

Simmath™

bias

0

q u
u

u
λ

=

+ = −
+ =

Q
M G f f

G b

&

&

&

T

 User’s Guide
 Version 1.5

August, 2008
 Website: SimTK.org/home/simmath

 i

SimTK Simmath™ 1.5
User’s Guide

Michael Sherman, Jack Middleton, Peter Eastman

Abstract
We discuss the SimTK toolset for basic mathematical algorithms. This
includes numerical integration and differentiation, constrained and
unconstrained optimization, and so much more … [This document is a
work in progress.]

1 Introduction .. 1
1.1 Simmath ancestry ... 2
1.2 Document conventions 2

2 Background ... 2
2.1 What are “numerical methods”?......................... 3
2.2 What can you do with Simmath? 3
2.3 SimTK software conventions and style 3
2.4 Scalars, vectors and matrices 4

3 Linear algebra ... 5
3.1 Solving Linear Systems (SimTK::FactorLU) 6
3.2 Linear Least Squares (SimTK::FactorQTZ) 6
3.3 Singular Value Decomposition
(SimTK::FactorSVD) .. 6
3.4 Eigen Values (SimTK::Eigen) 6

4 Numerical differentiation
(SimTK::Differentiator) ... 6

4.1 Example ... 7
4.2 Accuracy considerations 8
4.3 Available algorithms ... 9

5 Time stepping and numerical integration
(SimTK::TimeStepper, SimTK::Integrator) 9

5.1 The continuous system 13
5.2 The discrete system ... 14

5.2.1 Event localization .. 16
5.2.2 Event handlers .. 18
5.2.3 Other event types .. 18
5.2.4 Event trigger transition details 19

5.3 Accuracy, scaling, tolerances 21
5.3.1 Time Scale ... 23
5.3.2 Weights and constraint tolerances 23
5.3.3 Event localization window 23
5.3.4 Default accuracy, scaling and tolerances 24

6 Numerical optimization (SimTK::Optimizer) . 24
7 Other Mathematical Tools 31

7.1 Random Numbers (SimTK::Random) 31
7.2 Roots of Polynomials
(SimTK::PolynomialRootFinder)32

Acknowledgments ... 33
References .. 34

1 Introduction
SimTK Simmath is part of the SimTK Core toolset and provides a powerful set

of open source numerical methods for performing basic mathematical

algorithms that arise during physically-based simulation, with a particular

emphasis on biological structures. Simmath is accessible through a stable

API* to programmers who work in a variety of languages. The 1.5 API is

* API: “Application Programming Interface,” i.e., a programming library.

2

object-oriented C++. C and FORTRAN APIs and wrappers for interpretive

languages like Java and Python are planned. The full capability of this

package will be built up in layers over time; this document covers the current

capabilities and discusses future directions.

1.1 Simmath ancestry

Simmath is built on the proverbial shoulders of giants. It inherits code from

many public domain sources, and contains custom SimTK code as well. The

Simmath effort is intended to bring the best of these ideas together (and

avoid some earlier mistakes) in a form that is practical for use in physics-

based simulation of biological structures over a wide range of scales.

Simmath depends on several other core SimTK tools, including SimTK

LAPACK and Simmatrix.

1.2 Document conventions

In order to allow ourselves the pleasure of delivering the occasional

opinionated diatribe, while permitting the easily offended reader to

avoid them, we have placed a “pontification warning” symbol like the one at

the left at the beginning of such sections in the text. The end of these

sections is marked with the “off our soapbox” symbol to the right.

The symbol to the left is used to highlight sections which summarize

earlier material.

2 Background
This is general material hopefully providing enough background for the rest

of the document to make sense.

 3

2.1 What are “numerical methods”?

Numerical methods are techniques for solving mathematical problems which

are typically difficult or impossible to solve analytically. The techniques

implemented in Simmath can be either iterative or closed techniques which

find a solution in a fixed number of steps. All numerical methods are subject

to errors produced either by round off or by approximations made in the

computations.

2.2 What can you do with Simmath?

Simmath provides tools for solving optimization, numerical integration and

differentiation problems as well as common linear algebra problems such as

solutions to linear systems of equations, linear least squares, eigenvalue and

singular value problems.

2.3 SimTK software conventions and style

TODO: Binary compatibility, error handling, etc. etc.

In code examples, we use blue for language keywords, red for SimTK-defined

symbols, green for comments and black for everything else. Code samples will

be in typewriter font, with output from running the examples shown in

bold typewriter font.

All SimTK-defined C++ symbols are in the SimTK namespace, meaning that a

SimTK class like Optimizer is really named SimTK::Optimizer. You can

use the full name or introduce the unadorned one into your software via C++

using statements, either “using namespace SimTK;” to introduce all

SimTK-defined symbols, or more narrowly-targeted statements like

“using SimTK::Optimizer;” which allows use of only the name

“Optimizer” without the prefix.

In the (rare) cases where it is not possible to use a namespace, such as with

preprocessor macro names, we always start the name with the characters

“SimTK_”, capitalized exactly as shown. We use the same convention for our

C interfaces, since there are no namespaces in C. This can make for some long

names, but we feel it is more important not to introduce conflicts with

4

existing code. A user of SimTK code is always free to define some shorter

names to use in invoking the longer ones.

2.4 Scalars, vectors and matrices

Simmath makes use of the lower-level SimTK core module Simmatrix which

provides support for SimTK::Vector and SimTK::Matrix classes, and

high-performance basic operations on those objects. For a full description of

the Simmatrix package, see the SimTK Simmatrix User’s Guide [URL].

However, here is a quick description providing enough information to

understand the examples in this document.

The SimTK-defined numerical data types appearing in the Simmath APIs are

these (dropping the SimTK:: prefix for brevity):

Real A single scalar value represented as a floating
point number at default precision (currently
always double). This is a typedef, not a
separate class.

Vector A resizable mx1 column vector of Real
elements.

RowVector A resizable 1xn row vector of Real elements.

Matrix A resizable mxn matrix of Real elements (m
rows, n columns)

All standard arithmetic operators are overloaded so that they work as

expected on data of type Vector and Matrix, with strict attention paid to the

need for conformable dimensions. The “~” (tilde) operator is overloaded to

indicate the transpose operation, so that for example the expression ~m

means mT for a Matrix m. A column of a Matrix has type Vector (mx1)

which is distinct from the type of a row, which is a RowVector (1xn). The

transpose of a Vector has type RowVector and vice versa.

As in C, the square brackets operator [] is used for indexing, and all indexing

is 0-based. So v[i] or r[j] selects the ith element of a Vector or RowVector,

and m[i] selects the ith row (a RowVector) from a Matrix. Unlike C, round

brackets () are also available for indexing, with the same effect when applied

 5

to Vector or RowVector but selecting a column rather than a row when

applied to a Matrix. That is, m(j) selects the jth column of a Matrix m (a

Vector). The operator m(i,j) selects the i-jth element of m.* All indexing

operations produce “lvalues,” that is, they can appear on the left hand side of

an assignment operator and the assignment will affect the original object.

3 Linear algebra
Linear algebra techniques solve problems involving one or more equations

whose coefficients are linear. The set of equations for a linear system is

expressed as a SimTK matrix. Many times the most effective technique, both

in terms of speed and accuracy is to factor the matrix into one or more

matrices which have special properties from which the solution can be easily

found. For example the FactorLU class, which is discussed in more detail in

the following section, is used to solve the general problem: Ax=b where A is a

matrix, b is the right hand side vector and x is a vector of unknowns. To find

x, the matrix A is first factored into two matrices L and U. L is a lower

triangular matrix with ones on the diagonal and zeros above the diagonal and

U is an upper triangular matrix with all zeros below the diagonal. Once L and

U have been computed x can be found easily by back substitution of U with

the right hand side vector b. The vector x could have also been found by

computing the inverse of A and then multiplying it by the right hand side

vector b. However this is usually twice as slow as computing L and U and back

substituting and is subject to more round-off errors.

* You can also select elements with the more “C-like” construct m[i][j], but that

requires two operations (one to select the row and one to index that row). The m(i,j)

form is substantially more efficient and should be used instead. Better yet, use vector

and matrix operators rather than accessing individual elements whenever possible.

6

3.1 Solving Linear Systems (SimTK::FactorLU)

3.2 Linear Least Squares (SimTK::FactorQTZ)

3.3 Singular Value Decomposition (SimTK::FactorSVD)

3.4 Eigen Values (SimTK::Eigen)

4 Numerical differentiation
(SimTK::Differentiator)

Say you are in possession of software which is able to calculate the value of a

function f(y) where in general f and y are vectors of lengths nf and ny

respectively. You would like to obtain the nf x ny Jacobian, or matrix of partial

derivatives, = ∂ ∂J f y , evaluated at some y=y0. By far the best way to obtain

J, if you can do it, is to write a new piece of software which calculates J by

analytical differentiation of the equations which underlie the original code for

f. This yields J calculated to machine precision in the shortest possible

amount of CPU time. An alternative is automatic differentiation (e.g. ADIFOR

or complex step derivatives), which operates on f’s source code to produce

source for J. These also give full machine precision although are typically

much more expensive computationally than a hand-derived computation.

However, analytic or automatic differentiation can be difficult in practice, and

at times only an approximation of J is needed, so one might hope for a

numerical method which could approximate J at run time given only the code

for f. Such methods are called “numerical differentiation” and Simmath

provides a Differentiator class for performing this operation, using

methods which attempt to balance approximation error and roundoff error to

provide a good estimate of J with a reasonable amount of computation.

To use Differentiator, one supplies the function to be differentiated by

deriving a concrete object from one of Differentiator’s abstract function

classes. The most general class is JacobianFunction, which handles the

problem as described above. There are also simpler classes specialized for

scalar-valued functions: GradientFunction for scalar functions f(y) of

 7

multiple parameters and ScalarFunction for ordinary scalar functions f(y)

of one scalar variable. These classes are nested within Differentiator, so their

actual names are:

Differentiator::JacobianFunction
Differentiator::GradientFunction
Differentiator::ScalarFunction

These all derive from a common base class Differentiator::Function,

which does not normally appear directly in user programs, but provides

services which are common to all functions.

4.1 Example

Here is a simple example in which the user function is the scalar function

f(x)=sin(ωx) where ω is some specified constant. We want to evaluate the

derivative f′(x)=df/dx at a particular value x. The correct analytical answer is

f′(x)=ωcos(ωx), which we can use to check the approximation.

Below is a complete program that uses the Differentiator class to

compute an approximate derivative of the above function and compare it with

the analytical solution. The program’s output is shown in bold at the end.

8

#include "simmath/Differentiator.h"
#include <cstdio>
#include <cmath>
#include <exception>
using SimTK::Real;
using SimTK::Differentiator;

// user-written class
class SinOmegaX : public Differentiator::ScalarFunction {
public:
 SinOmegaX(Real omega) : w(omega) { }

 // Must provide this virtual function.
 int f(Real x, Real& fx) const {
 fx = std::sin(w*x);
 return 0; // success
 }
private:
 const Real w;
};

int main () {
try
 { const Real w=3;
 SinOmegaX sinwx(w);
 Differentiator dsinwx(sinwx);

 const Real x = 1.234;
 Real exact = w*std::cos(w*x);
 Real approx = dsinwx.calcDerivative(x);

 std::printf("exact =%16.12f\n", exact);
 std::printf("approx=%16.12f err=%.3e\n",
 approx, std::abs((approx-exact)/exact));

 return 0;
 }
catch (std::exception& e)
 { std::printf("FAILED: %s\n", e.what());
 return 1;
 }
}
exact = -2.541115991807
approx= -2.541115573494 err=1.646e-007

Next we will look at the Differentiator class and its nested class

Differentiator::ScalarFunction.

TBD

4.2 Accuracy considerations

Accurate calculation of the result J requires knowledge of the relative

accuracy εf which the function f is computed. Normally we assume that f is

being computed exactly to within machine precision. However, if f itself is

being approximated in some way you can supply an estimate of εf in the

 9

Function class and the numerical differentiation will proceed taking that

into account.

4.3 Available algorithms

Currently there are two available algorithms: forward difference and central

difference. Forward difference computes a first-order estimate of J, with

accuracy of εJ≈ fε at a cost of one evaluation of f per variable iy ∈y . Central

difference computes a second-order estimate of J, with accuracy εJ≈
2
3

fε , at a

cost of two evaluations of f per variable. In contrast, automatic differentiation

using ADIFOR or complex step derivatives provides J to full accuracy εf, at a

cost of about three evaluations of f per variable. Analytic differentiation also

provides full accuracy, but in some cases can be obtained much more

efficiently.

To put some numbers on this, if the original f is calculated with relative

accuracy εf≈10-14, typical for complicated double precision computations, then

the forward difference method would give J with relative accuracy no better

than εJ≈10-7. Central difference could achieve accuracy εJ≈4x10-10. These

represent best-case numbers, and while often the methods will come close to

these levels, in practice these simple algorithms can do much worse with no

warning. In contrast an analytic or automatic differentiation method will

reliably yield εJ≈εf.

5 Time stepping and numerical integration
(SimTK::TimeStepper, SimTK::Integrator)

Simulation of a biological system often entails solving for the trajectory of

that system as it moves through time. We start at a known point of the

trajectory (that is, a known time and state) called the initial conditions, and

evolve the trajectory through time in accordance with a mathematical model.

The trajectory is computed as a sequence of steps, where the time and state at

the end of each step is used to create the initial conditions for the next step.

This procedure is called time stepping. Numerical integration is a crucial

ingredient of time stepping used to advance through “smooth” intervals of the

overall trajectory.

10

Mathematical models for biological systems in general comprise both

continuous and discrete equations. Such systems are referred to in the

simulation literature as hybrid systems. The job of a time stepper is to

advance the hybrid system through time, in accordance with its mathematical

model, generating output when appropriate. The job of the time stepper’s

numerical integrator is twofold: (1) to correctly advance the trajectory during

intervals in which only the continuous part of the model is changing, and (2)

to detect events which indicate that the discrete part of the model may need

updating. The integrator returns control to the time stepper when either (1) a

specified report time has been reached, or (2) an event has been detected.

The integrator must achieve a user-specified level of accuracy during the

continuous interval, and chooses its internal step sizes accordingly. During a

single interval, the integrator may take many internal steps or may take a

single internal step which reaches or even passes the report time. In the latter

case an accurate, interpolated trajectory point is returned to the time stepper.

It is possible for a single internal integrator step to satisfy several user-

requested report times; the system’s continuity is uninterrupted by reporting.

When an event is detected, the integrator determines the precise time at

which that event occurred, completes the current continuous interval and

then returns control to the time stepper. The time stepper invokes the hybrid

system’s event handler, which in general will make discontinuous changes to

both continuous and discrete variables. Handling events sets up a new set of

initial conditions for the next continuous integration interval; however, those

conditions will be different than those at the end of the preceding interval. In

practice we expect the continuous segments to be long and the events

relatively rare, although it is possible to define a system which has no

continuous phases at all and simply advances time discrete event to discrete

event.

To clarify this process, Figure 0 shows a continuous segment of a time

stepping trajectory, bracketed by discontinuous events. Please refer to the

figure for the following discussion. Return of control from the integrator to

 11

the time stepper is represented by tall green lines; internal integrator steps

are represented by short red lines. *

Starting with the initial condition at tn (solid green line), the time stepper

initiates integration by asking for a report at time tn+1. For accuracy reasons, it

takes the integrator two internal steps si and si+1 before it reaches tn+1, which it

overshoots somewhat, so it returns control to the time stepper at time tn+1

with an interpolated value for the state. The integrator’s internal context is

maintained between calls, however, so when the time stepper asks for the

next report time tn+2 the integrator is able to start up where it left off (at the

end of step si+1). It then takes two more steps si+2 and si+3 before passing the

* The figure does not show the internal trial steps that an error controlled integrator

would have taken and rejected along the way; only the accepted steps are shown.

y

tn
tn+3

Initial value
y(tn)

y(t)

Figure 1: Numerical integration over a continuous segment of a time-
stepping trajectory. The continuous region starts at tn and terminates at
tevent. Each tall green line represents a return of control to the time stepper:
thin dotted ones are caller-requested reporting times; the thick dotted
green line is an unrequested return of control just prior to event occurrence
and just after event handling.

An event
occurs here

tn+5 tevent

internal steps

reporting times

si si+1 si+2 si+3

si+4

si+5

tn+2 tn+1 tn+4

12

next report time at tn+2. It returns control with an interpolated state at tn+2

and is then able to return again immediately when asked for tn+3 without

taking another internal step, because step si+3 was long enough to cross two

report times.

The time stepper than asks for report time tn+4. However, during the next

internal step (si+4), an event is detected at time tevent, terminating that internal

step. But before the event can be reported, the integrator must first return

control to the time stepper with an interpolated trajectory point at report time

tn+4, since that occurred before the event. The time stepper next requests

report time of tn+5, but the integrator returns prematurely at tevent (actually

slightly prior) telling the time stepper that an event is about to occur. The

time stepper then invokes the event handler to produce a discontinuously-

modified state at tevent, which is used to restart the integrator. The next

integrator call successfully reaches reporting time tn+5, which is achieved by

the integrator’s internal step si+5.

Report times can be seen to have no effect on the evolution of the system.*

That is, an integrator will take the same sequence of internal steps regardless

of the requested report times during a simulation. Instead, the size of internal

steps is determined by accuracy requirements (with more accuracy requiring

smaller steps) and the occurrence of events. Internal steps typically involve

expensive computation, while the interpolations necessary to satisfy report

times are relatively cheap.

Each internal step represents an irreversible advancement of the continuous

solution in time. An error-controlled integrator may also take internal trial

steps which are ultimately rejected as not being sufficiently accurate. An

important consequence of these trial steps is that, from the point of view of

the system being integrated, time will be seen to move forward and backward

before being irreversibly advanced. That means that the system (which is of

course called during trial steps) must not depend on time increasing

* In practice this is not strictly true since an integrator may perform a little “rounding

off” of internal steps to avoid having to interpolate over very small slivers of time.

 13

monotonically. Examples of some common behaviors which are not

permitted are: the setting of flags, updating of neighbor lists, or any other

discrete state change not under control of the time stepper.

An integrator maintains only a small, sliding window of trajectory

information, just enough to allow interpolation to reporting intervals between

internal steps and, for some integrators, recent-past information used to

predict the near-future part of the trajectory. Other than that, the past is

forgotten except as it is explicitly represented in the current values of state

variables. Of course an application program may save the trajectory for as

long as desired, but the integrator has little need for past state once time has

advanced.

5.1 The continuous system

The continuous part of a SimTK System provides the following equations:

 [] (,)dy f t y=& (5.1)

 []0 (,)dc t y= (5.2)

 [] (,)de e t y= (5.3)

Here t is time, y contains the continuous state variables, and d contains the

discrete state variables which are constant during a continuous interval.

y dy dt=& is the time derivative of the continuous state variables y. Below, we

will usually drop the [d] from the function names for brevity, but it is

important to remember that the functions can change between continuous

intervals.

During an interval in which d is constant, equation (5.1) is a set of ordinary

differential equations with the special property that its exact solution lies on

the manifold defined by the set of algebraic equations (5.2). This class of

system is called a differential equation on a manifold. The above property is

equivalent to the statement (,) 0 (, ,) 0c t y c t y y= =⇒ & & whenever y& is

calculated using equation (5.1); that is, whenever y lies in the manifold then

(,)f t y returns y& tangent to the manifold. Thus perfect integration of

equation (5.1) would automatically maintain equation (5.2); it is only because

14

we cannot integrate (5.1) perfectly that we must deal with the constraint

manifold explicitly.

Equation (5.3) is a set of scalar-valued event trigger functions designed to

change sign precisely when the corresponding event occurs; these will be

discussed in the next section.

At the beginning of a continuous interval I of a trajectory we are given initial

conditions 0
It , 0 0()I Iy y t= , and Id which satisfy the algebraic constraints, that

is,

 []
0 00 (,)

Id I Ic t y= (5.4)

We then calculate the starting value for the event triggers:

 []
0 0 0(,)

II d I Ie e t y= (5.5)

Our numerical integration methods then ensure that (5.2) remains satisfied

as the trajectory evolves (and dI stays constant) during the continuous

interval I, and the system remains continuous as long as

 0sign[(,)] sign[]I
te t y e= (5.6)

for all event triggers, with 0
It t> and sign[x] a vector whose elements are -1,

0, 1 depending in the obvious way on the signs of the elements of its vector

argument x.

5.2 The discrete system

The discrete variables d are updated by the time stepper only at specific times

or upon occurrence of specific events detected by the integrator. The

occurrence of events is detected using the set of scalar-valued event trigger

functions (5.3). The integrator’s task is to isolate the precise time at which a

sign change is first seen and return control to the caller with the internal state

advanced just to that point. That is, the integrator declares that an event has

occurred at time t when

 sign[(,)] sign[(,)]t te t y e t y εε −≠ − (5.7)

for some suitably small interval ε and following the notation described for

equation (5.6).

 15

It is likely that not all sign changes are significant for the system being

simulated. For example, an event may be triggered only upon a “rising”

transition (sign[ei(t)]>sign[ei(t–ε)]), or “falling” transition

(sign[ei(t)]<sign[ei(t–ε)]), or transition to zero or away from zero, for some

event trigger i.

When a triggering transition occurs, the integrator returns control to the time

stepper with a status indicating that an event is about to occur (at a time just

prior to the event occurrence). The states just prior to and just at the trigger

detection are available. But the state at which the event trigger was detected is

not immediately suitable for further time stepping, because it is in an

inconsistent condition. Instead, an action must be performed (called

handling the event) which may include discrete (discontinuous) updates to

the state. Integration can then be resumed with a modified set of initial

conditions for the next step. So the time stepper invokes the system’s event

handler on the state in the condition where the event(s) have triggered. The

handler modifies the state discontinuously, creating a valid state in which the

event(s) are no longer triggering, and then the integrator is restarted at the

event occurrence time with the “fixed up” state.

Here is a simple example of an event trigger function. Suppose we want to

record in a boolean discrete variable dflag whether two points p1 and p2 of our

system ever came closer than a distance r0 during a simulation, such that once

dflag is true it remains true for the rest of the simulation. The setting of that

flag could, for example, affect subsequent forces or visualization, or could

simply be reported at the end. Assume the system provides a function

r=dist(y,p1,p2) which, given the current state, calculates the distance r

between two points. Consider the scalar function

 1 2 0() (, p , p)ie y y r= −dist (5.8)

as a candidate trigger for this event. It passes through zero just as the points

reach a distance of exactly r0 apart. We can provide this function to the

integrator, and request that control be returned when it passes through zero.

When our event handler is invoked a result of this trigger, it sets dflag to true

and then returns control to the integrator.

16

You may already have noticed several problems with using equation (5.8) as a

trigger. It passes through zero both on approach and on separation. It will

never pass through zero if the points start out close together and stay that

way. It will continue to interrupt control uselessly long after dflag has been set.

What we really want is a trigger that will occur only when the points are

approaching, and only if dflag hasn’t already been set, like this:

flag

flag 1 2 0

, 0
()

! , (, p , p)

(falling only)

i

d
e y

d y r
⎧

= ⎨ −⎩ dist (5.9)

Then the remaining problem is how to deal with points that are already less

than r0 apart at the beginning. That is not a transition event and cannot be

handled as part of an event trigger. Instead, an initial conditions analysis

must be done prior to beginning the simulation to make sure that if the

system starts out with the points close together, the initial state will already

have dflag set.

The zero crossings of continuous event trigger functions will be isolated

quickly; discontinuous event triggers are allowed but have to be localized by

“binary chopping” which is more expensive. The next section discusses in

detail how we localize events.

5.2.1 Event localization

Events occur instantaneously, at a particular moment in time, say tevent.

Numerical integrators, on the other hand, advance time in a series of finite-

width steps. In general it is prohibitively expensive (not to mention

impossible) to find tevent exactly. Instead we ask the integrator to localize the

event to within a small time interval (tlow,thigh], which we call the event

window. We are certain that the event window contains the actual time of

occurrence, with tlow < tevent ≤ thigh. That is, we are sure that the event has not

occurred by tlow, and that it has occurred by thigh, but we’re not sure of the

precise value of tevent. With well-behaved event trigger functions the integrator

can provide a reasonably good guess as to the exact time; otherwise the best

guess is that tevent is in the middle of the window.

 17

Finite-width localization windows create a likelihood that multiple events will

occur within the same window. We cannot say with certainty in what order

these events occurred, so for precise treatment they must be considered

simultaneous. If an approximate ordering is acceptable then the integrator’s

tevent guesses can be used to order the events within the window, but even

those may be identical for some events, and in any case the integrator cannot

guarantee that the events actually occurred in the order they appear when

sorted by estimated time of occurrence. If more precise information is

required, then the localization window must be made narrower, at the cost of

increased computation time.

Once an event has been localized to an acceptable tolerance, the integrator’s

stepTo() method will return control to the time stepper at time tlow, with a

status indicating that the current state is the last one before an event occurs.

Generally that marks the end of a continuous interval. The time stepper will

next invoke the system’s event handler on the state at thigh with an indication

of which events occurred within the event window. Note that this state at thigh

is inconsistent in some way; that is, it contains events that have triggered but

have not been processed. Thus it is not a legitimate point along the system’s

trajectory and should never be returned to the caller. For discussion we label

this “improper” state hight− . The event handler will correct the state

discontinuously (potentially updating both discrete and continuous

variables), creating a modified state with time still at thigh but not triggering

any events. We label the modified state hight+ . Once the system’s handler

returns, the state hight+ can be output as part of the trajectory and used as the

initial condition for the next continuous interval. Thus the time stepper

generates the sequence of legitimate trajectory points tlow, just prior to event

occurrence, immediately followed by hight+ which is the time at which the

event(s) are defined to have occurred, but after the event handler has

modified the state to deal with those events. Consecutive intervals I and I+1

will consist of trajectory points

1 1 1 1
0 1 low high high 0 1 low[, ,..., ,]()[, ,..., ,]I I I I I I I I

n mt t t t t t t t t t− + + + + +≡

with round brackets indicating that hight− is not part of the trajectory.

18

5.2.2 Event handlers

Event handlers are solvers which are able to take a state in an “event(s)

triggered” condition, resolve the event(s), set up appropriate event triggers

for the next interval, and report back to the time stepper the degree to which

the system continuity has been altered, so that the integrator can be

reinitialized appropriately.

An event handler can also indicate that the simulation should be terminated,

in which case the time stepper will return the final state to its caller and

disallow further time stepping.

5.2.3 Other event types

Not all events have to be localized. There are several special case events:

• events which are simply a known function of t (“scheduled events”)

• “end of step” updates (“time advanced events”)

• external events (e.g., clock time, user interrupt)

• termination (e.g. reached final time)

Scheduled events are handled outside the integrator simply by allowing the

time stepper to specify with each stepTo() call a maximum time to which

the integrator may advance. When this time is reached, control is returned to

the time stepper. The time stepper can then declare that a scheduled event

has occurred, call the system’s event handler, and reinitialize the integrator if

continuity has been violated.

Time advanced events occur whenever the integrator has advanced time

irreversibly, that is, at the end of every successful internal integration step.

These are generally restricted to discrete variable updates which do not affect

the continuous system, such as min/max values used only for reporting.

Normally the integrator does not return control at the end of a step; however

the hybrid system can request that if necessary, in which case “end of step” is

treated like any other event.

External events are typically handled through the end-of-step event

mechanism. For example, the end of step function can look at the clock,

keyboard events, etc. and respond accordingly.

 19

Finally, a termination event occurs either when the integrator advances to a

designated “final time” for the simulation, or when an event handler indicates

that the simulation must be terminated for some other reason.

5.2.4 Event trigger transition details

This section probably covers more than you really want to know about event

triggers. But if you run into some mysterious behavior regarding your event

trigger functions at some point, you may want to come back to this section.

Normally event triggers are used to detect zero crossings. That is, the event in

question occurs when the trigger’s value goes from negative to positive or vice

versa at some moment in time. Zero itself has no special meaning, and in a

mathematical world it would never actually be encountered when localizing to

a finite-width time window. However, in a computational world landing

exactly on zero during localization is not only possible but certain to happen

now and again. (See Figure 0 for an illustration.) This leads to the possibility

of seeing a -1 0 sign transition while localizing a -1 1. This can cause

difficulties since the next step will see a 0 1 transition which could trigger a

spurious second event.

An Integrator must take great care not to report two events in the above

situation, since there is only a single zero crossing despite appearances.

On the other hand, many event trigger functions are most naturally expressed

discretely, often as boolean functions which toggle between “false” and “true”

when an event occurs. Others may be designed to have three states such as

Mathematical function
changes continuously;
crosses zero at a point

Computational function
changes discretely; stays
zero for finite interval

-1 1
-1 0

0 1

Figure 2: a continuous event trigger function appears
discrete in finite precision arithmetic.

0

20

“above,” “below,” and “on the surface.” In either case, these triggers will have

a significant “zero” state which is not an artifact of finite precision arithmetic.

In those circumstances the sign transitions -1 0 and 0 1 can be meaningful

and the caller may need to be notified at each transition. Figure 0 shows two

examples.

To allow the modeler to distinguish between accidental and purposeful

zeroes, the System can optionally provide information about each of the event

trigger functions. This information can include a specification of which sign

transitions are considered significant for each trigger function. If only -1 1

and/or 1 -1 are specified, then we consider the event trigger function to be

continuous and the integrator will only report a single event as the trigger

passes through zero, even if it accidentally lands exactly on zero during

localization. On the other hand, if the System tells us that zero is a significant

value, then we assume that the trigger function has a discrete zero “zone” (or

“deadband”) and we will report transitions to and from zero if they are seen

during localization. Error! Reference source not found. below shows

how observed transitions are treated based on whether rising or falling

transitions have been specified, and whether zero is significant. Rising and

falling transitions are disjoint so these specifications can be combined to

allow a single event trigger to detect both rising and falling transitions.

The first column in Table 1 lists the possible specifications that a System can

make for the transitions of interest (rising/falling; continuous/discrete). The

second column lists the transitions that might be observed initially, prior to

Trigger function with deadband Boolean trigger function

-1 0

-1 0

Figure 3: two intentionally-discrete event trigger
functions.

0 1
0 1 0 1

0

 21

localization. Typically, an initial step will be much wider than a localization

interval so a -1 1 or 1 -1 transition is most likely to occur. The third column

shows for each pre-localization observation the possible post-localization

transitions (transitions to and from zero always localize to the same

transition). The final column shows what transition will be reported back to

the caller as having been seen. Note that although a wider set of transitions

may be recognized during localization, the final report must come from the

set that the system specified as interesting. For example, if a -1 0 transition

is seen after localization, but the system only watches for -1 1, then we’ll

report -1 0 as an instance of -1 1.

Table 1: handling of sign transitions

Significant sign
transitions

Transition seen
before localization

Localized
transition

Reported
transition

Rising
-1 1

continuous trigger
-1 1 any rising -1 1
-1 0 (unchanged) -1 1
0 1 no event

discrete zero
adds -1 0, 0 1

-1 1 any rising report localized
transition

-1 0 (unchanged) -1 0
0 1 (unchanged) 0 1

Falling
1 -1

continuous trigger
1 -1 any falling 1 -1
1 0 (unchanged) 1 -1
0 -1 no event

discrete zero
adds 1 0, 0 -1

1 -1 any falling report localized
transition

1 0 (unchanged) 1 0
0 -1 (unchanged) 0 -1

Notes: (1) For a continuous event trigger function that accidentally hits zero

exactly, the transition to zero is treated as a zero crossing, but the subsequent

transition from zero is ignored. (2) For a discrete-zero event trigger, if the

function doesn’t stay zero long enough then the zero transitions may be

missed and a zero crossing (i.e., -1 1 or 1 -1) will be reported instead.

5.3 Accuracy, scaling, tolerances

The time stepper is capable of achieving different levels of accuracy when

simulating a particular system, with more accuracy requiring more

computation time. Our goal is to allow application programmers to deliver to

22

their end users the ability to control the accuracy level with a single,

physically meaningful scalar value α, a fraction in the range 0<α≤1. A typical

value is α=0.001 (0.1%) meaning that the integrator should produce results

which are “within 0.1%” of the “perfect answer.” (These phrases are in

quotations because they are much easier to say than to define precisely!)

Equivalently, one can interpret α as specifying the number of significant digits

nd desired in the results, with 10logdn α= − . For example, 1e-5 5dnα = ⇒ = .

This goal is achievable only imperfectly, since in general accuracy is difficult

to specify, to measure, to control, and even to define precisely. Reasonable

users can disagree about exactly what they mean by “1% accuracy.”

Nevertheless we feel it is important to provide a single “knob” for a user to

turn that delivers “more accuracy” at higher cost or “less accuracy” at lower

cost, in a way that at least attempts to capture what at typical user might

mean by these terms. The alternative of exposing the many complex issues

involved to the end user assumes a kind of specialized expertise that would

severely limit our intended audience. Instead, we expose these troubles to the

application programmer in a way that allows us to collect information that

can be used to define the Holy Grail control α.

The primary difficulty we encounter is that the variables and equations

defining the user’s system are not evenly weighted. We expect that in most

cases the programmer who is using SimTK::TimeStepper will know

something useful about the various weights that will help us define α. To

accommodate that, we allow specification of four kinds of scaling

information:

• the characteristic time scale τ

• a weight wi for each continuous state variable yi

• a tolerance ti for each of the constraint errors ci

• a localization time window width li for each event ei

Each of these quantities is defined below to be a property of the system

(model), independent of the accuracy α with which the system is being

simulated. The idea is to define for each quantity a “unit error” to which the

accuracy requirement can then be applied. The integrator treats these values

as constant during each integration step. However, we expect the state

 23

variable weights wi to change (slowly) as the trajectory (time and state)

evolves, so the integrator will request updated weights from time to time

during a continuous interval, according to some criteria. Time scale,

constraint tolerances, and localization requirements, on the other hand, are

expected to be independent of trajectory and are fixed once the instance

variables are frozen prior to the start of a continuous interval within the

simulation.

5.3.1 Time Scale

There is a characteristic time scale τ of the system which the programmer may

provide to convey to the integrator the smallest “time of interest” for the

study. This should be the minimum time interval over which “interesting”

changes are expected to occur. The integrator may use this for selecting the

initial step size and defaults for other scaling information may depend on τ.

5.3.2 Weights and constraint tolerances

We are given a set of weights wi≥0 for each yi and a set of tolerances ti>0 for

each of the constraint errors ci. Let W be a diagonal matrix with the wi’s on its

diagonal, and T be a diagonal matrix with the reciprocal tolerances 1/ti on its

diagonal (we also call these reciprocal tolerances “constraint weights”). Then

given the fractional accuracy specification α (e.g. α=0.1%), the integrator is

required to solve for the trajectory y(t) such that each integration step

maintains the local error |W·εy|RMS ≤ α and constraint error |T·c(t,y)|RMS ≤ α

at all times. Here εy is the vector of estimated absolute errors in each state variable

y, as estimated by the integrator for a trial step under consideration.

5.3.3 Event localization window

Event localization requires for each event trigger function ei a “unit”

localization requirement li (in units of the system’s time scale τ) which is then

narrowed by the accuracy requirement α so that the integrator localizes event

ei to a time interval of width ε ≤ ατli. Thus when the integrator reports that a

set E of events has triggered in the event window (tlow,thigh], it guarantees that

high low ,it t l iατ− ≤ ∀ ∈Ε .

24

5.3.4 Default accuracy, scaling and tolerances

The defaults are as follows:

accuracy
time scale

weights
constraint tolerances

localization windows

0.001
1
1, 0

0.1, 0
0.1, 0

i y

i c

i e

w i n

t i n
l i n

α
τ
=
=
= ≤ <

= ≤ <
= ≤ <

We also support a number of different schemes for defining the weights. The

conventional “rtol, atol” scheme is achieved by defining

1
max(,)i

i i

w
y u

=

where ui represents “one unit” of error in yi (a typical value would be 0.1).

This is then equivalent to rtol=α and atoli= αui.

6 Numerical optimization (SimTK::Optimizer)
The SimTK::Optimizer class can be used to numerically solve various

optimization problems. Optimization methods can be used to find the optimal

solution to some problem. For example, what set of coordinates would give

the minimum energy configuration for this molecule?

The algorithms implemented in the Optimizer class search for points which

are a minimum of a, user supplied, objective function. The algorithms start

from some initial point and iteratively search for points which reduce the

objective function. The algorithms terminate when the objective function

stops decreasing. Note that the minimum found by the Optimizers is

sometime a local minimum and not a global minimum. Therefore, the point

which the algorithm starts searching from is important. This is illustrated in

Figure 2 below.

 25

Note that if our goal was to find the maximum of some objective function f(x).

We could still use the existing optimizers by using –f(x) as our objective

function.

Sometimes the optimization problem has constraints on the objective

function.

Consider the simple example below:

The following objective function:

() ()2 2

1 25 1x x+− −

is subject to two constraints:

C1: 02
21 ≥− xx

Global minimum

Local minimum

Global maximum

Local maximum
Initial point

P1

P2

Objective

function

Figure 2: The optimizer begins searching along the objective
function starting at the Initial point. It moves first to point P1 then
point P2 which reduce the objective function. Eventually the
optimizer terminates at the Local minimum when it cannot reduce
the objective function any further.

26

C2: 0221 ≥++− xx

Has an optimal solution at: X = (4, 2)

Figure 3 shows a graph of this problem. The two constraints (C1, C2) bound

the space of possible solutions to a feasible region which is shown in gray. The

optimal solution to the problem must be a point within this feasible region

which has the smallest value of the objective function.

 The two dashed circles indicate the constant value contours of our objective

function. The smaller circle has a value of 1.0 and the larger circle has a value

of 4.0.

Optimization problems are solved in SimTK using two classes, the Optimizer

class, and the OptimizerSystem class. The Optimizer class allocates an

optimizer and sets the options for the optimizer. The OptimizerSystem class is

used to describe the optimization problem.

OptmizerSystem is an abstract class which has methods for computing the

objective function, the gradient of the objective function, the constraints, and

the constraint Jacobian. The application needs to define a concrete class that

subclasses from OptimizerSystem. As a minimum the concrete class must

1x

2x

Figure 3: Graph of problem to finding optimal solution to
the problem described above. The two constraints are
shown in red and the feasible region is show in grey. The
contours of the objective function are shown as dashed
blue circles.

Optimal Solution

C1

C2

 27

supply an implementation of the objectiveFunction() method which

computes the objective function for a given set of parameters. An instance of

the concrete class is passed as an argument for the constructor of the

Optimizer class. The Optimizer class uses the information from the

OptimizerSystem concrete class to select the best optimizer algorithm and to

allocate any workspace that the algorithm may need. The application can set

various parameters for the optimizer such as convergence tolerance.

Once the Optimizer has been instantiated and the options set the solution can

be computed by calling the Optimizer class’s optimize() method.

Optimizer.optimize() takes a SimTK::Vector which sets the initial point the

optimizer will begin searching from. If the optimizer is able to find a solution

it will return the parameters for the optimal solution in the Vector.

Optimizer.optimize() will also return the optimal value of the objective

function.

The code for using the Optimizer class to solve this problem is shown below.

#include "Simmath.h"
#include "Optimizer.h"
#include <cstdio>
#include <exception>
using SimTK::Real;
using SimTK::OptimizerSystem;
using SimTK::Optimizer;

// user-written class
class ProblemSystem : public OptimizerSystem {
public:

 // Must provide this virtual function.
 int objectiveFunc(const Vector &coefficients, const bool
new_coefficients, Real& f) const {
 const Real *x;
 int i;

 x = &coefficients[0];

 f = (x[0] - 5.0)*(x[0] - 5.0) + (x[1] - 1.0)*(x[1] - 1.0);
 return(0);
 }
 int gradientFunc(const Vector &coefficients, const bool
new_coefficients, Vector &gradient) const{
 const Real *x;

 x = &coefficients[0];

 gradient[0] = 2.0*(x[0] - 5.0);
 gradient[1] = 2.0*(x[1] - 1.0);

28

 return(0);

 }
 /*
 ** Method to compute the value of the constraints.
 ** Equality constraints are first followed by the any inequality
constraints
 */
 int constraintFunc(const Vector &coefficients, const bool
new_coefficients, Vector &constraints) const{
 const Real *x;

 x = &coefficients[0];
 constraints[0] = x[0] - x[1]*x[1];
 constraints[1] = x[1] - x[0] + 2.0;

 return(0);
 }

 /*
 ** Method to compute the Jacobian of the constraints.
 **
 */
 int constraintJacobian(const Vector& coefficients, const bool
new_coefficients, Matrix& jac) const{
 const Real *x;

 x = &coefficients[0];
 jac(0,0) = 1.0;
 jac(0,1) = -2.0*x[1];
 jac(1,0) = -1.0;
 jac(1,1) = 1.0;

 return(0);
 }

 ProblemSystem(const int numParams, const int numConstraints) :

 OptimizerSystem(numParams, numConstraints) {}

};
main() {

 Real f;
 int i;

 /* create the system to be optimized */
 ProblemSystem sys(NUMBER_OF_PARAMETERS, NUMBER_OF_CONSTRAINTS);

 Vector results(NUMBER_OF_PARAMETERS);

 /* set initial conditions */
 results[0] = 5.0;
 results[1] = 5.0;

 try {

 Optimizer opt(sys);

 29

 opt.setConvergenceTolerance(.0000001);

 /* compute optimization */
 f = opt.optimize(results);
 }
 catch (const std::exception& e) {
 std::cout << "ConstrainedOptimization.cpp Caught exception:" <<
std::endl;
 std::cout << e.what() << std::endl;
 }

 printf("Optimal Solution: f = %f parameters = %f %f
\n",f,results[0],results[1]);

}

Optimal Solution: f = 2.00000 parameters = 3.99998 1.999998

Sometimes the optimization problem has constraints on the parameters of

the objective function. For example, the potential energy of a protein may be

expressed as a function of the bond angles of the protein. Steric clashes may

limit the bond angles of a protein to a range of valid values. Therefore

minimum energy configuration of the protein would be constrained by these

angles. It may be easier to express these constraints as limits on the values of

our objective function parameters. This would cause the optimizer to search

for a minimum only from within this feasible region.

30

For example, if the parameter 1x in our example had limits of 0.30.1 1 ≤≤ x

our problem would look like the graph in Figure 4. These limits could be

expressed by adding the following code:

 Vector lower_limits(NUMBER_OF_PARAMETERS);
 Vector upper_limits(NUMBER_OF_PARAMETERS);

 /* set limits on the parameters */
 lower_limits[0] = 1.0;
 upper_limits[0] = 3.0;
 lower_limits[1] = -2e19;
 upper_limits[1] = 2e19;

1x

2x

Figure 4: Limits 0.30.1 1 ≤≤ x are shown in green. The
two constraints are shown in red and the feasible region
is show in grey. The contours of the objective function are
shown as dashed blue circles.

Optimal Solution

C1

C2

 31

 sys.setParameterLimits(lower_limits, upper_limits);

Optimal Solution: f = 4.000000 parameters = 3.000000 1.000073

7 Other Mathematical Tools
SimTK provides a number of other tools for solving common mathematical

problems. Examples include generating random numbers and finding the

roots of polynomials. These tools are described below.

7.1 Random Numbers (SimTK::Random)

There are many cases where it is necessary to generate a set of random

numbers, such as to drive a Monte Carlo simulation or to provide random

initial conditions for a set of dynamics simulations. Most programming

environments provide a random number generator, but they often are poorly

suited to scientific applications. If the random number generator is not to

bias the results of a simulation, it must have excellent statistical properties in

terms of the distribution of values, correlation between successive values, and

the length of the sequence it generates.

An algorithm for generating random numbers is more accurately known as a

“pseudo-random number generator”, because it is deterministic. The

sequences of numbers it generates may appear random, but if you reset it to

its initial condition (or create a new random number generator instance), it

will produce exactly the same sequence of numbers. If you need several

random number generators that each produces a different random sequence,

you can do this by initializing each one with a different “seed” value. Every

possible seed value corresponds to a different sequence of random numbers

that (in the case of a good generator) is independent of every other one.

The SimTK::Random class is based on the SIMD-oriented Fast Mersenne

Twister (SFMT) library. It provides excellent statistical properties, fast

performance, and a very long sequence (219937-1).

Never instantiate SimTK::Random directly. Instead, create an instance of

one if its two subclasses, SimTK::Random::Uniform and

SimTK::Random::Gaussian. These classes generate numbers according to

32

uniform and Gaussian distributions, respectively. You can specify the

minimum and maximum of a uniform distribution, and the mean and

standard deviation of a Gaussian distribution. For example, to generate a

sequence of numbers uniformly distributed between 0 and 100, you would

write:

Random::Uniform random(0.0, 100.0);
// Each time you call getValue(), it will return a different value.
Real nextValue = random.getValue();

7.2 Roots of Polynomials

(SimTK::PolynomialRootFinder)

This class provides static methods for finding the roots of polynomials. There

are specialized methods for quadratic and cubic polynomials, as well as

general methods for polynomials of arbitrary degree. In each case, there are

methods for polynomials with both real and complex coefficients.

There are two different algorithms used by this class. The specialized

methods for quadratic polynomials calculate the roots by explicit evaluation

of the quadratic formula. They use the evaluation method described in

section 5.6 of "Numerical Recipes in C++, Second Edition", by Press,

Teukolsky, Vetterling, and Flannery. In addition, the method for quadratic

polynomials with real coefficients performs an extra check to detect when the

discriminant is zero to within machine precision. This helps to prevent

round-off error from producing a tiny imaginary part in a multiple root.

The methods for cubic and arbitrary degree polynomials use the Jenkins-

Traub method, as implemented in the classic RPOLY and CPOLY functions.

This is an iterative method that provides rapid convergence and high accuracy

in most cases. For details, see

Jenkins, M. A. and Traub, J. F. (1972), Algorithm 419: Zeros of a Complex

Polynomial, Comm. ACM, 15, 97-99.

Jenkins, M. A. (1975), Algorithm 493: Zeros of a Real Polynomial, ACM

TOMS, 1, 178-189.

As an example of using this class, the following code finds the roots of x3-

6x2+11x-6:

 33

Vec4 coefficients(1.0, -6.0, 11.0, -6.0);
Vec<3,Complex> roots;
PolynomialRootFinder::findRoots(coefficients, roots);
cout << "Roots: " << roots << endl;

which produces the output

Roots: ~[(1,0),(2,0),(3,0)]

Notice that the coefficients are specified in order of descending powers. Also

notice that the roots are always returned as complex numbers, even if the

coefficients are real. This is because a polynomial with real coefficients can

still have complex roots.

Acknowledgments
This work was funded by the National Institutes of Health through the NIH

Roadmap for Medical Research, Grant U54 GM072970. Information on the

National Centers for Biomedical Computing can be obtained from

http://nihroadmap.nih.gov/bioinformatics.

34

References

