

### Introduction to the SimTK Core toolkit and Simbody

Michael Sherman (Sherm)

Xulu Entertainment, Inc.

(was: Simbios chief software architect)

SimTK 1.5 Workshop, Sept. 25, 2008





#### Why a simulation toolkit?

- Focused, self-contained applications
  - Short-term, low hanging fruit; exploit earlier work
  - Useful, likely to generate science
  - Substantial effort; little leverage



"Eat for a day"

- General open source toolkit
  - Long lead time; technically difficult
  - Development, not research
  - Requires adoption by programmers before science contribution
  - Major impact; highly leveraged



"Eat for a lifetime"



#### Some notable open source toolkits

- VTK: visualization
- ITK: medical imaging
- Lapack/BLAS: fast, accurate linear algebra
- ... many others
- Each is an enabling technology for modelers & application programmers

#### We want to add:

SimTK: physics-based simulation of biological structures

#### Reliable toolkit recipe

- Find the right abstractions
- Provide needed tools
- Prescribe a discipline
- Write a book
- Bake for a decade or so

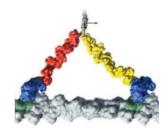


#### Focusing tactics

- Look at "Driving Biological Problems" for common themes
- Limit hardware/language support
- Adopt/adapt existing open source software
- Exploit available expertise
- One step at a time (depth first)



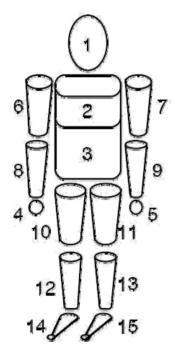
### What do these Driving Biological Problems have in common?


- Biological structures
- Dynamics well described by classical physics — that is, F=ma
- They're "chunky"



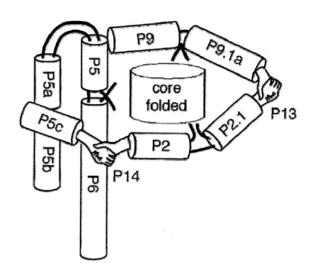





RNA structure prediction



Myosin dynamics




# Similar models across multiple scales



Model of human

Huang, et al. Proc. 2<sup>nd</sup> Pacific Conf. Fundamentals Comp. Graphics, 1995



Model of RNA (Tetrahymena group I intron)

Zheng, et al. PNAS 98(7), 2001



# So, SimTK Core toolkit Phase I: "Multibody Biology"

- Biological systems that can be treated as interconnected rigid bodies
  - E.g. biomechanics, biopolymer simulation
  - Primarily ODE/DAEs; dense matrices
- Not systems best treated with continuum methods
  - E.g. fluid/tissue coupling; cardiovascular DBP
  - Primarily PDEs; sparse matrices
  - Defer to Phase II



# Two multibody biology application areas for 1.5

#### Neuromuscular biomechanical simulations

- Already advanced users of multibody dynamics
- SimTK Core and Simbody already in use in OpenSim
- Open source toolkit provides technical and practical advances

### 2. Internal coordinate and coarse grained biomolecular simulation

- Little use of multibody dynamics to date (except NMR)
- Promising early results; but research hampered by lack of available software
- Open source toolkit provides new research opportunities

#### SimTK Core Programming Team

Staff currently full time on SimTK Core



Jack Middleton

Chris Bruns

Peter Eastman

#### Other SimTK Core software contributors:



Mark Friedrichs



Paul Mitiguy



Ajay Seth



Sam Flores



Radu Serban



Randy Radmer



Yours Truly



#### SimTK Core Toolkit



**GUI Tools** | **Documentation Tools** | **Installation** 

**Dynamics** Simbody Linear

Multi

Body

**Algebra** Lapack/ Atlas

Integrator **CPODES** 

Verlet

Runge Kutta

**Optimize LBFGS** 

Point

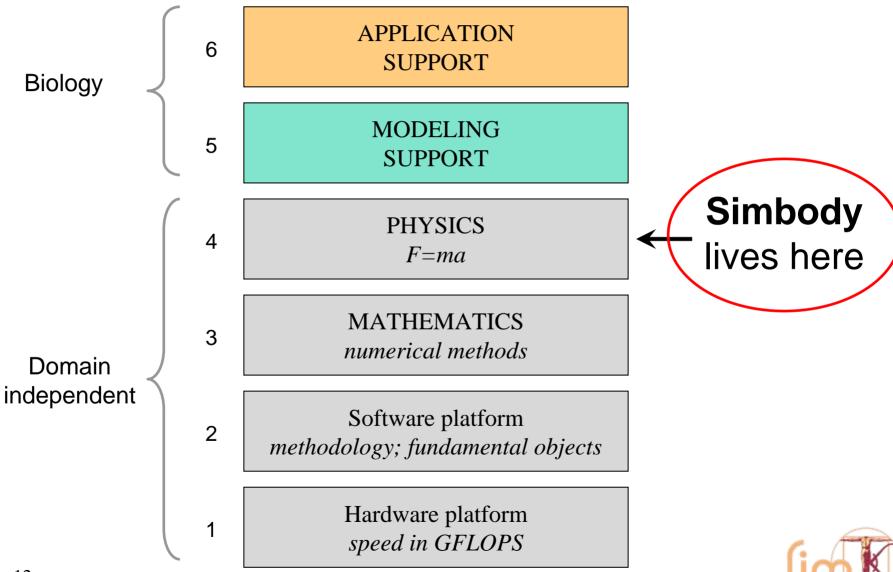
Utilities

Root finding Vectors &

Spline fitting

Force **Fields** 

Point Charge GBSA

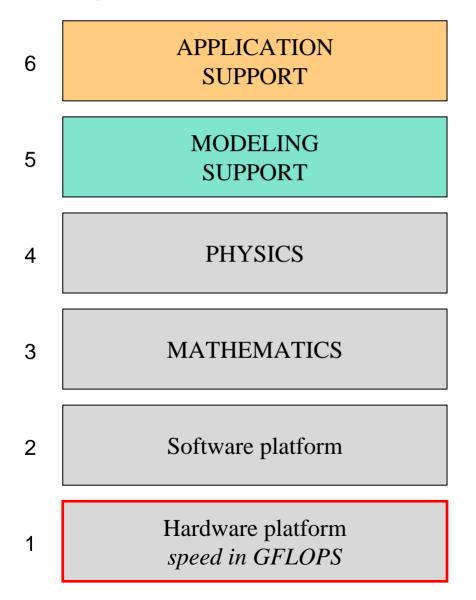

Contact

Control PD

**PDEs** 

Meshing

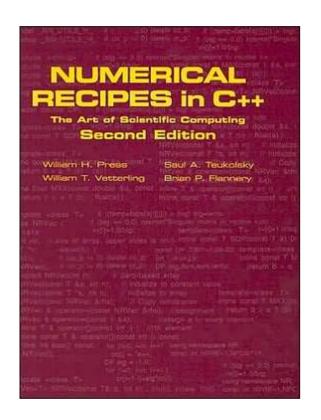
#### SimTK Core layers




#### A quick look at each layer ...

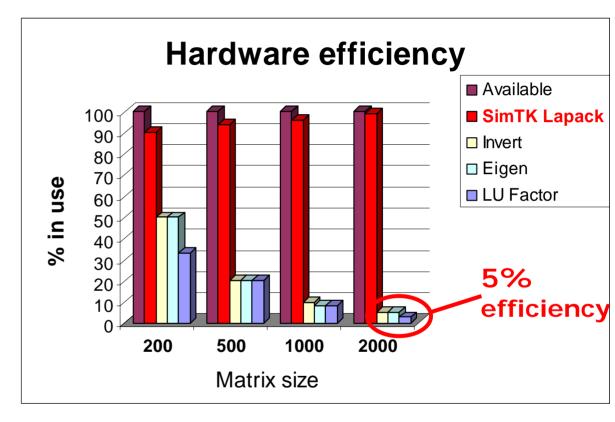
**APPLICATION** 6 **SUPPORT MODELING** 5 **SUPPORT PHYSICS** 4 F=ma**MATHEMATICS** 3 numerical methods Software platform 2 methodology; fundamental objects Hardware platform 1 speed in GFLOPS




#### Layer 1: Hardware exploitation



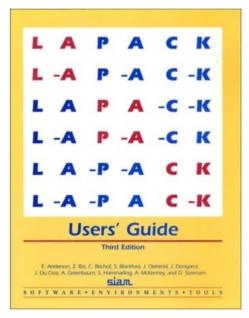
- Basic linear algebra (BLAS)
- Molecular mechanics inner loop
- Exploit cache/multicore/GPU




#### Numerical Recipes vs. SimTK Lapack



Copyright © 2002


What does this leave on the table?



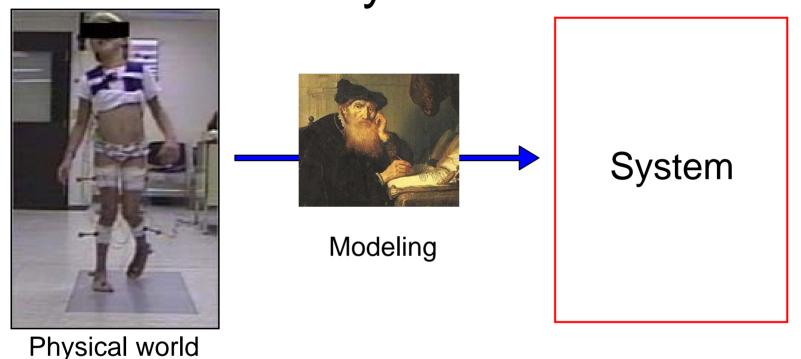
- Numerical Recipes is 20X too slow!
- 95% of hardware is wasted.

#### SimTK Lapack (& Blas)

- Full use of hardware for linear algebra
  - Single, dual, multi-core CPUs
  - Exploits cache & vector instructions
- Binaries available
  - Windows, Mac, Linux
- Download & link in
- Use the other 95% of your computer!
- And ... it's already on your machine.






#### Layer 2: SimTK abstraction layer

**APPLICATION** 6 **SUPPORT MODELING** 5 **SUPPORT PHYSICS** 4 3 **MATHEMATICS** Software platform 2 methodology; fundamental objects Hardware platform

- System (model)
- Subsystems
- State
  - Discrete/continuous
  - Serialization
  - Caching, stale reference prevention
- Study
  - Dynamics, minimization, etc.
- Vectors & matrices (Simmatrix)
- C++ framework
  - Basic types & containers
  - OS/compiler independence
  - Binary compatibility



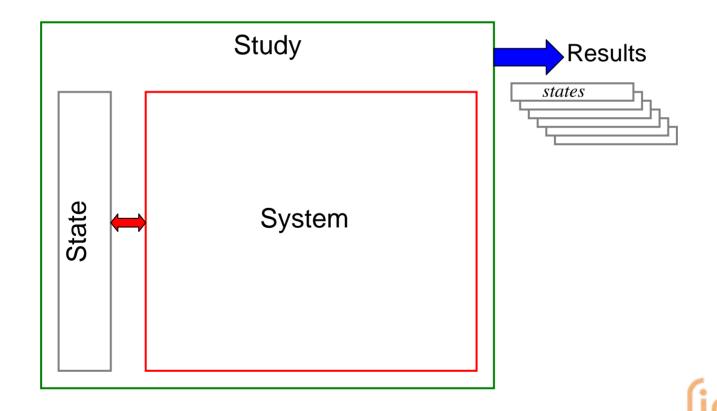
### Terminology: modeling creates a "System"



 A "System" is a computational embodiment of a mathematical model

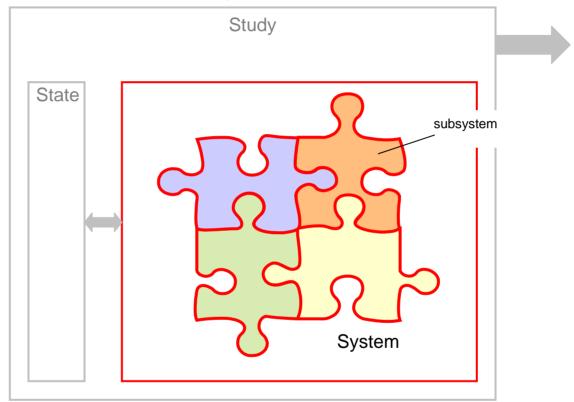


#### Properties of a System


System State

- Defines its parametrization
- But ... it is stateless.
- Given a *State*, performs useful computations




#### Studying a system

System+State+Study → Simulation





# Systems are composed from subsystems



- Interlocking computations
- System provides the "edge pieces"



#### Layer 3: Simmath

**APPLICATION** 6 **SUPPORT MODELING** 5 **SUPPORT PHYSICS** 4 **MATHEMATICS** 3 numerical methods 2 Software platform Hardware platform

- Linear algebra
  - Eigenvalues (normal modes), least squares, SVD, etc.
- Optimizer
  - Constrained, unconstrained
- Integrator
  - Stiff/nonstiff
  - Constraint projection
  - Event isolation
  - CPODES collaboration (LLNL)
- Miscellaneous
  - Root finders
  - Random numbers
  - Differentiator
  - Spline fitter



#### Simmath

- Matlab-like capability in C++
- Specialized for multibody biology use
- Constrained numerical optimization comparable to FSQP but free
- Custom stiff/nonstiff, error controlled, coordinate projection integrators
- Hybrid discrete/ continuous simulation with event handling



q(t)

 $\mathbf{g}(q)$ 

#### Layer 4: Simbody

**APPLICATION** 6 **SUPPORT MODELING** 5 **SUPPORT PHYSICS** 4 F=ma**MATHEMATICS** 3 numerical methods Software platform 2 methodology; fundamental objects Hardware platform 1 speed in GFLOPS

- Rigid bodies
- Joints
- Constraints
- Generalized coordinates
- "Hooks" for forces
- Solve Newton's 2<sup>nd</sup>
   law in O(n) time
- We'll come back to this



#### Layer 5: Modeling support

**APPLICATION** 6 **SUPPORT MODELING** 5 **SUPPORT PHYSICS** 4 3 **MATHEMATICS** 2 Software platform Hardware platform

- Basic force subsystems
  - Contact, gravity, point charge MD
- Basic studies
  - Initial condition analyses
  - Forward dynamics
  - Optimization
- Molecule modeler (Chris Bruns)
  - Proteins & RNA



#### Layer 6: Application support

**APPLICATION** 6 **SUPPORT MODELING** 5 **SUPPORT PHYSICS** 4 F=ma**MATHEMATICS** 3 numerical methods Software platform 2 methodology; fundamental objects Hardware platform 1 speed in GFLOPS

- VTK
- Pre-packaged binaries
- Documentation
- Examples
- Training (duh)
- Support

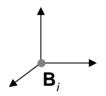


# Simbody<sup>TM</sup> a SimTK Core toolset for multibody mechanics



### What is a multibody system?



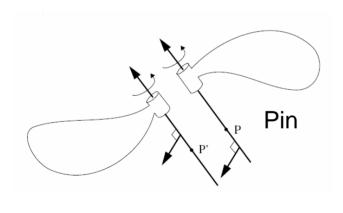

#### Matter

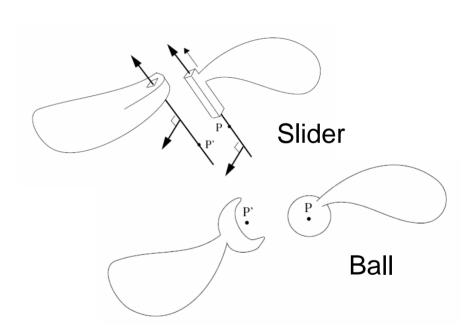
- Mass
- Spatial distribution
- Motion



#### Abstract matter

- The rigid body
- What is a rigid body?





- Mass distribution: 10 constants
- Decorate w/geom & other props
- Ground is a (heavy) rigid body



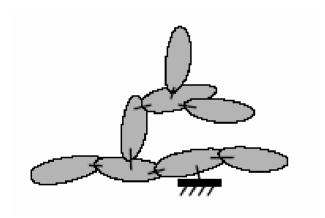
#### **Joints**

- Defines relative mobility between 2 rigid bodies
- Examples





 Joints may permit motion, or restrict it, or both


#### Mobilizers

- A new rigid body has no mobility
- Mobilizers precisely define the allowable mobility relative to parent
- Unlike joints, mobility is always increased by mobilizer
- These define the generalized coordinates q



#### Multibody system (1)

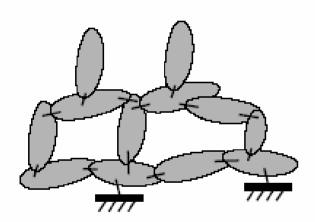
Tree of bodies interconnected by mobilizers



$$\mathbf{M}\ddot{q}=f$$






#### Constraints

- But, that's a little too floppy ...
- Constraints introduce constraint equations (1 or more)
  - E.g., ball constraint adds 3 equations, -3 dofs
- Algebraic invariant relating q's: g(q)=0
  - or qdot's
- Restricts allowable motion like negative mobility
- But ... may not be independent.

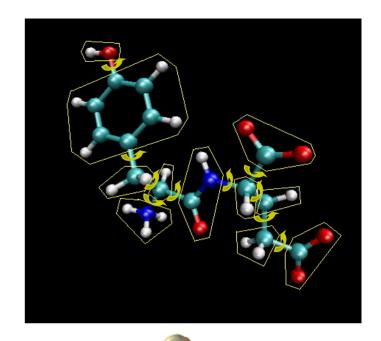


#### Multibody system (2)

Constraints permit loops



$$\mathbf{M}\ddot{q} = f - f_c$$

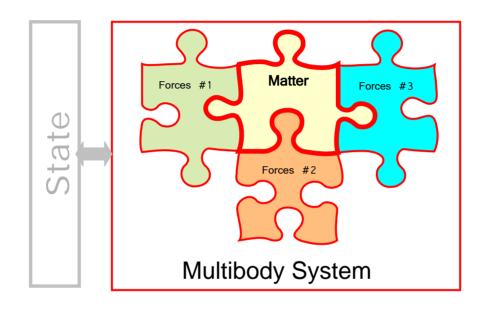

$$\mathbf{g}(q) = 0$$

 Joints can be mobilizers, constraints or both



#### Multibody systems

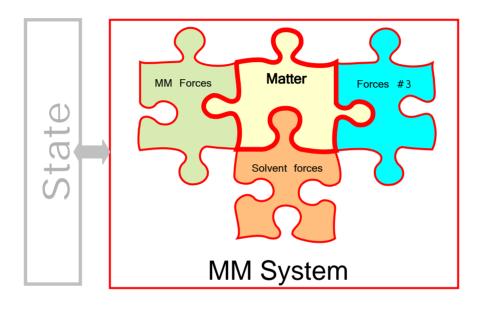





- Rigid parts ...
- ... freed by
- ... influenced by
- ... and restricted by Constraints.
- Key feature: motion is *localized*.

- **Mobilizers**
- **Forces**




#### What's in a multibody system?



- Matter and forces
- Also:
  - Geometry (analytic & decorative)
  - Mass property calculation
  - Other properties, e.g. atom types



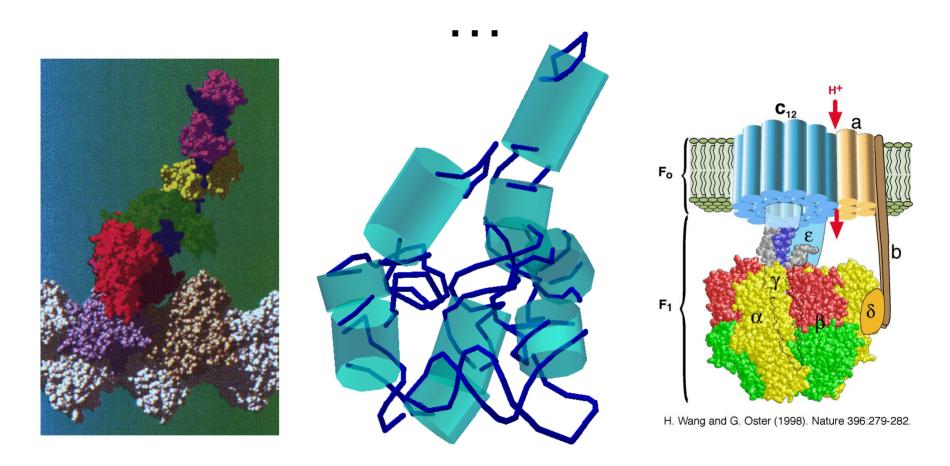
### A molecular mechanics (MM) system is a kind of multibody system



- Has matter and a molecular mechanics force subsystem
- Helpful to have a "modeler" for molecules of interest, to coordinate the matter & forces (tomorrow)



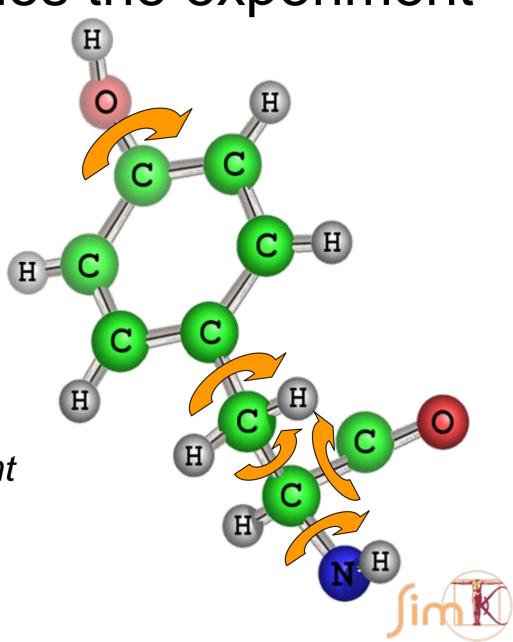
### Large systems + long time scales not *inherently* hard



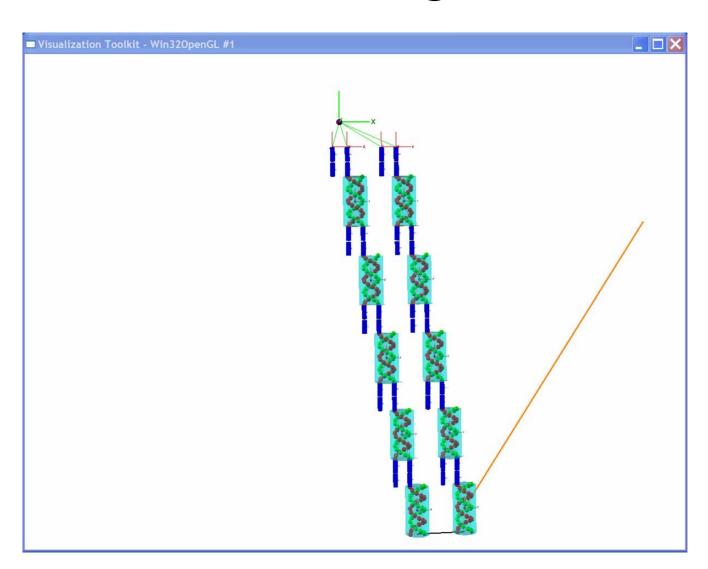



- Must choose right representation
  - Matter, Space, Motion




#### Big molecules have rigid parts




#### ... can we model them accordingly?

#### Simbody enables the experiment

- Removes daunting startup impediments
  - technical, time, \$\$\$
- Mobility only where desired
- Performance is O(n) in mobility, not atom count



#### Something like this ...



- RNA with rigid duplexes
- 50 bodies, 150 internal dofs
- 31 constraints
- Gravity & a spring??
- If you can imagine it, you should be able to try it
- Runs in a few minutes



### Thank you.

sherm@xulu.com

