SIMTK Molmodel

Programmer’s Guide

Release 1.0
March 19, 2008

Website: https://SimTK.org/, https://SimTK.org/docman/?group_id=97

Copyright and Permission Notice

Portions copyright (c) 2007 Stanford University and Christopher Bruns
Contributors: Joy Ku, Michael Sherman, Peter Eastman, Samuel Flores

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

Acknowledgments

SimTK software and all related activities are funded by the Simbios National Center for
Biomedical Computing through the National Institutes of Health Roadmap for Medical
Research, Grant U54 GMO072970. Information on the National Centers can be found at
http://nihroadmap.nih.gov/biocinformatics.

Table of Contents

L OV E RV IV e e ettt ae et et 1
1.1 Scope Of thiS AOCUMENT........coiiiie e s e e e s e e e s e e e e e nnenneees 1
1.2 Conventions Used in thisS DOCUMENT............oiiuiiiiiiiiie ittt 1

I R VAV 7=V g o 1 0o I oo o RS 1
A A To 11| ot oo Lo [PPSR 1
1.2.3 New features in eXamPIEscocuiiii i e s e e nrnae e e 2
1.3 What iS MOIMOUEI? ...ttt ettt e b e st 2
1.3.1 Current State of the Molmodel [ibraryccooviiiiii e 3
I o =TT [1] (TSSO 3
1.4.1 Working knowledge of C++ programming languagecccccvveeviiieeesiiieeesniineens 3
1.4.2 SimTK core simulation tool Kit installedccccoviiiiiiiiiii e 3
1.4.3 Read the SIMTK TULOFIAI ..coccvviiiiiiiicee e 4
T =T o [T SRS 4

2GETTING STARTED: SIMULATING TWO ARGONATOMS.......cooiiiiiiiee 5
2.1 TWOAIgoNS EXamMPIe PrOgram.......ccuiiiiiiiie et e st e e sate e e s tae e e s stne e e s eta e e e e anrnneeens 5
2.2 TWOAIgoNS Program DISCUSSIONcciiiuuiieiiiiiieeiiiieeesiieeessiiteeessssteeeessnteeeesssseeessteseessnsnneenans 8

A R 1o 1141 0 To 18 [0T K5 V£S] (=12 1RSSR 8
2.2.2 FOPCE FIBIA ...ttt et e et e e snbe e e nbeeesnbeeenreas 9
2.2.3 DefiNg ALOM ClASS.....ccuuiiiiiieiiiieiiiee sttt e s tee st e st e st e b e e snbe e s sbbeesnbeeensaeeenees 9
2.2.4 Define ATomM Charged TY Pcciiciiee e ciiee et s et e et e e e e taae e e snnaa e e e s nreee s 11
A T =1 (0] 1Y o = SRR 11
2.2.6 Declaring the Argon COMPOUNGSeiiiiiiiiiieiiiiie ettt e s ebee e e eaeeeas 13
2.2.7 Attaching the Argon Atoms to the SYStemccooiiiiiiiiiiii e 13
2.2.8 Finalizing the multibody model ... 13
2.2.9 SIMUIATING -ttt ettt e e e bbb e e e e bt et e e e bbb e e e s anbe e e e s anreeeas 14
2.3 Units are nanometers, atomic mass units, and PiCOSECONMSeeerierieeriiiieeiiiiiee s 14
2.4 WHere iS the ALOM TYPE?. .. ettt e e e e bt e e e e e bb e e e e be e e e e e beeee e 14

2.5 Exercis

LTS 14

Vi

SSIMULATING TWO ETHANE MOLECULES ... 17
3.1 TwOEthanes EXampPle PrOgram........c..eei ittt e e e e eaeee s 18

3.2 Discussion of TWOETNANES PrOgramcocuiiiiiiiiiiiiie et 20
T R = o of- Y T [PP UUR RO SRR 20

3.2.2 Define Atom Charged TYPEcoouiiiiiieiieeiiie ettt 21

3.2.3 Declare the Ethane Compounds and Attach them to the System...........cccccvieenen. 22

3.2.4 Why are Some Bonds Gray and Others Orange?.........c.ccevvveerieiinieeenieesinee e 22

3.3 Do I have to do an internal coordinate SIMUlation?ccccooeveeiiie e 23

I A Y (ol 1 U UTVPPPRRRRRIOt 23

4 SIMULATING APROTEIN MOLECULE ...t 25
4.1 Creating a Protein Model from a SeqUENCE StriNg........cccuvviiiiiieeiiiiiee e 25

v Y10 a1 o] (1] o] (=TT o I o oo = o I USSR 26

4.3 Analysis of SIMPIEProtein Programcc.ovec it e stee e sanee e sneeee s 27

4.4 AMDEIr99 FOICE FIEIA .. .coiiiiiiiiii ettt s e et e e srbee e 28

I (=] o 1= TSP 28
SSIMULATING AN RNA MOLECULE. ...t 31
LN AT a1 o] [T] AN VAN o 0o = o R 31

5.2 WIriting PDB COOFTINALES.cccuviieeiiieie it sttt s st e e st e e s e e e st e e e s st e e e s sntae e e e snneeeeeanneen 34

Lo I [To [T To A od I (o To U [1= 0| 7 LA o] o PSP 34

L = o 1= TR 38

6 LOADING A MOLECULE FROM PDB COORDINATES ..o 41
SR A o T To | od TS o oo | - o o PSPPSR 41

6.2 Discussion Of LOadPDB Program.........ccccuieiiiiiieeeiiiiee e citiee e s sittee e s estaee e e s staee e e snsaaesesnnvaeessnnnnees 42
6.2.1 PDBREAAEr ODJECT......uiiiie it 43

6.2.2 Maintaining TEMPEIALUIE.......ccciiiiii e s st e e e sare e e s s e e e e sb e e e s e taeeesenraeeas 43

6.2.3 Relaxing the STFUCTUIEcuviei e e e et e e et e e e snraee s 43

6.3 Internal coordinates Differ from Cartesian Coordinates..........ccccoocveevieeiiieinieesiee e 43

6.4 Default (initial) Configuration Differs from Dynamic Configurationccccccocceeeevinnnn. 44

T =T o [T PSPPSR 44

7 MAKING AN ENTIRE PROTEIN A SINGLE RIGID BODY ..coiiiiiiiiiiiiiee 45
7.1 Modeling and Coarse-grained Representationsccccoeoiieiieiiiiiieiiiiee et 45

7.2 Specifying the Degrees of Freedom of a MOIECUIEcooiiiiiiiiiiiii e 47

7.3 Defining DINedral ANQIESeiiiiiii ettt e e st e e e e saneeees 47

vii

7.4 AN INAEX IS INOT AN ID ..ottt e et e e st e e e e s bbe e e e snben 48
T =] (o 17T PO PRRRURUPPPR 48
7.6 OK, Now Make Every Atom INAependentcoouiiiiiiiiiiiiiiiie e 48
8 CONSTRUCTING ACUSTOM MOLECULE....ccciii e 49
8.1 Introduction to Custom Molecule CONSEIUCLIONccocvviieiiiiiie e 49
8.2 COoMPOUNT PAITS LISTcoiiiiiiiiiiiieeiie ettt et e 50
8.2.1 ALOMS AN BONUS.....ciiiiie et 50

S T A = 1o [0 =T o1 =1 o PSR S 51

S T2 B ©o 11 0] o To LU o [0 - TSP P PP 51

8.3 Defining a New MOIECUIE: PrOPANEoiiiiiiiiiiiiee ettt 51
I o T g aTo = o I =TT o o [=T o) -] R RRR 55
8.5 The FirSt FEW ALOMIS ... iiiieieciiii ettt e ettt et e e e st e e s st e e e etae e e e sseaeeesseaeeesnnteeeesaneens 56
S TR A I U T 3 AN] o PSSR 56
8.5.2 SUDSEOUENT ALOIMIS ...ttt ettt ettt e sbe e e sene e eans 56

8.6 RING-CIOSING BONUSeiiiiiiiiiieiiit ettt et nb e e s 57
8.7 Setting Default GEOMELIYoiiiiiiiiii ettt et e sene e 57
G TR T T (o 17T USSR PPRPS 57
9 GETTING MORE INFORMATION ...t 59
9.1 The SIMTK.OFG WEDSITEeeeiiiiieiee et et e e et e e e e aae e e s nnaee e e s nnreeeesnnreens 59
9.2 Help Us Help You: Submitting Feature Requests and Bug Reports Online.............ccccceeens 59
9.2.1 How to submit Bug Reports and Feature ReqUESESccceevcveeeeiiiiee e 59
9.2.2 What is the difference between a Bug Report and a Feature Request?.................... 62
9.2.3 How can | ensure that | am submitting a truly excellent bug report? 64

1O REFEREN CES. ... et et 65

List of Figures

Figure 1-1:
Figure 2-1:
Figure 3-1:
Figure 4-1:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 8-1:
Figure 9-1:
Figure 9-2:
Figure 9-3:
Figure 9-4:
Figure 9-5:
Figure 9-6:
Figure 9-7:

Principal libraries in the SIMTK core tool Kit..........ccccoooiiiiiiiiniii e 2
Frame from Argon Atom ANIMatioN..........ccccviee i 8
Frame from Two Ethanes Simulation............cccoooieiiiiiiiic e 20
Frame from Small Protein Simulation...........ccccco e 27
SMAl RNA MOGEL ... 33
Searching for the "SimTKcore" project at SIMTK.OMg.........ooooccvvviieeeeeeee e, 35
Selecting "SimTKcore" from project search results list.ccoociiiiiiinnniienn. 35
Selecting the Documents section of the SimTKcore project.occoceeevicenenns 36
Selecting the "Doxygen DOCS™ HNK.coiiiiiiiiiiiee e 36
Selecting the "Molmodel API" dOCUMENTS.cccoviiiiiiiiiiieice e 37
Selecting the "Classes" tab in APl documentation.ccccecveeeiiciineeciiiieeeens 37
Selecting the Compound class in the APl documentation............ccccceeevevieeeeenee, 38
Getting an alphabetical list of Compound methods..............ccccciiiveeei e, 38
Parts of @ COMPOUNG.ouiiiiiie e e e ee e 50
Searching for the "SimTKcore" project at SIMTK.Orgccceveviiiiiieiiiiiee e 60
Selecting "SimTKcore" from project search results list.ccocoviiiiienenne 60
Opening the Advanced options on the navigation bar.............cccccccovcciveiiiienenns 61
Selecting "Features & BUQS" PAJEuveiuiiiiiiieiiiee ettt 61
Choosing between Bugs OF FEAtUIES..........c.eiiiiiiiiiieeiie e 62
Choosing to submit a new Feature Request or Bug Report...........cccceeevvvieeennee, 63

Selecting a Bug/Feature CategOrY.ccuuveeiiiieie e see et a e e 63

Xi

List of Examples

Example 2-1: Complete program for simulating two argon atoms............ccccceeevvvvveeviciiereenene 5
Example 3-1: Complete program for simulating two ethane molecules..............cccceeveiiieeene 18
Example 4-1: Vision for simple protein CONStIUCTONc.uvieiiiiiie e 25
Example 4-2: Complete program for simulating a very small protein.............ccccceevienees 26
Example 5-1: Complete program for simulating a small RNA molecule...............ccccvvvvinnenn. 31
Example 6-1: Complete program for simulating a protein from PDB coordinates................. 41
Example 7-1: Complete Program for Simulating a Rigid Protein..............cccccoooviiiiiiiiiiieee 45

Example 8-1: Complete Program for Defining and Simulating Propane.cccccceveieeee 51

Overview

1.1 Scope of this document

This document is not a technical specification, but is rather meant to serve as an
introduction to the Molmodel API. The definitive APl documentation is available in the
SimTKcore installation files and on the web. See section 5.3 for more details on the API

documentation.

1.2 Conventions Used in this Document

1.2.1 Warning icon

The icon shown to the left highlights warnings and common pitfalls.

1.2.2 Source code

Computer program source code is shown green, indented, and using a fixed-width font.
int example; // this demonstrates the appearance of code

Very short fragments of code, class names, and file names will be shown in a Fixed-width
font.

1.2.3 New features in examples

Some of the example programs in this document share many features with earlier programs.

The most important newer program elements will be highlighted in yellow.

1.3 What is Molmodel?

Molmodel is the SimTK molecular modeling library and APl. Molmodel leverages SimTK
Simbody, the SimTK order-n multibody dynamics library. Molmodel includes methods to
construct molecular models for use in simulation with Simbody. Both Molmodel and

Simbody are part of the SimTK core tool kit, available at https://simtk.org/.

SImTK Molmodel molecular modeling

SImTK SlmbOdy order-n multibody

dynamics
SimTK Math

integrators and
other methods

SI mTK CO mmon core C++ data structures

SImTK La paCk linear algebra

Figure 1-1: Principal libraries in the SimTK core tool kit

Figure 1-1 shows some of the key libraries in the SimTK core tool kit. Each of the libraries in
the figure depends upon the libraries shown below it. For example, the Molmodel library
depends upon the Simbody library. Simbody is a general order-n multibody dynamics tool
kit. Molmodel in turn, is an application-area-specific modeling tool kit, capable of creating
multibody models of molecules that can be simulated in simbody. The CPODES library,

Prerequisites 3

which represents the core methods for one of the integration methods, is not shown in the

figure because it conceptually belongs in the same category as the SimTK Math library.

1.3.1 Current State of the Molmodel library

1.3.1.1 Slow

The slowest part of molecular dynamics simulations is almost always the force field
calculation. The proof-of-concept force field implemented for this release has been

subjected to no performance optimization, and is thus unlikely to achieve impressive speeds.

On the other hand, it is possible to evaluate the relative speed gains to be had by various
coarse-grained modeling strategies, even if the absolute speeds may be (currently)

discouraging.

1.3.1.2 Incomplete

There may need to be further modeling and force functionality added before truly useful

molecular simulations can be accomplished with Molmodel.

1.4 Prerequisites

1.4.1 Working knowledge of C++ programming language

The SimTK tool Kit is written in the C++ programming language. The current target

audience is programmers with some familiarity with C++.

1.4.2 SimTK core simulation tool kit installed

To use the Molmodel library and the rest of the SimTK core tool kit, download the SimTK
core tool kit from the “SimTK Core” project at https://simtk.org/.

1.4.3 Read the SImTK Tutorial

Molmodel is built on Simbody and the rest of the SImTK tool kit. Concepts that are covered
in another important document, the SimTK tutorial, may not be covered in detail in this

document.

You should become familiar with the Simbody library and API. Consult the SimTK tutorial
available at the simtk.org web site. The SimTK tutorial is available in the documents section

of the SimTKcore installation.

1.4.3.1 Supported platforms

At the time of this writing, the SImTK core tool kit is supported for use on three platforms:
e 32-bit Windows XP
e 32-bit Mac OS X 10.5 (Leopard) with Intel CPU
e 32-bit Linux
Please check the SimTKcore project at the SimTK.org website for the latest news on

supported platforms.

1.5 Exercises

Exercise 1-1

Install the SimTK core toolkit from SimTK.org

Exercise 1-2

Run the test programs that came with the SimTK core tool kit. The test programs are called
CorelnstallCheck and AuxInstallCheck.

Getting Started: Simulating

Two Argon Atoms

Our first molecular simulation will represent the interaction of two argon atoms. Argon is
an inert noble gas, meaning that is does not have chemical bonds. This fact simplifies the
force field considerations. The only important force affecting the interaction between argon
atoms is the van der Waals interaction, which is mildly attractive at large distances, and
highly repulsive at short distances. If you read the SimTK tutorial, many elements of the
following program should be familiar. Some of the varying program elements are

highlighted in yellow.

Argon is one of a small number of molecule types that are predefined in the “Compound.h”
header file in the SimTKcore distribution. That is how we are able to use it as a type in this

example program.

2.1 TwoArgons Example Program

Example 2-1: Complete program for simulating two argon atoms

#include "SimTKmolmodel .h™
#include "SimTKsimbody aux.h™ // for vtk visualization

using namespace SimTK;
using namespace std;

int main(Q)

{
// molecule-specialized simbody System
CompoundSystem system;

// matter is required
SimbodyMatterSubsystem matter(system);

// molecular force field
TinkerDuMMForceFieldSubsystem dumm(system);

// for drawing vtk visualization
DecorationSubsystem artwork(system);

// Define an atom class for argon
dumm.defineAtomClass_ KA(

DuMM: : AtomClassIndex(100),

‘argon™,

18,

0,

1.88,

0.0003832

)
dumm.defineChargedAtomType(

DuMM: : ChargedAtomType Index(5000) ,

argon™,

DuMM: : AtomClassIndex(100),

0.0

)

it (! Biotype::exists(argon', "argon'))
Biotype: :defineBiotype(Element: :Argon(), 0, "argon",
‘argon);

dumm.setBiotypeChargedAtomType(
DuMM: : ChargedAtomType Index(5000), Biotype::get(argon™,
"argon') .getindex());
dumm.setGbsaGlobalScaleFactor(0);

Argon argonAtoml, argonAtom2; // two argon atoms

TwoArgons Example Program

// place fTirst argon atom, units are nanometers
system.adoptCompound(argonAtoml, Vec3(-0.3, 0, 0));

// place second argon atom, units are nanometers
system.adoptCompound(argonAtom2, Vec3(0.3, 0, 0));

system.updDefaultSubsystem() .addEventReporter(new

VTKEventReporter(system,
0.500));

system.modelCompounds(); // finalize multibody system

State state = system.realizeTopology(Q);

// Simulate it.

Verletlntegrator integ(system);

TimeStepper ts(system, integ);

ts.initialize(state);
ts.stepTo(500.0);

r'_*l'hdh-lnnml'hmﬂ ;DJE.:I

Figure 2-1: Frame from Argon Atom Animation

If all goes well, you should see an animation of two argon atoms repeatedly bumping into

one another (Figure 2-1).

2.2 TwoArgons Program Discussion

2.2.1 CompoundSystem

CompoundSystem is a specialized Simbody MultibodySystem.

// molecule-specialized simbody System
CompoundSystem system;

System is a core data type in Simbody simulations. The System concept occurs in almost

every example in the SimTK tutorial. The CompoundSystem class is derived from simbody

TwoArgons Program Discussion 9

MultibodySystem. CompoundSystem includes additional methods and data for dealing with

molecular simulations.

2.2.2 Force Field

The Molmodel API implements an unoptimized force field definition for demonstrative

purposes.

// molecular force field
TinkerDuMMForceFieldSubsystem dumm(system);

Molecular forces are handled by the TinkerDuMMForceFieldSubsystem class, which derives

from DuMMForceFieldSubsystem, which in turn derives from ForceSubsystem.

In this example, we create an empty force subsystem, and explicitly define the few force

parameters needed for argon.

2.2.3 Define Atom Class

DuMMForceFieldSubsystem has two levels of hierarchy when defining atom types. The
first, more general, level is the atom “class”, which roughly corresponds to a particular
element in a particular bonding environment. The second, more detailed, level is the atom

“charged type”, which includes a partial charge on the atom and is discussed in section 2.2.4.

// Define an atom class for argon
dumm.defineAtomClass_KA(

DuMM: : AtomClassIndex(100),

“argon',

18,

o,

1.88,

0.0003832

)

10

The “_KA” part of defineAtomClass_KA() denotes that the units used are based on
kilocalories-per-mole and Angstroms, rather than on kilojoules-per-mole and nanometers,

which is the default set of units.

The first argument, 100, is the index within the force field subsystem for the new atom class
that is being defined. The number 100 is meant to be large enough to probably not collide
with other atom class indices that have been defined. If another class already has index 100,

an error will occur. Yes, this is not particularly elegant.

The second argument, “argon”, is a name for the atom class, and has no practical use.

The third argument, 18, is the atomic number of the chemical element represented by the
atom class; in this case argon, which is element number 18 on the periodic table of the

elements.

The fourth argument, O (zero), is the number of bonding partners for this atom type. Since

argon is an inert gas, it never forms bonds.

The fifth argument, 1.88, is the van der Waals radius of the atom class, here defined as half
the distance between two argon atoms that are separated by a distance that minimizes the
energy of their interaction. This value may not be quite right and is difficult to get a perfect
value for. That is why we will be so relieved when we start using predefined force field
parameters in later examples. The value is in Angstroms because of the _KA suffix on the

method name. Otherwise it would have to be in nanometers.

The sixth and final argument, 0.0003832, is the energy well-depth of the van der Waals
interaction at its minimum. The units are kilocalories-per-mole. If the method did not have

the KA suffix, the units would have to be in kilojoules-per-mole.

WARNING: The numbers for van der Waals radius and well-depth in this

® example are made up. Do not treat them as physically accurate!

TwoArgons Program Discussion 11

2.2.4 Define Atom Charged Type

The “charged type” for an atom further refines the atom “class” by assigning a particular

atomic partial charge to the atom type.

dumm.defineChargedAtomType(
DuMM: :ChargedAtomType Index(5000),

‘argon™,

DuMM: : AtomClassIndex(100),
0.0

)

The first argument, 5000, is the index in the force subsystem for the new charged type that
is being defined. Like the atom class index, it is chosen to not collide with other values. Itis

much larger because there are potentially many more different charged types.

The second argument is a name for the charged type. It is not used.

The third argument refers to the atom class of which this charged type is a sub-type. That
100 must match the 100 in the call to defineAtomClass_KA(Q).

The final argument, 0.0 (zero) is the total partial charge on the charged atom type. In the
case of argon, the net charge is zero, which is part of why the force situation in this case is

particularly simple.

2.2.5 Biotypes

The previous section discussed atom “class” and atom “charged type”, which are both atom
classifications related to specific force field parameters. Biotype is another atom

classification. But Biotype is not associated with a specific force field.

The purpose of the Biotype is to decouple the chemical concept of the atom from any
particular force field that models the atom. In other words, the Biotype for a particular atom

can be defined before any force field has been chosen. The Biotype then acts as a link

12

between the chemical atom type and the atom types used in a particular force field. The
concept of the Biotype is borrowed from the molecular mechanics package TINKER (J. W.
Ponder, 1987).

First we link a particular atom to a Biotype, which has approximately the same granularity as
the atom charged type, but can be assigned before a force field is chosen. Second, once a
force field is chosen the Biotypes are linked to atom charged types of the force field. The

Biotype has no charge associated with it.

iT (! Biotype::exists(argon'™, "argon'))
Biotype: :defineBiotype(Element::Argon(), 0, "argon',
‘fargon™);

Biotypes are managed by the Biotype class, and are independent of any particular force
field, Compound, or even simulation. The Biotype::defineBiotype() method takes three
arguments. The first argument is the chemical element of that Biotype. The second
argument is the number of bonds to the atom in the Biotype category. Argon does not form
bonds, so this value is zero. The third argument is the Compound name of the Biotype, and
fourth, the atom name. In the case of argon, we have chosen “argon” for both the Compound

name and the atom name.

This defines a global argon biotype, but does not attach it to anything. The biotype for the
argon atoms could be set using the Compound::setAtomBiotype() method. In this case, the
biotype has already been assigned in the constructor for Argon() in Compound.h, so we do

not need to do it in the example program.

dumm.setBiotypeChargedAtomType(
DuMM: :ChargedAtomTypelndex(5000), Biotype::get(argon,
argon™) .getindex());

Once the force field parameters are defined, the argon biotype can be associated with a
particular atom charged type. The DuMMForceFieldSubsystem::
setBiotypeChargedAtomType() method takes two arguments: the index of an existing atom

charged type, and the index of a Biotype.

TwoArgons Program Discussion 13

The numbering of Biotype indices is arbitrary, and is managed by the Biotype class.

2.2.6 Declaring the Argon Compounds

Argon argonAtoml, argonAtom2; // two argon atoms

This line creates two argon atoms, using the constructor found in the header file
Compound.h. These atoms are members of the class Argon, which is derived from

Compound. No multibody model has yet been constructed at this point.

2.2.7 Attaching the Argon Atoms to the System

system.adoptCompound(argonAtoml, Vec3(-0.3, 0, 0));

This method transfers ownership of the argon atoms’ internal data structures to the System.
This method is specific to the CompoundSystem class. No modeling decisions have been

made yet at this point. A Compound can only belong to one CompoundSystem.

The second argument specifies the location and/or orientation of the molecule relative the
ground frame.

2.2.8 Finalizing the multibody model

system.modelCompounds(); // finalize multibody system

The modelCompounds() step is a critical one. Modeling decisions are committed at this
point. Also, the default configuration is transferred onto the dynamic configuration.

Subsequent changed to the default configuration will have no affect on your simulation.

There is really only one way to model a single argon atom as a multibody model, so nothing

particularly interesting is being finalized here. This situation will change in later examples.

14

2.2.9 Simulating

The simulation process is the same as that for non-molecular systems, as described in the
SimTK tutorial. Here we have chosen the Verlet integrator, which performs well with
molecular systems, in which the computation of the forces tends to be vastly more expensive
than the computation of the motions. See the APl documentation to find what other

integrators are available.

2.3 Units are nanometers, atomic mass units, and

picoseconds

Be careful when including physical quantities in your programs. External

data sources often express atom-scale lengths in Angstroms (10-1°© meter).
Molmodel assumes lengths are in nanometers (10° meter). You must

) convert quantities accordingly. Similarly, in Molmodel angles are in

radians. Thus you must convert any angle values expressed in degrees.

The constants SImTK: :Deg2Rad and SimTK: :Rad2Deg are provided to help with these

conversions.

2.4 Where is the Atom Type?

There is no explicit Atom type exposed in the public Molmodel API. Atoms are managed
within Compounds using atom names and atom indices. Compound is the central parent
data type in Molmodel from which Molecules, Residues, and other molecular assemblies are
derived. Atoms, Bonds, and BondCenters are identified within a Compound using names or

indices. See section 8.2 for more details.

2.5 Exercises

Exercise 2-1

Compile and run the two argon example program.

Exercises 15

Exercise 2-2
Add a third argon atom. Be careful to place it neither too close to, nor too far away from, the
other atoms. Try to keep the initial locations of each atom at least 0.3 nanometers away

from each of the others atoms.

Simulating Two Ethane

Molecules

We will now move from the simplest molecular simulation, argon, to one that includes
chemical bonds. The inclusion of bonds (and charges) increases the complexity of the
molecular force field. In this example, we will ignore most of that complexity, and make use
of predefined force field parameters. We will still need to define the atomic charges,

however.

The ethane molecule is the second simplest hydrocarbon, and consists of two carbon atoms
and six hydrogen atoms. It is the simplest hydrocarbon that possesses a torsion angle, which
requires a series of four atoms to be bonded together sequentially. Torsion angles are a

central feature of internal coordinate simulation.

Ethane is one of a small number of molecule types that are predefined in the
“Compound.h”” header file in the SimTKcore distribution. That is how we are able to use it
as a type in the example program. Examining “Compound.h” can be useful when trying to

design new molecules. See chapter 8 for more details.

17

18

3.1 TwoEthanes Example Program

Example 3-1: Complete program for simulating two ethane molecules

#include ""SimTKmolmodel .h™
#include "SimTKsimbody aux.h'™ // for vtk visualization

#include <iostream>
#include <fstream>
using namespace SimTK;

int main()

{
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
TinkerDuMMForceFieldSubsystem dumm(system);
DecorationSubsystem artwork(system);

// Atom classes are available, but not charged atom types
for ethane

// in standard Amber force field

dumm. loadAmber99Parameters();

it (! Biotype::exists(“ethane™, "C™))
Biotype: :defineBiotype(Element: :Carbon(), 4, "ethane",
"C);
if (! Biotype::exists("ethane'™, "H™))
Biotype: :defineBiotype(Element: :Hydrogen(), 1,
“ethane™, "H™);

dumm.defineChargedAtomType(
DuMM: :ChargedAtomType Index(5000),
"ethane C",
DuMM: :AtomClasslIndex(1l), // "CT" type in amber
-0.060 // made up
)
dumm.setBiotypeChargedAtomType(
DuMM: :ChargedAtomTypeIndex(5000), Biotype::get(“ethane’,
"C").getlndex());

dumm.defineChargedAtomType(
DuMM: :ChargedAtomTypelndex(5001),

TwoEthanes Example Program 19

"ethane H",
DuMM: :AtomClasslindex(34), // "HC"™ type in amber
0.020 // made up, use net neutral charge
)
dumm.setBiotypeChargedAtomType(
DuMM: :ChargedAtomTypelndex(5001), Biotype::get(“ethane",
"H') .getindex());

Ethane ethanel, ethane2;

// place fTirst ethane, units are nanometers

// skew it a little to break strict symmetry

system.adoptCompound(ethanel, Transform(Vec3(-0.5, 0, 0))
* Transform(Rotation(0.1, YAXis)));

// place second ethane, units are nanometers
system.adoptCompound(ethane2, Vec3(0.5, 0, 0));

system.updDefaultSubsystem() .addEventReporter(new

VTKEventReporter(system,
0.050));

system.modellCompounds(); // finalize multibody system

State state = system.realizeTopology();

// Simulate it.

Verletlntegrator integ(system);

TimeStepper ts(system, integ);

ts.initialize(state);
ts.stepTo(200.0);

20

I Vs ookl - Win330panci. 41 =106

Figure 3-1: Frame from Two Ethanes Simulation

3.2 Discussion of TwoEthanes Program

3.2.1 Force Field
TinkerDuMMForceFieldSubsystem dumm(system);

As in the TwoArgons program, we create an empty TinkerDuMMForceFieldSubsystem

object to manage the forces.

dumm. loadAmber99Parameters();

Unlike the case with the TwoArgons program, we can leverage some predefined force field
parameters for our ethane simulation. The AMBER99 force field does not include

Discussion of TwoEthanes Program 21

parameters for the ethane molecule itself, but this force field does include atom classes that
can be used for ethane. So by using the loadAmber99Parameters() method, we avoid the

need to call defineAtomClass() methods, as we did in the TwoArgons example.

3.2.2 Define Atom Charged Type

The AMBER99 force field gives us parameters for the atom classes in ethane, but not for the

atom charged types. Again we will make up some parameters for these.

There are two kinds of atoms in ethane: carbon and hydrogen. There are two carbon atoms
and six hydrogen atoms, but only two atom types, because each hydrogen atom is chemically
equivalent to all of the others, and each carbon atom is chemically equivalent to the other

one. This is equivalence is implied by the symmetry of the ethane molecule.

dumm.defineChargedAtomType(

DuMM: : ChargedAtomType Index(5000),

"ethane C",

DuMM: :AtomClassIndex(1), // "CT" type in amber
-0.060 // made up

);

dumm.defineChargedAtomType(
DuMM: :ChargedAtomTypelndex(5001),
"ethane H",
DuMM: :AtomClassIndex(34), // "HC" type in amber
0.020 // made up, use net neutral charge

);

The charges on the atom are made up and probably wrong, but I did make sure that the total
charge on the whole ethane molecule will be zero, because ethane does not have a net
charge. | guestimated the charges themselves based on the parameters for similar groups
that actually are found in the standard AMBER99 force field. Again, do not take these

atomic charges as correct. This is just for expository purposes.

The bad part about using the predefined atom classes is that | needed to know the

AMBER99 atom class indices for tetrahedral carbon (1) and for aliphatic hydrogen (34), as

22

used by the program TINKER. There is no good way right now to look those indices up in
the Molmodel API. Sorry.

3.2.3 Declare the Ethane Compounds and Attach them to the System

Ethane ethanel, ethane?2;

system.adoptCompound(ethanel, Transform(Vec3(-0.5, 0, 0))
* Transform(Rotation(0.1, YAXiSs)));

Like Argon, Ethane is one of the few Compounds defined in the header file Compound.h.

3.2.3.1 Initial Orientation/Reference Frame of Each Molecule

In the TwoArgon program, the center of each argon atom was placed at the location given in

the adoptCompound() method. What part of the ethane molecule goes there?

The specified location is where the first atom of the Compound will be located. In the case of
ethane, that atom is the first carbon, atom “C1”. In the Compound reference frame, the first
atom center is at the origin, the first BondCenter of that atom is along the y-axis, and the
second BondCenter of the first atom lies in the x-y plane. These rules define the internal

reference frame of a Compound.

In one of the adoptCompound() statements, | have multiplied the starting location by a
Transform. | won't explain in detail here exactly what that does, but its purpose is to skew
the orientation of one of the ethane molecules a bit to break perfect symmetry, so the

simulation will look more interesting.

The rest of the TwoEthanes example follows the same concepts as the TwoArgons example.

3.2.4 Why are Some Bonds Gray and Others Orange?

Do | have to do an internal coordinate simulation? 23

If you look carefully at the ethane animation, you will see that the bond connecting the
carbons is orange, while the carbon-hydrogen bonds are gray. Gray bonds connect members
of the same rigid body. So each methyl group is a single rigid body. The only internal
motion permitted is a rotation about the carbon-carbon bond. This is an internal coordinate
simulation. Internal coordinate simulation, in which bond lengths and bond angles remain
fixed, while dihedral angle are permitted to vary, is the default modeling behavior of the
Molmodel API.

3.3 Do | have to do an internal coordinate simulation?

No! You can perform a full atomic Cartesian simulation using Molmodel and Simbody. The
default behavior is to automatically construct internal coordinate models, but this can be

changed. See chapter 7 for more details.

3.4 EXxercises

Exercise 3-1

Compile and run the ExampleTwoEthanes program.

Exercise 3-2

Add a third ethane molecule. Keep in mind that each ethane molecule is about 0.4
nanometers wide, and is centered on the “C1” atom. The long direction of each molecule is

initially along the y-axis.

Exercise 3-3

Adjust the mobilities of the three ethane molecules so that one moves using internal
coordinates (the default), one is completely rigid, and the third is a full Cartesian model.

You may want to examine Chapter 7 of this guide before attempting this.

Simulating a Protein Molecule

Next we move to a much more complicated molecule type: protein. Proteins are defined in
the “Protein_h’" header file. Although protein molecules are much more complicated that
argon or ethane, the following example program is actually the shortest one so far! That is
because all of the force parameters for proteins are predefined in the AMBER99 force field,
and because the Protein class includes a constructor that takes a compact sequence string

as an argument. The sequence is a very compact representation of a protein’s topology.

4.1 Creating a Protein Model from a Sequence String

Example 4-1: Vision for simple protein constructor

#include “SimTKmolmodel.h”
Protein(““ACDEFGHIKLMNPQRSTVWY?*") ;

That string of characters “ACDEFGHIKLMNPQRSTVWY” represents a sequence of twenty
different amino acid residues that comprise a protein. In fact, those twenty letters represent
all of the canonical amino acid residues that can be represented using the one-letter protein

code. For example, “A” stands for alanine, “C” stands for cysteine, etc.

When this Protein constructor is used, a protein is made by default in an “extended”

conformation, which results in an elongated structure. One exception to this is the proline

25

26

residue (“P”), which has a more restricted conformation and results in a kink in the

molecule.

4.2 SimpleProtein Program

Example 4-2: Complete program for simulating a very small protein

#include "SimTKmolmodel .h"
#include "SimTKsimbody aux.h' // for vtk visualization

using namespace SimTK;
using namespace std;

int main(Q)

{

CompoundSystem system; // molecule-specialized simbody
System

SimbodyMatterSubsystem matter(system); // matter is
required

TinkerDuMMForceFieldSubsystem dumm(system); // molecular
force field

DecorationSubsystem artwork(system); // for drawing
vtk visualization

dumm. loadAmber99Parameters();

Protein protein("'SIMTK™);

protein.assignBiotypes();

system.adoptCompound(protein);

system.updDefaultSubsystem() .addEventReporter(new
VTKEventReporter(system,

0.020));

system.modelCompounds(); // finalize multibody system

State state = system.realizeTopology();

// Simulate 1t.

Verletlntegrator integ(system);

TimeStepper ts(system, integ);
ts.initialize(state);

Analysis of SimpleProtein Program 27

ts.stepTo(20.0);

E.
_s
g
:

Figure 4-1: Frame from Small Protein Simulation

4.3 Analysis of SimpleProtein Program

As in the TwoEthanes example, we load AMBER99 force field parameters into the force field

subsystem.

dumm. loadAmber99Parameters();
This time, because all of the parameters for protein atoms are specified in the AMBER99

standard force field, we have much less bookkeeping to do. All of the atom partial charges
come for free, for example. And they might not even be wrong.

Protein protein("'SIMTK');

28

The sequence constructor is used. The one letter code “SIMTK” results in a protein with
sequence of five amino acids serine-isoleucine-methionine-threonine-lysine. In addition,

small neutral end-cap residues are placed at both ends of the protein chain by default.

protein.assignBiotypes();

The assignBiotypes() method is new here. It automatically resolves the atom Biotype
mapping using residue types and atom names, and matching them to the residue types and
atom names defined in the TINKER version of the AMBER99 force field.

The rest of the simulation repeat concepts raised in the TwoArgon and TwoEthane

programs.

4.4 Amber99 Force Field
The TinkerDuMMForceField class is capable of specifying “Amber-like” force fields. That is,

force fields which are expressed in terms of forces including: bond-stretch, bond-bend,
bond-angle, dihedral angle, Lennard-Jones, and coulombic forces. Many popular molecular
dynamics force fields are included in this category. Presently Molmodel includes hard-coded
parameters for the AMBER99 (J. Wang, 2000) force field , via the
loadAmber99Parameters() method of the TinkerDuMMForceFieldSubsystem class.

It is possible for Molmodel to load force field parameter definitions from parameter files
used in the TINKER (J. W. Ponder, 1987) molecular mechanics program. But this
functionality has only been tested for the Amber99 force field, and thus will probably fail for

other force fields pending further debugging.

4.5 Exercises

Exercise 4-1

Compile and run the protein example program.

Exercise 4-2

Try a different protein sequence.

Exercises 29

Simulating an RNA Molecule

Simulating a simple RNA molecule is very similar to simulating a protein.
5.1 SimpleRNA Program

RNA and DNA structural topology, like that of proteins, can be represented by a sequence of
letters in a one-letter-per-residue code. The size of the alphabet for RNA and DNA is much
smaller than that for proteins. RNA has letters A, C, G, U, while DNA has letters A, C, G, T.

This example runs a bit slower than the previous ones because atomic coordinates are being

written periodically.

Example 5-1: Complete program for simulating a small RNA molecule.

#include ""SimTKmolmodel .h™
#include "SimTKsimbody aux.h™ // for vtk visualization

using namespace SimTK;
using namespace std;

class WritePdbReporter : public PeriodicEventReporter {
public:
WritePdbReporter(
const MultibodySystemé& system,

31

32

const Compound& compound,
std: :ostream& outputStream,
Real interval)
: PeriodicEventReporter(interval),
system(system),
compound(compound),
outputStream(outputStream)
O
void handleEvent(const State& state) const {
system.realize(state, Stage::Position);
compound .writePdb(state, outputStream);
}
private:
const MultibodySystem& system;
const Compound& compound;
std: :ostream& outputStream;

¥

int main()

{

CompoundSystem system; // molecule-specialized simbody
System

SimbodyMatterSubsystem matter(system); // matter is
required

TinkerDuMMForceFieldSubsystem dumm(system); // molecular
force field

DecorationSubsystem artwork(system); // for drawing
vtk visualization

dumm. loadAmber99Parameters();
RNA rna(""'AUG™);
rna.assignBiotypes();

system.adoptCompound(rna);

system.updDefaul tSubsystem() .addEventReporter(
new VTKEventReporter(system, 0.020));

system.updDefaul tSubsystem() .addEventReporter(
new WritePdbReporter(system, rna, cout, 0.100));

system.modelCompounds(); // finalize multibody system

SimpleRNA Program 33

State state = system.realizeTopology();

// Simulate it.

Verletlntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(10.0);

Figure 5-1: Small RNA model

WARNING: At present, the RNA molecules produced are not chemically

complete. The initial phosphorus atom and final 3' oxygen atom are each

34

missing a bonding partner. This is a defect in the current Molmodel definition of RNA

molecules.

5.2 Writing PDB coordinates

This example writes a set of PDB coordinates to the screen periodically. The atomic
coordinates in PDB files can be used by many molecular computer programs to share
structural data. The example program creates a new class WritePdbReporter, which is
derived from PeriodicEventReporter, which is described in the SimTK tutorial.
WritePdbReporter uses the writePdb() method of Compound. The

Compound::writePdb() methods can also be used directly.
5.3 Finding APl documentation

Using documentation of the Molmodel API is essential to mastering Molmodel
programming. HTML APl documentation is available in the SimTK core distribution in a
directory on your computer under <SIMTK_HOME>/core/doc/api/Molmodel/index.html.

(Assuming you installed the SimTK core distribution on your computer.

You can also access the APl documentation at the SimTK.org website.
Browse to simtk.org and search for the “SimTKcore” project.
Select “SimTKcore” from the project search results list.

Select the “Documentation” section on the left navigation bar.

Select the “Doxygen Docs” link.

a b~ w0 b=

Select the “Molmodel API” link. Now you are at the page corresponding to the

core/doc/api/Molmodel/index.html file in the SimTKcore distribution.

Finding APl documentation 35

people behind them.

About SimTK Where To Get
SmTH, the Simulatae
Toolkit, is part of the
preject funded by
the Natonal Institutes of
Health. Learn mers ...

Related Sites

HIN Corder
Jieritler
Phigcs-based
Smulstion
Serbiame
Q —
Bmedical
Comoutatan
B
f‘ Cardioyascular
™ Dwmamics
Learn mare about our latest
ni (8/22/07) on
tsing Cpersim 1.0, Heuromuscular
£ Biomechanics
) _ [l
simtiorg @ O

Figure 5-2: Searching for the "SimTKcore" project at SimTK.org

Search Simtk.org

Ry Sxarch Results for: simtkcore

Froas [vi(Ga)

Fapves [People |

Curvant Fillar i cpo; Cl -
CPODES numsrical inteurater :

Al Topice LN!C%I'DDEO;HI of '.':Iilﬂrﬁgjﬂﬂnlgéﬂ Erovide Dﬂ:“el lagk Migdigtan

or o1 e SenTH: Core-suaporte

platfarma, The official scurce is maintained s Ieaostts Srnst

AP Filler LKL a5 part of the Sundils sube - thea proeet pichas| Sherman
shways contsins a stable snapshot.

Cordevasuac Ester Lagtmar

' e Simbrodtim]: SimTK Multibudy Dynamics oo i
Bl Dynanigy Toglset
hay Suribady 15 useful for internal coordinate and coarse
vl arained melecule modeling, arge scale mechanical

models boe skeleton, and arytheg else that can be
Bratein Folding madeled a5 bodies interconnected by joints.

ENA Folding #0 Simmath; SimTK Cors Hathsmatical
MG
Topic Filler Caihen The purpose of this praject s ||I|_ pJ'u\mIr
debugord, bigh prdarmaree, coen srer, hieet ceinnled
Auligalnag software implement umerical methods mast commanty
i raeded in hioumulaten appheations.
Libranss i
Cita Sets ﬁ m K Sk 3 52 0 sapacnts peojedt to
Reveioer Tosls Soemare aeeccrt, atbaugh ibe schmace i
Miscallanssus actusly developed s 8 st of interdependent
. propncts.
. SImTK Core Duilder u
Bubic Downloads To help SmTK Developers do builds by providing shell seripts
SimTK Comonnents that document the build process.
ek Sie
-
Done smtorg @ 050

Figure 5-3: Selecting "SimTKcore" from project search results list.

36

SimTKcore
i
dwayraphy of wie Overview

Project
Lead o

of
Fobbrsacaiand
rechna:

Pcessner to buikding
successtul
ohysics-baced
simulations of

i 3
software engineenng. lask Middigten
=11

.M: Believe that a primary concern of simulation seientists i

Cantac ance, that i, spend of computation, We sesk 1o buid
S, approvimate medels usng classical ERyscs i order b Prindpal Downloads
Band Baccnat nchinun reasanable run timme for cor computaticral studiee, e -
that we can hope to learn something interesting befare retirement. 1.0
Peter Eastman 11 tha choice of SimTK tachnclogins, we are fecuted on achvrg
Contac the bast possble peformance oo hardware that most researchers DG
setually e, In today's practics, that manne semmadity]
muliprocessers and small chusters. "
Contact jr il
The difference in periormance between the best methads and the g
Team .4= at-pourealf thcheiquat matt propls ues cah ba 3
rg—eanly am order of magnituse or mare. The growing £ Qther
enien et or Sl Cor Horries saais b8 provids tha bast '
implementatson of the best-known methods for widely used 1.0
somgatations tuch ae: P
Linear algetra, numerical integration and Monte Carlo sampleg, =ssAlDunnleads
multibady (intarmal sosrdinate) dynamics, malssular farca Fald
evalusbion, meelingar rect hinding and opbmezabion. All SmTE Core NEW!
Eaftmars i in the farm of C+-+ APLE, it thrand-eafs, 40d quisthy 2T 10 e [
Nttps://simtk.or/docman/7aroup_id=97 smikorg @ [©

Figure 5-4: Selecting the Documents section of the SimTKcore project.

Hgtary

fe g

vew
>

Fonward

=

Guarviaw SimTKcore
Team Documents
Sxllages all
- Documents @ Planni
Wikl {Beta) SimTK Core L0 Kebease Plan (15t draft)
- This 15 an attemat to set oUt the theme, schedule, Contents, and things-to-da for the SimTK
Publications Corn 3.0 releace, March 3 200
update: Nov 14, 2007
News
Advanced P sim1K Proaramming APLs
Project
Administrater
Eichoel isherman
(=TT
Jack Middleter
Coninct
Eandy Sadmer
Snad
Bater lagtman
Cortach

Isanstie Schmidi
Comiacy

Team
Emembees

Figure 5-5: Selecting the "Doxygen Docs" link.

Finding APl documentation 37

3 G search + 4 BElsmTK @ 1ighion:

Fle Edt Vew Hstory pookmas Took pep o
» @ © @ : T
Back Forward Reloed Stop ;"f! 8 ot Blxln] Adbiock PR

5] Smtkaorg: SmiTkcore: Docu.. | [Simtk.org: Requested Pag.. |

Simbedy AF]
!

Heln - .
r

L Class List
e Class Hierarchy
18] Class Members
oy Namespace List
B Mamespace Members
e File List
e Directorics
1] File: Members
= Related Pages

| Main Poge | Numespasss | /-(:_|M|MP-
Mom Documentation

Ganaated on Th Fab 28 1120408 2008 for Molmode! by do!\.-‘_ﬂen 47

smikor @ £ 0

Figure 5-7: Selecting the "Classes" tab in APl documentation.

38

Molmaodel
W@ Class List The base class for ONA, RNA, and
s Class Hierarchy Biopotymer Protein molecuies
1 Class Members BiopotymerResidue
*_0 Namespace List Base class for atoms having exactly
L] e two covalen? bords
"y File List 5
v Calciumion G caleium ion With +2 charge
le Members CarboxylateGroup Caboxyiatetoug s COC for
= Helated Pages i 2
Cesumion 5" cesam won with « 1 charge
Chionidelon T chiondee jon with -1 charge
.1 The base class for atoms, mokecutes,
TN and chemical grouns
Base class for single-atom Compouna
et buding bibcks
Derved clres of
CompoundSystem hanicsEystem that knows
hoiy to model malmodel Compotnds
CytosineBase
The small hydrocarbon ethane, CiHs,
Ethane el fus @ single torson degres of
freedonm
GuanincBase
AminaAcidResidue difers from
HNAminaAcidResidue HNAminaAcidResidue in loking “HV
proton, 5o Prodine can be demves
Lithiurmion L4 fithatarrs o with +1 charge
Magnesiumbon M magnesiunt jon with +2 change
e The simplest hydrocarbon methane,
w
Done smticorg @ 5 ©

e Class Hierarchy
5] Class Members
s Namespace List

e File List
e Directorics

1] File: Members
= Related Pages

B Mamespace Members

Lit of &l memi ~

fe EGC Vew Hstory Bookmas Toos Hew]
€« . » @ & B 5 T .
. T e O A 5 napssismicorgiep docimomossy ae] W
| (2] (G search - & EsmTR 9 it

Molmodel

g Class List

- FurineBaiaCon

“PyrmianeBaseCon

Datailed

The base class for atoms, molecules, and chemical groups.

The Compound class ia the base for all molecular entities n the SimTK Molmodal
AP,

Data types that identify
compounds

typedef String Name

of

Type For navne of & partreular subcompound mithin &
Compeacand.

&

e
[l

smikon @ 5 0

Figure 5-9: Getting an alphabetical list of Compound methods.

5.4 Exercises

Exercises 39

Exercise 5-1

Compile and run “RNA example” program.

Exercise 5-2

See how much faster it runs if you don’'t write PDB coordinates.

Exercise 5-3

Simulate with electrostatic forces turned off. Use the method

setCoulombGlobalScaleFactor () of DuMMForceFieldSubsystem.

Loading a Molecule from PDB

Coordinates

The previous protein example created a protein in a fully extended configuration.
Functional proteins in the real world are folded into compact shapes. It would be extremely
tedious to set all of the internal coordinates manually to match a known structure. This
example demonstrates a technique for matching the configuration of a protein structure in a
PDB file. There are some limitations to this approach that we hope to address in a future

release.
6.1 LoadPDB Program

The LoadPDB program reads a protein configuration from a PDB (Protein Data Bank)
format file. In addition, there are a few more nice features that bring this simulation a bit
closer to being physically reasonable than the other examples in this guide.

This program is based on an example from the SimTK tutorial by Peter Eastman.

Example 6-1: Complete program for simulating a protein from PDB coordinates.

#include "SimTKmolImodel.h"

41

42

#include "SimTKsimbody_ aux.h"
using namespace SimTK;
int main() {

// Load the PDB fTile and construct the system.
CompoundSystem system;

SimbodyMatterSubsystem matter(system);
DecorationSubsystem decoration(system);
TinkerDuMMForceFieldSubsystem forces(system);
forces. loadAmber99Parameters();

PDBReader pdb("'1AKG.pdb'™);
pdb.createCompounds(system) ;
system.modelCompounds();

system.updDefaul tSubsystem() -addEventHandler (new
VelocityRescalingThermostat(
system, SimTK_BOLTZMANN_CONSTANT_MD, 293.15, 0.1));
system.updDefaultSubsystem() .addEventReporter (new
VTKEventReporter(system,
0.025));
system.realizeTopology(Q);

// Create an initial state for the simulation.

State& state = system.updDefaultState();
pdb.createState(system, state);
LocalEnergyMinimizer: :minimizeEnergy(system, state, 15.0);

// Simulate 1t.

Verletlntegrator integ(system);
integ.setAccuracy(le-2);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(10.0);

6.2 Discussion of LoadPDB Program

Internal coordinates Differ from Cartesian Coordinates 43

6.2.1 PDBReader Object

PDBReader pdb(*"1AKG.pdb™);
pdb.createCompounds(system) ;

pdb.createState(system, state);

The PDBReader object manages the reading of a PDB file, in this case “1AKG.pdb”, and
directly populates the CompoundSystem object. Thus the PDBReader methods obviate the
need for the Protein() constructor, the assignBiotypes() method, and the adoptCompound()

method.

6.2.2 Maintaining Temperature

A method for maintaining the physical system at a constant temperature is included in this

example:

system.updDefaultSubsystem() .addEventHandler(new
VelocityRescal ingThermostat(
system, SImTK _BOLTZMANN_CONSTANT_MD, 293.15, 0.1));

See the SImTK tutorial for more details.

6.2.3 Relaxing the Structure

Before running a dynamic simulation, it is a good idea to relax the structure so that your
trajectory does not begin with a high energy configuration. See the SimTK tutorial for more
details.

LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

6.3 Internal coordinates Differ from Cartesian Coordinates

The atomic coordinates in a PDB file specify Cartesian (X, y, z) coordinates in orthogonal

Angstrom units for the location of each atom in a molecule.

Structures in Molmodel use internal coordinates to specify atomic locations. After the first
three atoms of a molecule are placed, the location of each atom is specified relative to three
other atoms. Three values are used to specify the atom’s position:

1. Bond length to the previous atom

44

2. Bond angle formed by atom and the two previous atoms

3. Dihedral angle formed by the atom and the three previous atoms

Molmodel uses internal coordinates to specify atomic locations for two reasons. First, this
representation is closely related to the internal coordinate dynamics model that is created by
default. Second, internal coordinates can be more convenient for defining localized

structural groups.

6.4 Default (initial) Configuration Differs from Dynamic

Configuration

Although Compound structures are defined using internal coordinates in Molmodel, this
does not imply that internal coordinate dynamics must be used in your simulation. The
choice of the number of degrees of freedom to use in dynamic simulation (e.g. internal
coordinate, full Cartesian, or rigid bodies) is made after the initial (default) configuration of
the Compound has been specified. That initial default configuration is always specified in

internal coordinates.

The program in Example 6-1 demonstrates a technique for setting the degrees of freedom in
a dynamic model to match the structure in a PDB file. This approach might not work well
for models that have large sections of rigid bonds. An approach that incorporates the

configuration from a PDB into the initial default configuration is under development.

6.5 Exercises

Exercise 6-1

Download PDB structure 1AKG from http://www.rcsb.org/

Exercise 6-2

Load and simulate 1AKG structure

Making an Entire Protein a
Single Rigid Body

7.1 Modeling and Coarse-grained Representations

The default mobilities of Compounds defined in the Compound.h, Protein.h, and RNA.h
header files are internal coordinate mobilities. In other words, bond-lengths and bond
angles are constrained to be fixed, while dihedral (torsion) angles are permitted to move
during simulation. Further, planar groups, such as peptide bonds and aromatic ring
systems, are held rigid by default. These default mobilities can be changed. Such changes
must be made before the multibody model is finalized with the

CompoundSystem::modelCompounds() method.

Example 7-1: Complete Program for Simulating a Rigid Protein

#include "'SimTKmolmodel .h""
#include "SimTKsimbody_ aux.h™

using namespace SimTK;
using namespace std;

int mainQ)

{

45

46

CompoundSystem system;
SimbodyMatterSubsystem matter(system);
TinkerDuMMForceFieldSubsystem dumm(system);
DecorationSubsystem artwork(system);

dumm. loadAmber99Parameters();

Protein protein("'SIMTK"™);
protein.assignBiotypes();
system.adoptCompound(protein);

for (Compound::BondIndex bondIx(0);
bondIx < protein.getNBonds();

++bond1x)
{
// set all bonds rigid
protein.setBondMobility(
BondMobility: :Rigid,
bondIx);
}

system.updDefaultSubsystem() .addEventReporter(new
VTKEventReporter(system,
0.020));

// Tinalize multibody system
system.modelCompounds();

State state = system.realizeTopology();
// Simulate it.

Verletlntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(20.0);

This simulation is not very interesting, because the protein is not capable of moving. If there
were two rigid proteins on the other hand, they would be able to move relative to one
another.

Specifying the Degrees of Freedom of a Molecule 47

7.2 Specifying the Degrees of Freedom of a Molecule

The dynamic mobility of a molecule is set by setting the mobilities of each of its bonds. You

can set the mobility of a particular bond using the setBondMobi ity () method.

Compound: :setBondMobi lity(
BondMobility: :Mobility mobility,
Compound: :BondIndex bondIndex);

This approach works well for setting every bond in a Compound to a particular mobility, in
which case you loop over every index from zero to getNBonds(). To set the mobility for a

particular bond, use the version of setBondMobility that takes atom names as arguments:

Compound: :setBondMobi lity(
BondMobility: :Mobility mobility,
Compound: :AtomName atomNamel,
Compound: :AtomName atomName?2) ;

7.3 Defining Dihedral Angles

To specify particular atoms and bonds in a protein or RNA structure, you need to know the
names of the residues that comprise the molecule. Protein and RNA residue names begin
with the name “0” (zero) at the beginning of the chain, and proceed “1”, “2”, “3”, etc.

So you could identify a particular atom as "3/05*" for example.

You can set a dihedral angle at the time of bond creation, at which point several assumptions

are made about the meaning of that dihedral angle in the interest of concise syntax.

To set a dihedral angle later, you must be more precise about the definition of that dihedral
angle. A dihedral angle is properly defined by a sequence of four bonded atoms. You can

define a dihedral like so:

48

defineDihedralAngle("angleName™, "atomlName', "atom2Name',

"atom3Name', "‘atom4Name'™)

You can also define a dihedral angle in terms of TWO bond centers: a) the BondCenter

linking atom2 to atom 1, and b) the BondCenter linking atom 3 to atom 4.

7.4 An Index is Notan ID

Avoid the error of using an AtomIndex used in one Compound to identify the same atom in a
subcompound or parent Compound. For example, the atom with Atomindex 13, for
example, in a particular AminoAcidResidue Compound within a Protein Compound, will, in

general, have a different AtomlIndex at the Protein level.

7.5 Exercises

Exercise 7-1

Compile and run “rigid protein” example.

7.6 OK, Now Make Every Atom Independent

Exercise 7-2

We won’t write out the source code for this one. Set the bond mobilities
to BondMobility::Free instead of BondMobility::Rigid in Example 7-1.

Constructing a Custom

Molecule

8.1 Introduction to Custom Molecule Construction

The current Molmodel API is focused on easy construction of RNA and protein molecules.
This API also makes it possible, though not necessarily easy, to construct other molecule
types. Construction of a Compound from scratch in Molmodel is a complex subject. This

chapter gives a light overview of the process.

The example program here does not go to the very deepest level of Compound construction,
because it uses instances of the Compound::SingleAtom subclass, which are themselves built
upon a lower API. It is recommended to use classes derived from Compound::SingleAtom,
including UnivalentAtom, BivalentAtom, TrivalentAtom, etc., and their higher level
descendants AliphaticCarbon and AliphaticHydrogen, as is done in the example in this

chapter.
Careful examination of the example program in this chapter, combined with examination of

the various molecule definitions in the header file Compound.h, may provide enough

information for a motivated programmer to design new molecule types.

49

50

8.2 Compound Parts List

To get started constructing custom molecules, it is important to understand the fundamental
building blocks that are used to construct Compounds. Figure 8-1 shows a pictorial
representation of these parts in a partially constructed molecule. The numbers in
parentheses show the number of each part in the figure: there are nine BondCenters, three

Atoms, two Bonds, and one top-level Compound.

1: Atoms(3)

2: BondCen t?rS(g)_/_:___ — _ -

4: Compound(1)

Figure 8-1: Parts of a Compound.

8.2.1 Atoms and Bonds

Atoms and Bonds correspond directly to atoms and covalent bonds in the real world. There
is no explicit Atom class in the public Molmodel API. Atoms are specified using atom names

or atom indices within a Compound.

Defining a New Molecule: Propane 51

A Bond is formed by connecting BondCenters on two Atoms. There is no explicit Bond class
in the public Molmodel API. Bonds are specified by Bond names or Bond indices within a

Compound.

8.2.2 BondCenters

A BondCenter represents one half-bond, or a location on an Atom where a Bond can be
formed. Thus it is possible to specify, via its BondCenters, how many Bonds an Atom can
make, even before any other Atoms have been introduced. There is no explicit BondCenter
class in the public Molmodel API. BondCenters are specified by BondCenter name or

BondCenter index within a Compound.

8.2.3 Compounds

A Compound is composed of Atoms, Bonds, BondCenters, other sub-Compounds, and need
not represent a complete molecule. Compound is the central base class for molecular
structures in the Molmodel API. For example, Protein, RNA, AminoAcidResidue,

Argon, and Ethane are all derived classes of Compound.

8.3 Defining a New Molecule: Propane

Example 8-1: Complete Program for Defining and Simulating Propane.

#include "SimTKmolmodel .h*"
#include "SimTKsimbody aux.h™ // for vtk visualization

#include <iostream>
#include <fstream>
using namespace SimTK;

// Propane is a three carbon linear alkane
// C(3)H(8), or CH3-CH2-CH3
class Propane : public Molecule
{
public:
// constructor

52

Propane()
{

setCompoundName ("*Propane') ;
instantiateBiotypes();

// First atom
setBaseAtom(AliphaticCarbon(*'C1"™));
setBiotypelndex("'C1"™, Biotype::get(*'propane’,
"C1l or_C3").getlndex());
convertlnboardBondCenterToOutboard(); // this is the
root of the parent compound

// Second atom

bondAtom(AliphaticCarbon(**C2'), '"C1/bondl™);

setBiotypelndex("'C2*", Biotype::get(*'propane’,
"C2') .getindex());

// Third atom

bondAtom(AliphaticCarbon(''C3"), "'C2/bond2"™);

setBiotypelndex('""C3", Biotype::get('propane,
"Cl_or_C3").getIndex());

// First methyl hydrogens

bondAtom(AliphaticHydrogen(*'H11"), 'C1/bond2");

bondAtom(AliphaticHydrogen(''H12"), "'C1/bond3");

bondAtom(AliphaticHydrogen(''"H13"), ''Ci1/bond4");

setBiotypelndex("'H11", Biotype::get('propane,
"H1 or H3™).getlndex());

setBiotypelndex("'H12", Biotype: :get(''propane",
"H1 or_H3"™).getlndex());

setBiotypelndex(*'H13", Biotype::get('propane',
"H1 or H3™).getlndex());

// Second methylene hydrogens

bondAtom(AliphaticHydrogen(''H21'), ''C2/bond3");

bondAtom(AliphaticHydrogen(''H22'"), ''C2/bond4");

setBiotypelndex("'H21", Biotype: :get(''propane',
"H2') .getindex());

setBiotypelndex(*'H22*", Biotype::get(*'propane’,
"H2') .getindex());

// Third methyl hydrogens
bondAtom(AliphaticHydrogen(''"H31'"), ''C3/bond2");

Defining a New Molecule: Propane 53

bondAtom(AliphaticHydrogen(**"H32'"), ''C3/bond3");
bondAtom(AliphaticHydrogen(''H33"), ''C3/bond4");
setBiotypelndex("'H31", Biotype::get(''propane",
"H1 or_H3"™).getlndex());
setBiotypelndex(*'H32*", Biotype::get(*'propane’,
"H1 or_H3'™).getlndex());
setBiotypelndex("'H33", Biotype::get('propane',
"H1l_or_H3").getIndex());
}

static void instantiateBiotypes() {
// Create biotypes if they do not exist yet
// four chemically distinct atom types
if (! Biotype::exists('propane', "Cl or_C3™))
Biotype: :defineBiotype(Element: :Carbon(), 4,
“propane™, "C1l or_C3");
it (! Biotype::exists(''propane™, '"C2"))
Biotype: :defineBiotype(Element: :Carbon(), 4,
“propane’™, *"C2");
if (! Biotype::exists(''propane', "H1l or H3™))
Biotype: :defineBiotype(Element: :Hydrogen(), 1,
"propane', "H1_or_H3");
if (! Biotype::exists("propane', "H2™))
Biotype: :defineBiotype(Element: :Hydrogen(), 1,
"propane’, "H2");
}

// create charged atom types

// ensure that charges sum to zero, unless molecule has a
formal charge

static void
setAmberLikeParameters(TinkerDuMMForceFieldSubsystem& dumm)

{
instantiateBiotypes();

DuMM: : ChargedAtomTypelndex chargedAtomlndex(5000) ;

dumm.defineChargedAtomType(
chargedAtomIndex,
"propane Cl1 or C3",
DuMM: : AtomClasslIndex(1), // "CT" type in amber
-0.060 // made up

)

54

Biotype:

Biotype:

Biotype:

Biotype:

}
j

dumm.setBiotypeChargedAtomType(chargedAtomlndex,
:get(“'propane’™, "Cl or C3").getindex());
++chargedAtomIndex;

dumm.defineChargedAtomType(

chargedAtomIndex,

"propane C2",

DuMM: :AtomClassIndex(1), // "CT" type in amber
-0.040 // made up
)
dumm.setBiotypeChargedAtomType(chargedAtomlndex,
get(“'propane’™, "C2').getindex());
++chargedAtomIndex;

dumm.defineChargedAtomType(
chargedAtomlndex,
"propane H1 or_ H3",
DuMM: :AtomClassIndex(34), // "HC" type in amber
0.020 // made up, use net neutral charge
)
dumm.setBiotypeChargedAtomType(chargedAtomlindex,
get('propane™, "H1 or_H3"™)_getlndex());
++chargedAtomIndex;

dumm.defineChargedAtomType(
chargedAtomlndex,
“propane H2",
DuMM: : AtomClassIndex(34), // "HC" type in amber
0.020 // made up, use net neutral charge
)
dumm.setBiotypeChargedAtomType(chargedAtomlindex,
zget('propane’, '"H2")._getlndex());
++chargedAtomlndex;

int mainQ)

{

CompoundSystem system;
SimbodyMatterSubsystem matter(system);
TinkerDuMMForceFieldSubsystem dumm(system);
DecorationSubsystem artwork(system);

The Inboard Bond Center 55

// Atom classes are available, but not charged atom types
for propane

// in standard Amber force field

dumm. loadAmber99Parameters();

Propane: :setAmberLikeParameters(dumm);
Propane propanel, propane2;

// place fTirst propane, units are nanometers

// skew i1t a little to break strict symmetry

system.adoptCompound(propanel, Transform(Vec3(-0.5, 0, 0))
* Transform(Rotation(0.1, YAXis)));

// place second propane, units are nanometers
system.adoptCompound(propane2, Vec3(0.5, 0, 0));

system.updDefaultSubsystem() .addEventReporter(new
VTKEventReporter(system,
0.100));

system.modelCompounds(); // finalize multibody system
State state = system.realizeTopology();

Verletlntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(100.0);

inboard bond center
Biotypes
DuMMForceFieldSubsystem

8.4 The Inboard Bond Center

Every atom and every Compound has (at most) exactly one BondCenter that is known as the
inboard bond center. For an atom, the inboard bond center is ordinarily the first
BondCenter for that atom. For a Compound, the inboard bond center is ordinarily the
inboard bond center of its first atom.

56

Every time a covalent bond is formed using a bondAtom() or bondCompound() method (but
NOT those created with the addRingClosingBond() method), a bond is formed between the
inboard bond center of the child compound, and an explicitly specified BondCenter of the
parent compound. The inboard bond center of the parent Compound remains the inboard

bond center of the resulting combined Compound.

The tree-structure of parent-child relationships that is built up using these bonding methods
is directly related to the topology of the multibody system that will be created when the

CompoundSystem::modelCompounds() method is called.

8.5 The First Few Atoms

Because three previous atoms are required, in general, to specify an atom location in internal
coordinates, the first three atoms placed in a molecule are special. However, because the
Compound::SingleAtom derived classes come preloaded with BondCenters, only the first

atom is special. The relative locations of the BondCenters specify all of the bond angles.

8.5.1 The First Atom

The first atom of a Compound is placed using the setBaseAtom() method. You can
specify a Cartesian (x,y,z) location for the atom; otherwise it defaults to (0,0,0). When you
later place an entire molecule, the location of that molecule (i.e. its reference frame) is the

location of the first atom of the molecule.

8.5.2 Subsequent Atoms

Additional atoms are placed relative to previous ones using the bondAtom() method.

The bond length needs to be specified, but may have a default value already built into one of
the BondCenters. If a default bond length is already set on exactly one of the BondCenters
(as is the case for AliphaticHydrogen), the bond length can be omitted. If both BondCenters

have differing built-in default values, an error will occur.

The name of the bond center on the previous atom must be specified. As with all of the
bondWhatever() methods, the inboard bond center in the new atom will be used to form the
second half of the bond.

Ring-closing Bonds 57

The bond angles are already specified by the relative arrangements of BondCenters on the

atoms.

Dihedral angles are also specified in the BondAtom() and BondCompound() methods, to

complete the internal coordinate representation of the default molecular configuration.

8.6 Ring-closing Bonds

Because bonded structures are built up in tree-like fashion, which child atoms and
Compounds attaching to parent Compounds via their inboard bond centers, ring and loop
closures require a special process (not shown in the propane example; look in the header
files Protein.h and RNA.h for examples). One bond in each ring or cycle must be specified
using the addRingClosingBond() method. This method takes two BondCenters as
arguments, and has no effect upon the implicit tree structure of the Compound. Although
you can specify a default bond-length and dihedral angle with the addRingClosingBond()
method, these may have no effect upon the default configuration, which is completely

specified by the internal coordinates defined using non-ring-closing bonds.

The addition of ring-closing bonds is necessary for the force field to know where all of the

bonds are.

8.7 Setting Default Geometry

You can set default geometry at construction time using arguments to the setBaseAtom(),
bondAtom(), and bondCompound() methods. You can change the default geometry later
using setDefaultBondLength(), setDefaultBondAngle(), and setDefaultDihedralAngle()
methods. Be aware that setting the default geometry will have no effect on your dynamic
simulation after you have already realized a dynamic model with the

CompoundSystem::modelCompounds() method.

8.8 Exercises

Exercise 8-1

Compile and run propane example.

58

Exercise 8-2

Create a molecule of your own. Doing this properly involves understanding the Amber atom
types for each atom in your molecule, plus knowing the partial charges on each atom. It is

beyond the scope of this document to explain how to determine those parameters.

Getting More Information

9.1 The SImTK.org Website

The SimTK.org website, at https://simtk.org/, has the latest downloads, documentation, and

source code for the entire SimTK core, including Molmodel.

9.2 Help Us Help You: Submitting Feature Requests and Bug

Reports Online

9.2.1 How to submit Bug Reports and Feature Requests

Bug reports and feature requests can be submitted online at https://simtk.org/.

59

60

ookt i the
Simbios projec funded by
the National Insttutes of
Health. Leen mers ...

Related Sites
-
Jieritler
Phyecs-based
Emylation
P

Q-

Bmedical
Comoutatan
B

b ey e S f‘ Cardioyascular
doverikond the new Coensim 1.1 7 Gumamics

release.
Learn mare about our latest
i [FE]

ke taa o Meuromuscular
£ Biomechanics

__ul
smikorg @ O

Figure 9-1: Searching for the "SimTKcore" project at SimTK.org

Keyward Search
Pomar el[Ta]
s

Carrent Filter

Al Topice

Search Simtk.org

Results for: simtkcore

LPODES numsrical intsaraler -
The purpese of this project is 1o provide binaries lagk Migdigtan
of CPODES for ol the SimTE Core-supporied

plasfarma, The afficial scurse is maintained st Jeanctie Stbred:
LLNL as p

sart of he Sunduals sube -« (s prosest Michasl Shecman

ahways contains a stable snapshot.

Cardimascubar & Eater Lnssman
' e Simbasltm: SinTK Multiboshe Denamiss .
Myasin Dynamics Taalaer Eandy adme
A Simbady 5 uselul for internal coordinale and coarse
e gd grained molecule modeling, large scale mechanical
Bromechanic mundels ke skeietorn, and anytheg che that can be
Brtein Folding maodeled as bodes interconnected by joins.
ENA Felding #0 Simmath; SimTK Cors Hathsmatical
setlier o Saftware
Topic Filler Caiked The purpos of this praject s ||I|- pJ-u\mIr
debugord, bigh prdarmaree, coen srer, hieet ceinnled
Auligalnag software implementing the numerical methods mast commanly
- reded in biogimedatan e,
Libranss i
Cita Sets ﬁ m K Sk 3 52 0 sapacnts peojedt to
Reveioer Tosls Sohmnes akdvocs et Shbch the 2skmten i
Miscallanaous actuslly developed s a set of interdependent
. preimcts.
. SimTK Core Dullder u
Budic Dowriagdy To help SmTK Developers do builds by providing shell scripts
ST Comoenants that document the build process.
Web Site
-
Done smtorg @ 050

Figure 9-2: Selecting "SimTKcore" from project search results list.

Help Us Help You: Submitting Feature Requests and Bug Reports Onlirgd

Ganaranmy at usa
Team
Downloads
Documants

Wiki (Beta)

roject
Administrate
Michael Sherman
Contagy

gk Meddiglon
Soniag

Cantas
Tuntast
Ieacicite Schmidt
Contacy

Team
Smembers

SimTKcore
Overview

The SenTH Core
Eacsimulation toolit

wﬂﬂ e /
Callecton e |
gkl specalieed m
technologies. I

necastary to building

suczesshl b

v et

adnumne 10 an impartant set of abetracticns and guiding

obust, hgh-performance mumencal methods, support
inr dewlcnmn and shaning physics-based madels, and caref
soltmare erganeenng.

tarmeting bafore retirmment.
i the chaice of SImTK bechnalogies, e 2re I:“eusee an achieving
tha bact pacekis .
actually have. In today’ sprmee hm means Nn'nm‘llw
multiprocesecrs and small chasters,

The difference in performance between the helx meshads and the
P vaursell becheques mast peaple use can b
aMr\G —easily an order of magnitude or m ﬂ!e growing
T® Core 3 seeks 1o pravide the be:
som af the best-known methods for ety used

Project
Lead o

Lengard)
(]

& Gther
Hatforms wesussoried
10

Civeer mgabes e integration and Monte Carl sam A

vy Gt o) dvoAmice, rlecular orch ol

evalustion, reslinear rost finding amd optmization. All SmiTK Core News

wofwnrs it in tha farm of Cs ARG, it thrand-eafh, ad quistly e 10 ol -

) id=97

smitkorg @ 50

Figure 9-3:

Opening the Advanced options on the navigation bar.

SimTKcore
Advanced

Serme of the meny ibems m hs colegory ave geared Lowards
developars that are members of the project, while cthers ane
geared Lowards the active waitor whe would ke bo comtrinte by
sharing his or her cpinions and by partcipating in discussians.

.nulonurs can gat accass 1o the .‘:numa um repasitary, the
sha « farhure of the latest
kaep track of your

e
pass o of bt 15 88 00,

TerDin hists). Cther mes

Wisitors are welkomse 16 5ign up B0 the projects mailing lists,
contnbute or read postings to the projects Pubdc Fonum, select
“Bugs an Fantres” 16 requatt A fanturs or report & bug,

smitkorg @ B0

Figure 9-4: Selecting "Features & Bugs"

page

62

& simtk.org: SimTKcore: Bugs & Features - Mozilla Firefox =OE3
e Edt View Hstory Bookmarks Took Help

& (= @ : = o

=5, o I3 hitps://smtk.org/trackes/Fgroup_id=57 b T

Overview
Team
Downloads
Documents
Wiki (Bota)
Publications

Newe:

i - 14 Bug Tracking Systen
B@ 1 14 remure Reques Tracking sysem

| Done

smikorg @ 5 O

Figure 9-5: Choosing between Bugs or Features

9.2.2 What is the difference between a Bug Report and a Feature

A “Bug Report” is supposed to identify problems where the software is not working the way
it is supposed to. A “Feature Request” is meant to suggest new functionality that does not

yet exist in the software. Sometimes it is not obvious which category your issue falls into. In

Request?

this case, just use your judgment.

Once you have selected “Bug Reports” or “Feature Requests” from the left navigation menu,
it will no longer be obvious which of the two categories you are submitting. So please try to

remember which one you clicked.

Help Us Help You: Submitting Feature Requests and Bug Reports Onlig&

Fle Edt Vew Hgtory Bookmarks Took Help 4
. ® X 5 = .
B?l Fonward Rg;l «T.fs m\min S = S a[:[»))&M
[] G Semch - & BSTK & 1t

SimTKcore
Features & Bugs

assignen: (7)) state: (7]
| Any el Open [w]

Category: (2] G (2) Changed: (21
Any f oul el

e
Administrator
Mghagl Sherman
Spnad

Figure 9-6

e Edt View Hetory Tock Hep

€. » € O @ Oy =3338gr0up_13 &)

L e S AW oo soron. 557 SEIE) 5}
[s0] G/ Search - & EsmTi S Hhion:

Overview SimTKcore
Team Features & Bugs

(Datrite the raquasted fasturs in the Summary and Dataled Dassrigtion bawas, than prase the Submit
Documents Eutton. Please descrie the desred featurs n 83 much detail a3 posbie.

Project
Administrator
bichpel Sherman
Cerkoct

Jack Middieton
Loccadt

Baody Badmer
Lerhnct

Cortac
leanatie Gchoid
(=TT

Team

>

= T T

Figure 9-7: Selecting a Bug/Feature category.

Don’t spend too much time worrying about the fields on the form you don’t understand.

64

9.2.3 How can I ensure that | am submitting a truly excellent bug report?

Submitting high quality bug reports is an art that may require some practice. Practice the

following steps to become a bug reporter who is beloved by the software developers.

When submitting a software problem report, please try to give as complete a report as
possible.
1. Include a description of what you expected would happen, had there been no
problem.
2. Include a detailed description of what actually did happen, including error messages
and other output.
3. Create a short program that demonstrates the problem. Submit the complete
program text, plus any input files, in the Bug Report. Use the “Check to Upload and
Attach File” field to include these files. If that doesn’t work, just paste your whole
program into the comments section. Please do not be shy about pasting all of this

information and files into the form.

Please include complete programs that really compile, if possible, with your Bug Reports.
Do not just paste in the six or seven lines of code that you think are causing the problem.
Please send us a complete program to demonstrate the error whenever you can. It is also
important to include your input files, if any, with the example program. This will make it

much easier for use to reproduce the bug, and therefore much more likely that we can fix it.

References

The RCSB Protein Data Bank: http://www.rcsb.org/pdb/

J. W. Ponder, F. M. (1987). An Efficient Newton-like Method for Molecular Mechanics
Energy Minimization of Large Molecules. J. Comput. Chem. , 8, 1016-1024.

J. Wang, P. C. (2000). How Well Does a Restrained Electrostatic Potential (RESP) Model
Perform in Calculating Conformational Energies of Organic and Biological Molecules? J.

Comput. Chem. , 212, 1049-1074.

W. Schroeder, e. a. (2007). The Visualization Tool Kit, version 5. Retrieved from

http://www.vtk.org/

65

