Modeling “Biological” Joints
In Simbody™
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Modeling Biological Joints

Hinge (pin joint) Finger ~ Elbow
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Implementing Biological Joints

O Standard Approach (in other codes):
Include coordinates to describe translations

Add constraints to prescribe translations in
terms of rotation

Slower than ideal (pin, ball-socket) joint

O Simbody:
Motion described by one coordinate
No constraints
Similar performance to ideal joint
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The Human Knee

Musculographics, Inc. Ryan Blumenthal
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Sagittal Plane Knee Kinematics

Femoral Condyles .
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Yamaguchi & Zajac 1989
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A Knee Mobilizer

Cadaver experiments: .
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of tibia w.r.t. femur. i
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Function Based Mobilizers

Specify transform between parent and child as
a function of m independent coordinates.

I X, RACRLTY )
f,(d,,d,,...,

PX(X)C =| R(X;, X3, %3) X x(q) = (0 CIZ: Clm)>

i X | RNCH PN )

« 6 functions: describe spatial coordinates, x(q)

» 1-3 specify angles, 4-6 translations
« At least twice differentiable

e« coordIndices specify which g’'s each function uses

« axes (optional) specify an axis for each X;

 1-3 (body-fixed) and 4-6 (in P) must be linearly independent

— Imbiof
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Function Based Knee Mobilizer

// add shank via right knee joint

Mobi li1zedBody: :FunctionBased shank(thigh,
Transform(Vec3(0.0020, 0.1715, 0)), tibia,
Transform(Vec3(0.0, 0.1862, 0.0)),

nm, functions, coordIndices);

nm =1, one generalized coordinate, q[0] = 0
functions ={0,0, 6, f,(0), f,(0), 0}"

coordIndices ={{}{}{0}{0}{0}{}}'
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Alternative Formulations

// add shank via right knee joint

Mobi li1zedBody: :FunctionBased shank(thigh,
Transform(Vec3(0.0020, 0.1715, 0)), tibia,
Transform(Vec3(0.0, 0.1862, 0.0)),

nm, functions, coordIndices, axes);

nm=1
functions ={0,0,0,f,(0), f,(0), 0}"

coordindices ={{0}{}{}{0}{0},{}}'
“(0] (1) (0] (1) (0] (01

axes = [904:04,91,90¢,214,<0¢
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Exercise: Create a Knee Mobilizer

1. Compile and run KneeJdointExample.cpp

2. Convert shank type: Pin to FunctionBased

See MobilizedBody.h

nm, functions and coordIndices are given

tx Spline is given, Ty set as Constant

3. Scale the kneeX translations by 10 to
exaggerate the coupled translation.

4. Add a Spline for the Y-direction (Ty)

NOTE: Y translation with respect to thigh origin.

Still just 1 dof!
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Mobilized Body

// Add a mobilzed body to the system
Mobi li1zedBody: :FunctionBased(
Mobili1zedBody <parent>,
Transform <frameOnParent>,
Body <theBody>,
Transform <frameOnChild>,
Iint <numMobirlities>,
std: :vector<const Function<l>*> &functions,
std: :vector<std: :vector<int> > &coordlndices

)
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Knee Modeling Comparison

Constraint Enforced Joint Constraint Free Mobilizer

« 3-DOF+2-Constraints = 5 DAEs . 1-DOF+0-Constraints = 1 ODE

. W/ patella: 11 DAEs W/ moving muscle points = 1 ODE!

Lose inertial effects of patella
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Modeling a Passive Dynamic

Walker in Simbody

So=Tee EI‘IC Lew
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* A bipedal machine that
naturally walks down a
shallow incline.

e No motors

e No sensors

* Video from Working
Model
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at can we learn from

PDWalkers?

* Unlike complex models, they can be easily modified
and analyzed to answer specific hypotheses about the
role of morphology (vs. neural control) in walking.

e Kuo 1999 - Stabilization of Lateral Motion in Passive
Dynamic Walking

- PDWalkers are inherently unstable in the lateral direction,
suggesting that more feedback control is necessary.

 Follow up study in 2000 showed greater increase in lateral
foot placement variability vs. fore-aft variability (53%-21%)
when the eyes were closed.
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* Things taken straight from Working Model
simulation by Ruina et al.:

e Geometry
e Initial Conditions
e Moments of Inertia M?,,\““S
. L/T"\J\'\
J
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What's missing?
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What do we need to implement?

®* Knee catch mechanism

* Contact model
e Friction

e Normal Force
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Knee Catch Mechanism

® Behavior of knee catch mechanism

e Stop tibia when knee reaches 180 degrees.
e No bounce back (inelastic collision).
e Release knee when opposite foot makes heel strike.

How can we
implement a catch
mechanism at the knee
within Simbody?
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Method #1
Spring Damper System

e Use custom forces

* Problem:

e Catch mechanism is an
inelastic collision

e Spring alone conserves
energy

» Bounce back

e Strong damper removes
energy

« Stiff equations of motion.



Method #2

Constraints and Event Handlers

* In Simbody, constraints can be turned on and off mid-
simulation.

* Use Event Handlers to toggle constraints at user-
defined times.

* ConstantAngle constraint between shank and thigh
locks the knee.
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TuVv

OFF
L~ S U’y
Swing Leg: Constraint OFF Swing Leg: Constraint ON Swing Leg: Constraint ON (heel strike)
Stance Leg: Constraint ON Stance Leg: Constraint ON Stance Leg: Constraint OFF (toe-off)
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Contact Model

* Requirements for Contact Model
e Provide appropriate normal force
e Provide friction force so foot will roll without slipping

Ir

o
wPhysics—based Simulation of Biological Structures



Method #1

* Use a constraint to implement normal force

/\“LO\\ W/ 4,\\(’
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* Angular momentum problem agam
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Method #2

* Use Hunt-Crossley Contact Model to implement
normal force.
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Future Work

* Optimize code to run in real time

* Define specific, testable hypothesis

* Be able to generate new limit cycles for different
geometries
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Exercises

* Compile code and run

* Try two different materials for Hunt Crossley model
and run

r
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Questions?
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Approach #1

» Use a point-in-plane constraint to keep the foot
contact point on the ground

* Use a no-slip constraint to provide friction force

Negative-Normal Force

No Slip No Slip

Point in Plane
OFF

Point in Plane
ON

Contact Point Height =0

F
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Angular Momentum Again

Knee Constraint Contact Constraint
* Impulsive moment does not get ¢ Impulsive force does get
transmitted to other segments. transmitted to other segments.
e Pin joints transmit no * External Force
moment oS

* No External Force
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