Coarse-grained representations in biology

Natural lump sizes:

intergalactic federations

(picometer to micron scale)

(micron to mega-light-year scale)

Coarse-grained simulation of atom-based molecular models

- Full atom force field
- coarse-grained motion permits longer integration time steps
- Increasing coarseness
 - full Cartesian
 - torsion only (internal coordinate)
 - full rigid

Molecule internal coordinates

- Bond lengths, bond angles, dihedral angles
- Mandatory for Compound construction
- Optional for Compound simulation

Internal coordinates

- Instead of explicit Cartesian X, Y, Z coordinates for an atom
- Given three other atom positions, one distance, one bond angle, and one dihedral angle

Protein Internal Coordinates

MOBILITY OF AMINO ACID SIDECHAINS AND PROTEIN BACKBONE Modeling full flexibility in torsion (internal) coordinates

"Heavy" degree of freedom
"Light" DOF moves H only -- consider leaving out of model

Limited range of motion -- consider treating as rigid
- stiff peptide bond limits omega to about +/-10 degrees about nominal
- proline forms near-rigid loop to backbone and locks its phi angle

LEGEND

See other side for nucleic acids.

Michael Sherman May, 2007

Nucleic Acid Internal Coordinates

Mobility Exercises

- Simulate rigid protein
- Create second protein
- Convert to full Cartesian model
- Which way is faster?
- Simulate multi-grain AdenylateMobilitiesVTK example

VMD Molecular Graphics Viewer

http://www.ks.uiuc.edu/Research/vmd/

Viewing SimTK simulation in VMD

- 1. Start SimTK simulation using PeriodicVMDReporter
- Load molecule in VMD.
 - 1. VMD Main->File->New Molecule...
 - 2. Molecule File Browser->Browse
 - Molecule File Browser->Load
- Connect VMD to SimTK
 - VMD Main->Extensions >Simulation->IMD Connect (NAMD)
 - In IMD Connection window
 - 1. Hostname: localhost
 - 2. Port: 3000 (match argument to PeriodicVMDReporter)
 - 3. Timestep transfer rate: 1 (to see every reported step) PRESS ENTER
 - 4. Timestep keep rate: 1 (to remember every step for replay value) PRESS ENTER
 - 5. Press "Connect" button

RNA Mobility Exercises

 Simulate multi-grain AdenylateMobilities example program and connect to VMD

PDB: The Protein Data Bank

- http://www.rcsb.org/pdb/
- Repository of DNA, RNA, and protein atomic structures
- Contains experimental results, not perfect models
- Entries identified by 4 character ID, e.g. "1MRP", "1GRZ"
- Use "advanced search" at PDB web site to find structures.

PDB File format

- Text format humans can read it too
- Most of the information is atomic coordinates
- PDB files usually contain multiple molecules, including water molecules

```
32,286
                                        1.882
                                              43,206
                                                       1.00 22.00
      1751
                GLY C 250
ATOM
      1752
           CA GLY C 250
                               32.365
                                        1.086 41.969
                                                       1.00 21.39
ATOM
                GLY C 250
                               31,538
                                        1.735 40.864 1.00 20.79
ATOM
      1753
      1754
            O GLY C 250
                               30,621
                                        2.527
                                              41,152
                                                       1.00 21.58
ATOM
```

•••

LoadPdb Exercises

- Download 1AKG from Protein Data Bank http://www.rcsb.org/pdb
- Simulate 1AKG using Example
- Simulate 1AKG using stream constructor

Custom Molecule Construction

- BondCenters, Atoms, Bonds, Compounds
- Inboard bond center
- The first few atoms
- Ring closing bonds

Molecule Construction nomenclature

4: Compound(1)

Туре	Description	Protein example	RNA example	Argon example
Compound	Molecule or part of molecule	hen egg- white lysozyme	yeast phenylalanine transfer RNA	argon
Atom	one particular atom in a molecule	serine 3 nitrogen	guanosine 3, carbon C3'	argon
Biotype	links Atoms to ChargedAtom Types	serine N	guanylate C3'	argon
ChargedAtom Type	Atom type with a particular charge	serine N: charge -0.42	guanylate C3': charge +0.2022	argon: charge zero
AtomClass	Atom type	sp ² amide nitrogen (N)	tetrahedral carbon (CT)	argon

Biotype

- Bridge between structural model and force field implementation
- Concept borrowed from TINKER molecular dynamics package

Argon

- Inert "noble" gas
- Has no chemistry
- van der Waals forces only

Lennard-Jones potential

Four ways to express length parameter:

	σ (r _o)	r _{min}
radius = diameter/2		Six
diameter		

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

$$V(r) = \epsilon \left[\left(\frac{r_{min}}{r} \right)^{12} - 2 \left(\frac{r_{min}}{r} \right)^{6} \right]$$

Argon Exercises

- Compile and run TwoArgons example program
- Add a third argon atom.
- What happens when atoms start too close together? Too far apart?
- Increase the attractive force between atoms ten-fold
- Why does this example lack temperature and enemy minimization stanzas?

Ethane

- Two carbons, six hydrogens
- One dihedral degree of freedom
- 3 kcal/mol energy barrier to rotation

Ethane Exercises

- Compile and run TwoEthanes example program
- Add a third ethane molecule

Submitting Bug Reports

