hope for a 

numerical method which could approximate J at run time given only the code 

for f. Such methods are called “numerical differentiation” and Simmath 

provides a Differentiator class for performing this operation, using 

methods which attempt to balance approximation error and roundoff error to 

provide a good estimate of J with a reasonable amount of computation.  

To use Differentiator, one supplies the function to be differentiated by 

deriving a concrete object from one of Differentiator’s abstract function 

classes. The most general class is JacobianFunction, which handles the 

problem as described above. There are also simpler classes specialized for 

scalar-valued functions: GradientFunction for scalar functions f(y) of 
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multiple parameters and ScalarFunction for ordinary scalar functions f(y) 

of one scalar variable. These classes are nested within Differentiator, so their 

actual names are: 

Differentiator::JacobianFunction 
Differentiator::GradientFunction 
Differentiator::ScalarFunction 
 

These all derive from a common base class Differentiator::Function, 

which does not normally appear directly in user programs, but provides 

services which are common to all functions. 

4.1 Example 

Here is a simple example in which the user function is the scalar function 

f(x)=sin(ωx) where ω is some specified constant. We want to evaluate the 

derivative f′(x)=df/dx at a particular value x. The correct analytical answer is 

f′(x)=ωcos(ωx), which we can use to check the approximation. 

Below is a complete program that uses the Differentiator class to 

compute an approximate derivative of the above function and compare it with 

the analytical solution. The program’s output is shown in bold at the end. 
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#include "simmath/Differentiator.h" 
#include <cstdio> 
#include <cmath> 
#include <exception> 
using SimTK::Real;  
using SimTK::Differentiator; 
 
// user-written class 
class SinOmegaX : public Differentiator::ScalarFunction { 
public: 
    SinOmegaX(Real omega) : w(omega) { } 
 
    // Must provide this virtual function. 
    int f(Real x, Real& fx) const { 
        fx = std::sin(w*x); 
        return 0; // success 
    } 
private: 
    const Real w; 
}; 
 
int main () { 
try 
  { const Real w=3; 
    SinOmegaX      sinwx(w); 
    Differentiator dsinwx(sinwx); 
 
    const Real x = 1.234; 
    Real exact  = w*std::cos(w*x); 
    Real approx = dsinwx.calcDerivative(x); 
 
    std::printf("exact =%16.12f\n", exact); 
    std::printf("approx=%16.12f err=%.3e\n",  
        approx, std::abs((approx-exact)/exact)); 
 
    return 0; 
  } 
catch (std::exception& e) 
  { std::printf("FAILED: %s\n", e.what()); 
    return 1; 
  } 
} 
exact = -2.541115991807 
approx= -2.541115573494 err=1.646e-007 
 

Next we will look at the Differentiator class and its nested class 

Differentiator::ScalarFunction. 

TBD 

4.2 Accuracy considerations 

Accurate calculation of the result J requires knowledge of the relative 

accuracy εf which the function f is computed. Normally we assume that f is 

being computed exactly to within machine precision. However, if f itself is 

being approximated in some way you can supply an estimate of εf in the 



 

  9  

Function class and the numerical differentiation will proceed taking that 

into account. 

4.3 Available algorithms 

Currently there are two available algorithms: forward difference and central 

difference. Forward difference computes a first-order estimate of J, with 

accuracy of εJ≈ fε  at a cost of one evaluation of f per variable iy ∈y . Central 

difference computes a second-order estimate of J, with accuracy εJ≈
2
3

fε , at a 

cost of two evaluations of f per variable. In contrast, automatic differentiation 

using ADIFOR or complex step derivatives provides J to full accuracy εf, at a 

cost of about three evaluations of f per variable. Analytic differentiation also 

provides full accuracy, but in some cases can be obtained much more 

efficiently. 

To put some numbers on this, if the original f is calculated with relative 

accuracy εf≈10-14, typical for complicated double precision computations, then 

the forward difference method would give J with relative accuracy no better 

than εJ≈10-7. Central difference could achieve accuracy εJ≈4x10-10. These 

represent best-case numbers, and while often the methods will come close to 

these levels, in practice these simple algorithms can do much worse with no 

warning. In contrast an analytic or automatic differentiation method will 

reliably yield εJ≈εf. 

5 Time stepping and numerical integration 
(SimTK::TimeStepper, SimTK::Integrator) 

Simulation of a biological system often entails solving for the trajectory of 

that system as it moves through time. We start at a known point of the 

trajectory (that is, a known time and state) called the initial conditions, and 

evolve the trajectory through time in accordance with a mathematical model. 

The trajectory is computed as a sequence of steps, where the time and state at 

the end of each step is used to create the initial conditions for the next step. 

This procedure is called time stepping. Numerical integration is a crucial 

ingredient of time stepping used to advance through “smooth” intervals of the 

overall trajectory.  



 

10 

Mathematical models for biological systems in general comprise both 

continuous and discrete equations. Such systems are referred to in the 

simulation literature as hybrid systems. The job of a time stepper is to 

advance the hybrid system through time, in accordance with its mathematical 

model, generating output when appropriate. The job of the time stepper’s 

numerical integrator is twofold: (1) to correctly advance the trajectory during 

intervals in which only the continuous part of the model is changing, and (2) 

to detect events which indicate that the discrete part of the model may need 

updating. The integrator returns control to the time stepper when either (1) a 

specified report time has been reached, or (2) an event has been detected. 

The integrator must achieve a user-specified level of accuracy during the 

continuous interval, and chooses its internal step sizes accordingly. During a 

single interval, the integrator may take many internal steps or may take a 

single internal step which reaches or even passes the report time. In the latter 

case an accurate, interpolated trajectory point is returned to the time stepper. 

It is possible for a single internal integrator step to satisfy several user-

requested report times; the system’s continuity is uninterrupted by reporting. 

When an event is detected, the integrator determines the precise time at 

which that event occurred, completes the current continuous interval and 

then returns control to the time stepper. The time stepper invokes the hybrid 

system’s event handler, which in general will make discontinuous changes to 

both continuous and discrete variables. Handling events sets up a new set of 

initial conditions for the next continuous integration interval; however, those 

conditions will be different than those at the end of the preceding interval. In 

practice we expect the continuous segments to be long and the events 

relatively rare, although it is possible to define a system which has no 

continuous phases at all and simply advances time discrete event to discrete 

event. 

To clarify this process, Figure 0 shows a continuous segment of a time 

stepping trajectory, bracketed by discontinuous events. Please refer to the 

figure for the following discussion. Return of control from the integrator to 
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the time stepper is represented by tall green lines; internal integrator steps 

are represented by short red lines. * 

Starting with the initial condition at tn (solid green line), the time stepper 

initiates integration by asking for a report at time tn+1. For accuracy reasons, it 

takes the integrator two internal steps si and si+1 before it reaches tn+1, which it 

overshoots somewhat, so it returns control to the time stepper at time tn+1 

with an interpolated value for the state. The integrator’s internal context is 

maintained between calls, however, so when the time stepper asks for the 

next report time tn+2 the integrator is able to start up where it left off (at the 

end of step si+1). It then takes two more steps si+2 and si+3 before passing the 

                                                        

 

* The figure does not show the internal trial steps that an error controlled integrator 

would have taken and rejected along the way; only the accepted steps are shown. 

y 

tn 
tn+3 

Initial value 
y(tn) 

y(t) 

Figure 1: Numerical integration over a continuous segment of a time-
stepping trajectory. The continuous region starts at tn and terminates at
tevent. Each tall green line represents a return of control to the time stepper:
thin dotted ones are caller-requested reporting times; the thick dotted
green line is an unrequested return of control just prior to event occurrence
and just after event handling. 

An event 
occurs here

tn+5 tevent 

internal steps

reporting times

si si+1 si+2 si+3 

si+4 

si+5 

tn+2 tn+1 tn+4 
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next report time at tn+2. It returns control with an interpolated state at  tn+2 

and is then able to return again immediately when asked for tn+3 without 

taking another internal step, because step si+3 was long enough to cross two 

report times.  

The time stepper than asks for report time tn+4. However, during the next 

internal step (si+4), an event is detected at time tevent, terminating that internal 

step. But before the event can be reported, the integrator must first return 

control to the time stepper with an interpolated trajectory point at report time 

tn+4, since that occurred before the event. The time stepper next requests 

report time of tn+5, but the integrator returns prematurely at tevent (actually 

slightly prior) telling the time stepper that an event is about to occur. The 

time stepper then invokes the event handler to produce a discontinuously-

modified state at tevent, which is used to restart the integrator. The next 

integrator call successfully reaches reporting time tn+5, which is achieved by 

the integrator’s internal step si+5. 

Report times can be seen to have no effect on the evolution of the system.* 

That is, an integrator will take the same sequence of internal steps regardless 

of the requested report times during a simulation. Instead, the size of internal 

steps is determined by accuracy requirements (with more accuracy requiring 

smaller steps) and the occurrence of events. Internal steps typically involve 

expensive computation, while the interpolations necessary to satisfy report 

times are relatively cheap.  

Each internal step represents an irreversible advancement of the continuous 

solution in time. An error-controlled integrator may also take internal trial 

steps which are ultimately rejected as not being sufficiently accurate. An 

important consequence of these trial steps is that, from the point of view of 

the system being integrated, time will be seen to move forward and backward 

before being irreversibly advanced. That means that the system (which is of 

course called during trial steps) must not depend on time increasing 
                                                        

 

* In practice this is not strictly true since an integrator may perform a little “rounding 

off” of internal steps to avoid having to interpolate over very small slivers of time. 



 

  13  

monotonically. Examples of some common behaviors which are not 

permitted are: the setting of flags, updating of neighbor lists, or any other 

discrete state change not under control of the time stepper. 

An integrator maintains only a small, sliding window of trajectory 

information, just enough to allow interpolation to reporting intervals between 

internal steps and, for some integrators, recent-past information used to 

predict the near-future part of the trajectory. Other than that, the past is 

forgotten except as it is explicitly represented in the current values of state 

variables. Of course an application program may save the trajectory for as 

long as desired, but the integrator has little need for past state once time has 

advanced. 

5.1 The continuous system 

The continuous part of a SimTK System provides the following equations: 

 [ ] ( , )dy f t y=&  (5.1) 

 [ ]0 ( , )dc t y=  (5.2) 

 [ ] ( , )de e t y=  (5.3) 

Here t is time, y contains the continuous state variables, and d contains the 

discrete state variables which are constant during a continuous interval. 

y dy dt=&  is the time derivative of the continuous state variables y. Below, we 

will usually drop the [d] from the function names for brevity, but it is 

important to remember that the functions can change between continuous 

intervals. 

During an interval in which d is constant, equation (5.1) is a set of ordinary 

differential equations with the special property that its exact solution lies on 

the manifold defined by the set of algebraic equations (5.2). This class of 

system is called a differential equation on a manifold. The above property is 

equivalent to the statement ( , ) 0 ( , , ) 0c t y c t y y= =⇒ & &  whenever y&  is 

calculated using equation (5.1); that is, whenever y lies in the manifold then 

( , )f t y returns y&  tangent to the manifold. Thus perfect integration of 

equation (5.1) would automatically maintain equation (5.2); it is only because 
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we cannot integrate (5.1) perfectly that we must deal with the constraint 

manifold explicitly. 

Equation (5.3) is a set of scalar-valued event trigger functions designed to 

change sign precisely when the corresponding event occurs; these will be 

discussed in the next section. 

At the beginning of a continuous interval I of a trajectory we are given initial 

conditions 0
It , 0 0( )I Iy y t= , and Id  which satisfy the algebraic constraints, that 

is, 

 [ ]
0 00 ( , )

Id I Ic t y=  (5.4) 

We then calculate the starting value for the event triggers: 

 [ ]
0 0 0( , )

II d I Ie e t y=  (5.5) 

Our numerical integration methods then ensure that (5.2) remains satisfied 

as the trajectory evolves (and dI stays constant) during the continuous 

interval I, and the system remains continuous as long as 

 0sign[ ( , )] sign[ ]I
te t y e=  (5.6) 

for all event triggers, with 0
It t>  and sign[x]  a vector whose elements are -1, 

0, 1 depending in the obvious way on the signs of the elements of its vector 

argument x. 

5.2 The discrete system 

The discrete variables d are updated by the time stepper only at specific times 

or upon occurrence of specific events detected by the integrator. The 

occurrence of events is detected using the set of scalar-valued event trigger 

functions (5.3). The integrator’s task is to isolate the precise time at which a 

sign change is first seen and return control to the caller with the internal state 

advanced just to that point. That is, the integrator declares that an event has 

occurred at time t when 

 sign[ ( , )] sign[ ( , )]t te t y e t y εε −≠ −  (5.7) 

for some suitably small interval ε and following the notation described for 

equation (5.6). 
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It is likely that not all sign changes are significant for the system being 

simulated. For example, an event may be triggered only upon a “rising” 

transition (sign[ei(t)]>sign[ei(t–ε)]), or “falling” transition 

(sign[ei(t)]<sign[ei(t–ε)]), or transition to zero or away from zero, for some 

event trigger i.  

When a triggering transition occurs, the integrator returns control to the time 

stepper with a status indicating that an event is about to occur (at a time just 

prior to the event occurrence). The states just prior to and just at the trigger 

detection are available. But the state at which the event trigger was detected is 

not immediately suitable for further time stepping, because it is in an 

inconsistent condition. Instead, an action must be performed (called 

handling the event) which may include discrete (discontinuous) updates to 

the state. Integration can then be resumed with a modified set of initial 

conditions for the next step. So the time stepper invokes the system’s event 

handler on the state in the condition where the event(s) have triggered. The 

handler modifies the state discontinuously, creating a valid state in which the 

event(s) are no longer triggering, and then the integrator is restarted at the 

event occurrence time with the “fixed up” state. 

Here is a simple example of an event trigger function. Suppose we want to 

record in a boolean discrete variable dflag whether two points p1 and p2 of our 

system ever came closer than a distance r0 during a simulation, such that once 

dflag is true it remains true for the rest of the simulation. The setting of that 

flag could, for example, affect subsequent forces or visualization, or could 

simply be reported at the end. Assume the system provides a function 

r=dist(y,p1,p2) which, given the current state, calculates the distance r 

between two points. Consider the scalar function 

 1 2 0( ) ( , p , p )ie y y r= −dist  (5.8) 

as a candidate trigger for this event. It passes through zero just as the points 

reach a distance of exactly r0 apart. We can provide this function to the 

integrator, and request that control be returned when it passes through zero. 

When our event handler is invoked a result of this trigger, it sets dflag to true 

and then returns control to the integrator. 
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You may already have noticed several problems with using equation (5.8) as a 

trigger. It passes through zero both on approach and on separation. It will 

never pass through zero if the points start out close together and stay that 

way. It will continue to interrupt control uselessly long after dflag has been set. 

What we really want is a trigger that will occur only when the points are 

approaching, and only if dflag hasn’t already been set, like this: 

 
flag

flag 1 2 0

, 0
( )

! , ( , p , p )

(falling only)

i

d
e y

d y r
⎧

= ⎨ −⎩ dist  (5.9) 

Then the remaining problem is how to deal with points that are already less 

than r0 apart at the beginning. That is not a transition event and cannot be 

handled as part of an event trigger. Instead, an initial conditions analysis 

must be done prior to beginning the simulation to make sure that if the 

system starts out with the points close together, the initial state will already 

have dflag set.  

The zero crossings of continuous event trigger functions will be isolated 

quickly; discontinuous event triggers are allowed but have to be localized by 

“binary chopping” which is more expensive. The next section discusses in 

detail how we localize events. 

5.2.1 Event localization 

Events occur instantaneously, at a particular moment in time, say tevent. 

Numerical integrators, on the other hand, advance time in a series of finite-

width steps. In general it is prohibitively expensive (not to mention 

impossible) to find tevent exactly. Instead we ask the integrator to localize the 

event to within a small time interval (tlow,thigh], which we call the event 

window. We are certain that the event window contains the actual time of 

occurrence, with tlow < tevent ≤ thigh. That is, we are sure that the event has not 

occurred by tlow, and that it has occurred by thigh, but we’re not sure of the 

precise value of tevent. With well-behaved event trigger functions the integrator 

can provide a reasonably good guess as to the exact time; otherwise the best 

guess is that tevent is in the middle of the window.  
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Finite-width localization windows create a likelihood that multiple events will 

occur within the same window. We cannot say with certainty in what order 

these events occurred, so for precise treatment they must be considered 

simultaneous. If an approximate ordering is acceptable then the integrator’s 

tevent guesses can be used to order the events within the window, but even 

those may be identical for some events, and in any case the integrator cannot 

guarantee that the events actually occurred in the order they appear when 

sorted by estimated time of occurrence. If more precise information is 

required, then the localization window must be made narrower, at the cost of 

increased computation time. 

Once an event has been localized to an acceptable tolerance, the integrator’s 

stepTo() method will return control to the time stepper at time tlow, with a 

status indicating that the current state is the last one before an event occurs. 

Generally that marks the end of a continuous interval. The time stepper will 

next invoke the system’s event handler on the state at thigh with an indication 

of which events occurred within the event window. Note that this state at thigh 

is inconsistent in some way; that is, it contains events that have triggered but 

have not been processed. Thus it is not a legitimate point along the system’s 

trajectory and should never be returned to the caller. For discussion we label 

this “improper” state hight− . The event handler will correct the state 

discontinuously (potentially updating both discrete and continuous 

variables), creating a modified state with time still at thigh but not triggering 

any events. We label the modified state hight+ . Once the system’s handler 

returns, the state  hight+  can be output as part of the trajectory and used as the 

initial condition for the next continuous interval. Thus the time stepper 

generates the sequence of legitimate trajectory points tlow, just prior to event 

occurrence, immediately followed by hight+ which is the time at which the 

event(s) are defined to have occurred, but after the event handler has 

modified the state to deal with those events. Consecutive intervals I and I+1 

will consist of trajectory points 

1 1 1 1
0 1 low high high 0 1 low[ , ,..., , ]( )[ , ,..., , ]I I I I I I I I

n mt t t t t t t t t t− + + + + +≡  

with round brackets indicating that hight− is not part of the trajectory. 
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5.2.2 Event handlers 

Event handlers are solvers which are able to take a state in an “event(s) 

triggered” condition, resolve the event(s), set up appropriate event triggers 

for the next interval, and report back to the time stepper the degree to which 

the system continuity has been altered, so that the integrator can be 

reinitialized appropriately. 

An event handler can also indicate that the simulation should be terminated, 

in which case the time stepper will return the final state to its caller and 

disallow further time stepping. 

5.2.3 Other event types 

Not all events have to be localized. There are several special case events: 

• events which are simply a known function of t (“scheduled events”) 

• “end of step” updates (“time advanced events”) 

• external events (e.g., clock time, user interrupt) 

• termination (e.g. reached final time) 

Scheduled events are handled outside the integrator simply by allowing the 

time stepper to specify with each stepTo() call a maximum time to which 

the integrator may advance. When this time is reached, control is returned to 

the time stepper. The time stepper can then declare that a scheduled event 

has occurred, call the system’s event handler, and reinitialize the integrator if 

continuity has been violated. 

Time advanced events occur whenever the integrator has advanced time 

irreversibly, that is, at the end of every successful internal integration step. 

These are generally restricted to discrete variable updates which do not affect 

the continuous system, such as min/max values used only for reporting. 

Normally the integrator does not return control at the end of a step; however 

the hybrid system can request that if necessary, in which case “end of step” is 

treated like any other event. 

External events are typically handled through the end-of-step event 

mechanism. For example, the end of step function can look at the clock, 

keyboard events, etc. and respond accordingly. 
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Finally, a termination event occurs either when the integrator advances to a 

designated “final time” for the simulation, or when an event handler indicates 

that the simulation must be terminated for some other reason. 

5.2.4 Event trigger transition details 

This section probably covers more than you really want to know about event 

triggers. But if you run into some mysterious behavior regarding your event 

trigger functions at some point, you may want to come back to this section. 

Normally event triggers are used to detect zero crossings. That is, the event in 

question occurs when the trigger’s value goes from negative to positive or vice 

versa at some moment in time. Zero itself has no special meaning, and in a 

mathematical world it would never actually be encountered when localizing to 

a finite-width time window. However, in a computational world landing 

exactly on zero during localization is not only possible but certain to happen 

now and again. (See Figure 0 for an illustration.) This leads to the possibility 

of seeing a -1 0 sign transition while localizing a -1 1. This can cause 

difficulties since the next step will see a 0 1 transition which could trigger a 

spurious second event. 

 

An Integrator must take great care not to report two events in the above 

situation, since there is only a single zero crossing despite appearances. 

On the other hand, many event trigger functions are most naturally expressed 

discretely, often as boolean functions which toggle between “false” and “true” 

when an event occurs. Others may be designed to have three states such as 

Mathematical function 
changes continuously; 
crosses zero at a point 

Computational function 
changes discretely; stays 
zero for finite interval 

-1 1 
-1 0 

0 1 

Figure 2: a continuous event trigger function appears 
discrete in finite precision arithmetic. 

0 
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“above,” “below,” and “on the surface.” In either case, these triggers will have 

a significant “zero” state which is not an artifact of finite precision arithmetic. 

In those circumstances the sign transitions -1 0 and 0 1 can be meaningful 

and the caller may need to be notified at each transition. Figure 0 shows two 

examples. 

 

To allow the modeler to distinguish between accidental and purposeful 

zeroes, the System can optionally provide information about each of the event 

trigger functions. This information can include a specification of which sign 

transitions are considered significant for each trigger function. If only -1 1 

and/or 1 -1 are specified, then we consider the event trigger function to be 

continuous and the integrator will only report a single event as the trigger 

passes through zero, even if it accidentally lands exactly on zero during 

localization. On the other hand, if the System tells us that zero is a significant 

value, then we assume that the trigger function has a discrete zero “zone” (or 

“deadband”) and we will report transitions to and from zero if they are seen 

during localization. Error! Reference source not found. below shows 

how observed transitions are treated based on whether rising or falling 

transitions have been specified, and whether zero is significant. Rising and 

falling transitions are disjoint so these specifications can be combined to 

allow a single event trigger to detect both rising and falling transitions. 

The first column in Table 1 lists the possible specifications that a System can 

make for the transitions of interest (rising/falling; continuous/discrete). The 

second column lists the transitions that might be observed initially, prior to 

Trigger function with deadband Boolean trigger function 

-1 0 

-1 0 

Figure 3: two intentionally-discrete event trigger 
functions. 

0 1 
0 1 0 1 

0 
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localization. Typically, an initial step will be much wider than a localization 

interval so a -1 1 or 1 -1 transition is most likely to occur. The third column 

shows for each pre-localization observation the possible post-localization 

transitions (transitions to and from zero always localize to the same 

transition). The final column shows what transition will be reported back to 

the caller as having been seen. Note that although a wider set of transitions 

may be recognized during localization, the final report must come from the 

set that the system specified as interesting. For example, if a -1 0 transition 

is seen after localization, but the system only watches for -1 1, then we’ll 

report -1 0 as an instance of -1 1. 

Table 1: handling of sign transitions 

Significant sign 
transitions 

Transition seen 
before localization 

Localized 
transition 

Reported 
transition 

Rising 
-1 1 

continuous trigger 
-1 1 any rising -1 1 
-1 0 (unchanged) -1 1 
0 1 no event 

discrete zero 
adds -1 0, 0 1 

-1 1 any rising report localized 
transition 

-1 0 (unchanged) -1 0 
0 1 (unchanged) 0 1 

Falling 
1 -1 

continuous trigger 
1 -1 any falling 1 -1 
1 0 (unchanged) 1 -1 
0 -1 no event 

discrete zero 
adds 1 0, 0 -1 

1 -1 any falling report localized 
transition 

1 0 (unchanged) 1 0 
0 -1 (unchanged) 0 -1 

 

Notes: (1) For a continuous event trigger function that accidentally hits zero 

exactly, the transition to zero is treated as a zero crossing, but the subsequent 

transition from zero is ignored. (2) For a discrete-zero event trigger, if the 

function doesn’t stay zero long enough then the zero transitions may be 

missed and a zero crossing (i.e., -1 1 or 1 -1) will be reported instead. 

5.3 Accuracy, scaling, tolerances 

The time stepper is capable of achieving different levels of accuracy when 

simulating a particular system, with more accuracy requiring more 

computation time. Our goal is to allow application programmers to deliver to 
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their end users the ability to control the accuracy level with a single, 

physically meaningful scalar value α, a fraction in the range 0<α≤1. A typical 

value is α=0.001 (0.1%) meaning that the integrator should produce results 

which are “within 0.1%” of the “perfect answer.” (These phrases are in 

quotations because they are much easier to say than to define precisely!) 

Equivalently, one can interpret α as specifying the number of significant digits 

nd desired in the results, with 10logdn α= − . For example, 1e-5 5dnα = ⇒ = . 

This goal is achievable only imperfectly, since in general accuracy is difficult 

to specify, to measure, to control, and even to define precisely. Reasonable 

users can disagree about exactly what they mean by “1% accuracy.” 

Nevertheless we feel it is important to provide a single “knob” for a user to 

turn that delivers “more accuracy” at higher cost or “less accuracy” at lower 

cost, in a way that at least attempts to capture what at typical user might 

mean by these terms. The alternative of exposing the many complex issues 

involved to the end user assumes a kind of specialized expertise that would 

severely limit our intended audience. Instead, we expose these troubles to the 

application programmer in a way that allows us to collect information that 

can be used to define the Holy Grail control α. 

The primary difficulty we encounter is that the variables and equations 

defining the user’s system are not evenly weighted. We expect that in most 

cases the programmer who is using SimTK::TimeStepper will know 

something useful about the various weights that will help us define α. To 

accommodate that, we allow specification of four kinds of scaling 

information: 

• the characteristic time scale τ 

• a weight wi for each continuous state variable yi 

• a tolerance ti for each of the constraint errors ci 

• a localization time window width li for each event ei 

Each of these quantities is defined below to be a property of the system 

(model), independent of the accuracy α with which the system is being 

simulated. The idea is to define for each quantity a “unit error” to which the 

accuracy requirement can then be applied. The integrator treats these values 

as constant during each integration step. However, we expect the state 
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variable weights wi to change (slowly) as the trajectory (time and state) 

evolves, so the integrator will request updated weights from time to time 

during a continuous interval, according to some criteria. Time scale, 

constraint tolerances, and localization requirements, on the other hand, are 

expected to be independent of trajectory and are fixed once the instance 

variables are frozen prior to the start of a continuous interval within the 

simulation. 

5.3.1 Time Scale 

There is a characteristic time scale τ of the system which the programmer may 

provide to convey to the integrator the smallest “time of interest” for the 

study. This should be the minimum time interval over which “interesting” 

changes are expected to occur. The integrator may use this for selecting the 

initial step size and defaults for other scaling information may depend on τ. 

5.3.2 Weights and constraint tolerances 

We are given a set of weights wi≥0 for each yi and a set of tolerances ti>0 for 

each of the constraint errors ci. Let W be a diagonal matrix with the wi’s on its 

diagonal, and T be a diagonal matrix with the reciprocal tolerances 1/ti on its 

diagonal (we also call these reciprocal tolerances “constraint weights”). Then 

given the fractional accuracy specification α (e.g. α=0.1%), the integrator is 

required to solve for the trajectory y(t) such that each integration step 

maintains the local error |W·εy|RMS ≤ α and constraint error |T·c(t,y)|RMS ≤ α 

at all times. Here εy is the vector of estimated absolute errors in each state variable 

y, as estimated by the integrator for a trial step under consideration. 

5.3.3 Event localization window 

Event localization requires for each event trigger function ei a “unit” 

localization requirement li (in units of the system’s time scale τ) which is then 

narrowed by the accuracy requirement α so that the integrator localizes event 

ei to a time interval of width ε ≤ ατli. Thus when the integrator reports that a 

set E of events has triggered in the event window (tlow,thigh], it guarantees that 

high low ,it t l iατ− ≤ ∀ ∈Ε . 
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5.3.4 Default accuracy, scaling and tolerances 

The defaults are as follows:  

accuracy
time scale

weights
constraint tolerances

localization windows

 

0.001
1
1, 0

0.1, 0
0.1, 0

i y

i c

i e

w i n

t i n
l i n

α
τ
=
=
= ≤ <

= ≤ <
= ≤ <

 

We also support a number of different schemes for defining the weights. The 

conventional “rtol, atol” scheme is achieved by defining 

1
max( , )i

i i

w
y u

=  

where ui represents “one unit” of error in yi (a typical value would be 0.1). 

This is then equivalent to rtol=α and atoli= αui. 

6 Numerical optimization (SimTK::Optimizer) 
The SimTK::Optimizer class can be used to numerically solve various 

optimization problems. Optimization methods can be used to find the optimal 

solution to some problem. For example, what set of coordinates would give 

the minimum energy configuration for this molecule? 

The algorithms implemented in the Optimizer class search for points which 

are a minimum of a, user supplied, objective function. The algorithms start 

from some initial point and iteratively search for points which reduce the 

objective function. The algorithms terminate when the objective function 

stops decreasing. Note that the minimum found by the Optimizers is 

sometime a local minimum and not a global minimum. Therefore, the point 

which the algorithm starts searching from is important. This is illustrated in 

Figure 2 below. 
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Note that if our goal was to find the maximum of some objective function f(x). 

We could still use the existing optimizers by using –f(x) as our objective 

function. 

Sometimes the optimization problem has constraints on the objective 

function.  

 

Consider the simple example below: 

 

The following objective function: 

( ) ( )2 2

1 25 1x x+− −  

is subject to two constraints: 

C1:            02
21 ≥− xx  

Global minimum 

Local minimum 

Global maximum 

Local maximum 
Initial point 

P1 

P2 

Objective 

function 

Figure 2: The optimizer begins searching along the objective 
function starting at the Initial point. It moves first to point P1 then 
point P2 which reduce the objective function. Eventually the 
optimizer terminates at the Local minimum when it cannot reduce 
the objective function any further.  
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C2: 0221 ≥++− xx  

Has an optimal solution at:   X = (4, 2) 

Figure 3 shows a graph of this problem. The two constraints (C1, C2) bound 

the space of possible solutions to a feasible region which is shown in gray. The 

optimal solution to the problem must be a point within this feasible region 

which has the smallest value of the objective function.  

 The two dashed circles indicate the constant value contours of our objective 

function. The smaller circle has a value of 1.0 and the larger circle has a value 

of 4.0. 

 

 

 

 

 

 

 
 

Optimization problems are solved in SimTK using two classes, the Optimizer 

class, and the OptimizerSystem class. The Optimizer class allocates an 

optimizer and sets the options for the optimizer. The OptimizerSystem class is 

used to describe the optimization problem.  

OptmizerSystem is an abstract class which has methods for computing the 

objective function, the gradient of the objective function, the constraints, and 

the constraint Jacobian. The application needs to define a concrete class that 

subclasses from OptimizerSystem. As a minimum the concrete class must 

1x

2x

Figure 3: Graph of problem to finding optimal solution to 
the problem described above. The two constraints are 
shown in red and the feasible region is show in grey. The 
contours of the objective function are shown as dashed 
blue circles. 

Optimal Solution 

C1 

C2 
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supply an implementation of the objectiveFunction() method which 

computes the objective function for a given set of parameters. An instance of 

the concrete class is passed as an argument for the constructor of the 

Optimizer class. The Optimizer class uses the information from the 

OptimizerSystem concrete class to select the best optimizer algorithm and to 

allocate any workspace that the algorithm may need.  The application can set 

various parameters for the optimizer such as convergence tolerance. 

Once the Optimizer has been instantiated and the options set the solution can 

be computed by calling the Optimizer class’s optimize() method. 

Optimizer.optimize() takes a SimTK::Vector which sets the initial point the 

optimizer will begin searching from. If the optimizer is able to find a solution 

it will return the parameters for the optimal solution in the Vector. 

Optimizer.optimize() will also return the optimal value of the objective 

function.  

The code for using the Optimizer class to solve this problem is shown below.  

#include "Simmath.h" 
#include "Optimizer.h" 
#include <cstdio> 
#include <exception> 
using SimTK::Real;  
using SimTK::OptimizerSystem; 
using SimTK::Optimizer; 
 
 
// user-written class 
class ProblemSystem : public OptimizerSystem { 
public: 
 
    // Must provide this virtual function. 
   int objectiveFunc(  const Vector &coefficients, const bool 
new_coefficients, Real& f ) const { 
      const Real *x; 
      int i; 
 
      x = &coefficients[0]; 
 
      f = (x[0] - 5.0)*(x[0] - 5.0) + (x[1] - 1.0)*(x[1] - 1.0); 
      return( 0 );  
   } 
   int gradientFunc( const Vector &coefficients, const bool 
new_coefficients, Vector &gradient ) const{ 
      const Real *x; 
 
      x = &coefficients[0];  
 
     gradient[0] = 2.0*(x[0] - 5.0); 
     gradient[1] = 2.0*(x[1] - 1.0); 
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     return(0); 
 
 
  } 
  /*  
  ** Method to compute the value of the constraints. 
  ** Equality constraints are first followed by the any inequality 
constraints 
  */  
  int constraintFunc( const Vector &coefficients, const bool 
new_coefficients, Vector &constraints)  const{ 
      const Real *x; 
 
      x = &coefficients[0];  
      constraints[0] = x[0] - x[1]*x[1]; 
      constraints[1] = x[1] - x[0] + 2.0; 
 
      return(0); 
  } 
 
 
  /* 
  ** Method to compute the Jacobian of the constraints. 
  ** 
  */ 
  int constraintJacobian( const Vector& coefficients, const bool 
new_coefficients, Matrix& jac)  const{ 
      const Real *x; 
 
      x = &coefficients[0];  
      jac(0,0) =  1.0; 
      jac(0,1) = -2.0*x[1]; 
      jac(1,0) = -1.0; 
      jac(1,1) =  1.0; 
 
 
      return(0); 
  } 
 
 
   ProblemSystem( const int numParams, const int numConstraints) : 
 
         OptimizerSystem( numParams, numConstraints ) {} 
 
}; 
main() { 
 
    Real f; 
    int i; 
 
    /* create the system to be optimized */ 
    ProblemSystem sys(NUMBER_OF_PARAMETERS, NUMBER_OF_CONSTRAINTS ); 
 
    Vector results(NUMBER_OF_PARAMETERS); 
 
 
    /* set initial conditions */ 
    results[0] = 5.0; 
    results[1] = 5.0; 
 
   try { 
 
      Optimizer opt( sys );  
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      opt.setConvergenceTolerance( .0000001 ); 
 
      /* compute  optimization */  
      f = opt.optimize( results ); 
   } 
   catch (const std::exception& e) { 
      std::cout << "ConstrainedOptimization.cpp Caught exception:" << 
std::endl; 
      std::cout << e.what() << std::endl; 
   } 
 
 
    printf("Optimal Solution: f = %f   parameters = %f %f 
\n",f,results[0],results[1]); 
 
 
} 
 
Optimal Solution: f = 2.00000 parameters = 3.99998 1.999998 
 

Sometimes the optimization problem has constraints on the parameters of 

the objective function. For example, the potential energy of a protein may be 

expressed as a function of the bond angles of the protein. Steric clashes may 

limit the bond angles of a protein to a range of valid values. Therefore 

minimum energy configuration of the protein would be constrained by these 

angles. It may be easier to express these constraints as limits on the values of 

our objective function parameters. This would cause the optimizer to search 

for a minimum only from within this feasible region.  
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For example, if the parameter 1x  in our example had limits of 0.30.1 1 ≤≤ x  

our problem would look like the graph in Figure 4. These limits could be 

expressed by adding the following code: 

 

    Vector lower_limits(NUMBER_OF_PARAMETERS); 
    Vector upper_limits(NUMBER_OF_PARAMETERS); 
 
    /* set limits on the parameters */ 
       lower_limits[0] =  1.0; 
       upper_limits[0] =  3.0; 
       lower_limits[1] = -2e19; 
       upper_limits[1] =  2e19; 

1x

2x

Figure 4: Limits 0.30.1 1 ≤≤ x are shown in green. The 
two constraints are shown in red and the feasible region 
is show in grey. The contours of the objective function are 
shown as dashed blue circles. 

Optimal Solution 

C1 

C2 
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    sys.setParameterLimits( lower_limits, upper_limits ); 
 
Optimal Solution: f = 4.000000   parameters = 3.000000 1.000073 

7 Other Mathematical Tools 
SimTK provides a number of other tools for solving common mathematical 

problems.  Examples include generating random numbers and finding the 

roots of polynomials.  These tools are described below. 

7.1 Random Numbers (SimTK::Random) 

There are many cases where it is necessary to generate a set of random 

numbers, such as to drive a Monte Carlo simulation or to provide random 

initial conditions for a set of dynamics simulations.  Most programming 

environments provide a random number generator, but they often are poorly 

suited to scientific applications.  If the random number generator is not to 

bias the results of a simulation, it must have excellent statistical properties in 

terms of the distribution of values, correlation between successive values, and 

the length of the sequence it generates. 

An algorithm for generating random numbers is more accurately known as a 

“pseudo-random number generator”, because it is deterministic.  The 

sequences of numbers it generates may appear random, but if you reset it to 

its initial condition (or create a new random number generator instance), it 

will produce exactly the same sequence of numbers.  If you need several 

random number generators that each produces a different random sequence, 

you can do this by initializing each one with a different “seed” value.  Every 

possible seed value corresponds to a different sequence of random numbers 

that (in the case of a good generator) is independent of every other one. 

The SimTK::Random class is based on the SIMD-oriented Fast Mersenne 

Twister (SFMT) library.  It provides excellent statistical properties, fast 

performance, and a very long sequence (219937-1). 

Never instantiate SimTK::Random directly.  Instead, create an instance of 

one if its two subclasses, SimTK::Random::Uniform and 

SimTK::Random::Gaussian.  These classes generate numbers according to 
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uniform and Gaussian distributions, respectively.  You can specify the 

minimum and maximum of a uniform distribution, and the mean and 

standard deviation of a Gaussian distribution.  For example, to generate a 

sequence of numbers uniformly distributed between 0 and 100, you would 

write: 

Random::Uniform random(0.0, 100.0); 
// Each time you call getValue(), it will return a different value. 
Real nextValue = random.getValue(); 

7.2 Roots of Polynomials 

(SimTK::PolynomialRootFinder) 

This class provides static methods for finding the roots of polynomials.  There 

are specialized methods for quadratic and cubic polynomials, as well as 

general methods for polynomials of arbitrary degree.  In each case, there are 

methods for polynomials with both real and complex coefficients. 

There are two different algorithms used by this class.  The specialized 

methods for quadratic polynomials calculate the roots by explicit evaluation 

of the quadratic formula.  They use the evaluation method described in 

section 5.6 of "Numerical Recipes in C++, Second Edition", by Press, 

Teukolsky, Vetterling, and Flannery. In addition, the method for quadratic 

polynomials with real coefficients performs an extra check to detect when the 

discriminant is zero to within machine precision. This helps to prevent 

round-off error from producing a tiny imaginary part in a multiple root.  

The methods for cubic and arbitrary degree polynomials use the Jenkins-

Traub method, as implemented in the classic RPOLY and CPOLY functions. 

This is an iterative method that provides rapid convergence and high accuracy 

in most cases.  For details, see 

Jenkins, M. A. and Traub, J. F. (1972), Algorithm 419: Zeros of a Complex 

Polynomial, Comm. ACM, 15, 97-99.  

Jenkins, M. A. (1975), Algorithm 493: Zeros of a Real Polynomial, ACM 

TOMS, 1, 178-189.  

As an example of using this class, the following code finds the roots of x3-

6x2+11x-6: 
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Vec4 coefficients(1.0, -6.0, 11.0, -6.0); 
Vec<3,Complex> roots; 
PolynomialRootFinder::findRoots(coefficients, roots); 
cout << "Roots: " << roots << endl; 
 

which produces the output 

Roots: ~[(1,0),(2,0),(3,0)] 

Notice that the coefficients are specified in order of descending powers.  Also 

notice that the roots are always returned as complex numbers, even if the 

coefficients are real.  This is because a polynomial with real coefficients can 

still have complex roots. 
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