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1 Overview

1.1 Scope of this Document

This document is not a technical specification, but is rather meant to serve as an
introduction to the Molmodel API. The definitive APl documentation is available in the
SimTK Core installation files and on the web. See section 3.3 for more details on the API

documentation.

1.2 Conventions Used in this Document

1.2.1 Warning icon

The icon shown to the left highlights warnings and common pitfalls.

1.2.2 Source code

Computer program source code is shown green, indented, and using a fixed-width font.
int example; // this demonstrates the appearance of code

Very short fragments of code, class names, and file names will be shown in a Fixed-width

font.
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1.2.3 New features in examples

Some of the example programs in this document share many features with earlier programs.

The most important newer program elements will be highlighted in yellow.

1.3 What is Molmodel?

Molmodel is the SimTK molecular modeling library and APIl. Molmodel leverages SimTK
Simbody, the SImTK order-n multibody dynamics library. Molmodel includes methods to
construct molecular models for use in simulation with Simbody. Both Molmodel and
Simbody are part of the SimTK Core tool kit, available at https://simtk.org/home/simtkcore.

S0 €\V[e)aalele =101 molecular modeling

SimTK Simbody j;iz;?::”'ﬂb"dy
SimTK Math

SI mTK CO mmon core C++ data structures

integrators and
other methods

SImTK La pack linear algebra

Figure 1.3-1: Principal libraries in the SimTK Core tool kit. SImTK also includes the
OpenMM package for GPU-accelerated molecular force fields, distributed separately.

Figure 1.3-1 shows some of the key libraries in the SimTK Core tool kit. Each of the libraries
in the figure depends upon the libraries shown below it. For example, the Molmodel library
depends upon the Simbody library. Simbody is a general order-n multibody dynamics tool
kit. Molmodel, in turn, is an application-area-specific modeling tool kit, capable of creating
multibody models of molecules that can be simulated in Simbody. The CPODES library,
which represents the core methods for one of the integration methods, is not shown in the

figure because it conceptually belongs in the same category as the SimTK Math library.


https://simtk.org/home/simtkcore
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SimTK also includes the OpenMM package for hardware-accelerated molecular mechanics
calculations. Molmodel can use OpenMM to accelerate force field computations for the
Simbody internal coordinate models it produces. However, OpenMM s distributed and

installed separately from the SimTK Core. See https://simtk.org/home/openmm for

information.

Those interested in the full source code of the Molmodel library can find the sources at

https://simtk.org/websvn/wsvn/molmodel/trunk/ .

1.4 Prerequisites

1.4.1 Working knowledge of C++ programming language

The SimTK tool kit is written in the C++ programming language. The current target

audience is programmers with some familiarity with C++.

1.4.2 SimTK Core simulation tool kit installed

To use the Molmodel library and the rest of the SimTK Core tool kit, download the SimTK

core tool kit from the “SimTK Core” project at https://simtk.org/home/simtkcore. If you

plan to use OpenMM for force field acceleration you will need to install that separately from
https://simtk.org/home/openmm.

1.4.3 Read the SImTK tutorial

Molmodel is built on Simbody and the rest of the SimTK tool kit. Concepts that are covered
in another important document, the SimTK tutorial, may not be covered in detail in this

document.

You should become familiar with the Simbody library and API. Consult the SimTK tutorial
available at https://simtk.org/home/simtkcore. The SimTK tutorial is available in the

documents section of the SimTK Core project.

1.4.3.1 Supported platforms

Please check the SImTK Core project at https://simtk.org/home/simtkcore (Downloads tab)

for the latest news on supported platforms.


https://simtk.org/home/openmm
https://simtk.org/websvn/wsvn/molmodel/trunk/
https://simtk.org/home/simtkcore
https://simtk.org/home/openmm
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1.5 Units are nanometers, atomic mass units, picoseconds,

and kilojoules per mole

Unless otherwise indicated, Molmodel APl methods require and return physical units
expressed in nanometers (length), atomic mass units (mass), picoseconds (time), and

kilojoules per mole (energy).

Be careful when including physical quantities in your programs. External
data sources often express atom-scale lengths in Angstroms (10-1°© meter).
Molmodel assumes lengths are in nanometers (10-° meter). You must

convert quantities accordingly. Similarly, in Molmodel angles are in

radians. Thus you must convert any angle values expressed in degrees.

The constants SimTK: :Deg2Rad and SimTK: :Rad2Deg are provided to help with these

conversions.

In particular, PDB (Protein Data Bank) format molecular structure files express atomic
locations in Angstroms (10-19), not nanometers (10° m). Be careful when manually
transcribing atomic coordinates. The built-in SimTK methods for reading and writing PDB

files already take this conversion into account.

One notable exception to the use of nanometers, atomic mass units, and kilojoules per mole
is a set of alternate methods of the class DuMMForceFieldSubsystem, which takes units of
Angstroms and kilocalories per mole, indicated with a suffix of “_KA” in the method name.
For example, the method defineAtomClass(...) takes arguments expressed in nanometers
and kilojoules per mole, while defineAtomClass_KA(...) takes arguments expressed in

Angstroms and kilocalories per mole.

1.6 Exercises

Exercise 1.6-1

Install the SimTK Core toolkit from Simtk.org
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Exercise 1.6-2

Run the test programs that came with the SimTK Core tool kit. The test programs are called
CorelnstallCheck and AuxInstallCheck.






2 Getting Started: Simulating

a Protein Molecule

Simulating a protein molecule using Molmodel can be simpler than simulating other,
simpler, molecule types. That is because the Molmodel API is oriented toward the
simulation of protein and RNA molecules. For example, all of the force parameters for
proteins are predefined in the AMBER99 force field, and the Protein class includes a
constructor that takes a compact sequence string as an argument. Protein and RNA
simulations are intended to be relatively easy. Other molecular simulations are intended to
be merely possible, not necessarily easy.

Proteins are defined in the “Protein.h” header file at
$(SImTK_INSTALL_DIR)/include/molmodel/internal/Protein.h. The
simulation example in this chapter will generate a protein molecule using a sequence of
letters that represents the linear sequence of amino acid residues that comprise the protein
we will simulate. The sequence is a very compact representation of a protein’s topology.

2.1 Creating a Protein Model from a Sequence String
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Example 2.1-1: Vision for simple protein constructor

#include “SimTKmolmodel.h”
Protein(““ACDEFGHIKLMNPQRSTVWY*") ;

That string of characters “ACDEFGHIKLMNPQRSTVWY” represents a sequence of twenty
different amino acid residues that comprise a protein. In fact, those twenty letters represent
all of the canonical amino acid residues that can be represented using the one-letter protein

code. For example, “A” stands for alanine, “C” stands for cysteine, etc.

When this Protein constructor is used, a protein is made by default in an “extended”
conformation, which results in an elongated structure. One exception to this is the proline
residue (“P™), which has a more restricted conformation and results in a kink in the

molecule.

2.2 SimpleProtein Program

If you read the SimTK tutorial, many elements of the following program should be familiar.

Some of the varying program elements are highlighted in yellow.

Example 2.2-1: Simulating a very small protein

#include "'SimTKmolmodel .h"
#include "SimTKsimbody aux.h™ // for vtk visualization

#include <iostream>
#include <exception>

using namespace SimTK;
using namespace std;

int main() {

try {
// molecule-specialized simbody System

CompoundSystem system;

SimbodyMatterSubsystem matter(system);
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DecorationSubsystem decorations(system);

// molecular force field
DuMMForceFieldSubsystem forceField(system);
forceField. loadAmber99Parameters();

Protein protein("'SIMTK™);

protein.assignBiotypes();
system.adoptCompound(protein);

// Tinalize multibody system
system.modelCompounds();

// show me a movie
system.updDefaultSubsystem() .addEventReporter(
new VTKEventReporter(system, 0.020));

// Maintain a constant temperature
system.updDefaul tSubsystem() .addEventHandler (new
VelocityRescal ingThermostat(
system, 293.15, 0.1));

// Instantiate simbody model
system.realizeTopology();
State& state = system.updDefaultState();

// Relax the structure before dynamics run
LocalEnergyMinimizer::minimizeEnergy(system, state,
15.0);

// Simulate it.
Verletlntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(20.0);

return O;

}

catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
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catch(...) {

std::cerr << "ERROR: An unknown exception was raised" <<
std: :endl;

return 1;

}

}

Figure 2.2-1: Frame from Small Protein Simulation

2.3 Analysis of SimpleProtein Program
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2.3.1 try/catch block

The main program is wrapped in “try*“ and “catch” statements. These statements are used
to handle exceptions that may arise during program execution. If you are unsure what this

means, you may want to study exceptions in your C++ language documentation.

2.3.2 CompoundSystem

CompoundSystem is a specialized Simbody MultibodySystem.

// molecule-specialized simbody System
CompoundSystem system;

System is a core data type in Simbody simulations. The System concept occurs in almost
every example in the SimTK tutorial. The CompoundSystem class is derived from Simbody
MultibodySystem. CompoundSystem includes additional methods and data for dealing with

molecular simulations.

2.3.3 Amber99 force field

The Molmodel API implements an unoptimized force field definition for demonstrative

purposes.

// molecular force field
DuMMForceFieldSubsystem forceField(system);

Molecular forces are handled by the DuMMPForceFieldSubsystem class, which derives from

the Simbody class ForceSubsystem.

In this example, we create an empty force subsystem, and explicitly define the few force

parameters needed for argon.

We load AMBER99 force field parameters into the force field subsystem with this statement:

forceField. loadAmber99Parameters();

This ensures that we have available the various force field parameters necessary to simulate

all of the atom types commonly found in protein molecules.
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The DuMMForceFieldSubsystem class is capable of specifying “Amber-like” force fields.
That is, force fields which are expressed in terms of forces including: bond-stretch, bond-
bend, bond-angle, dihedral angle, Lennard-Jones, and coulombic forces. Many popular
molecular dynamics force fields are included in this category. Presently Molmodel includes
hard-coded parameters for the AMBER99 (J. Wang, 2000) force field, via the
loadAmber99Parameters() method of the DuMMForceFieldSubsystem class.

It is possible for Molmodel to load force field parameter definitions from parameter files
used in the TINKER (J. W. Ponder, 1987) molecular mechanics program. But this
functionality has only been tested for the Amber99 force field; no testing has been done for

other force fields.

2.3.4 Implicit solvent model

The use of an implicit solvent model is not shown in this program, because an implicit
solvent model is automatically used unless it is explicitly turned off. This OBC solvent model
(Onufriev et al. 2004) simulates some of the effects of water, so that we do not need to
include a gazillion water molecules in the simulation. A method for turning *off* the
implicit solvent model will be shown in the argon simulation later (chapter 7). The implicit

solvent model is included in this protein simulation.

2.3.5 Protein(sequence) constructor

The sequence constructor for the Protein class is used, as shown below:

Protein protein("SIMTK™);

The string of one-letter codes “SIMTK” results in a protein with sequence of five amino
acids: serine (S), isoleucine (1), methionine (M), threonine (T), lysine (K, don’t ask). In
addition, small neutral end-cap residues are placed at both ends of the protein chain by

default, to create a chemically complete molecule.

The assignBiotypes() method is then called:

protein.assignBiotypes();
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This method automatically resolves the atom Biotype mapping using residue types and atom
names, and matching them to the residue types and atom names defined in the TINKER
version of the AMBER99 force field. The concept of Biotypes will be discussed in more

detail in the chapters about creating custom molecules.

2.3.6 Attaching the protein to the system

The adoptCompound() method transfers ownership of the argon atoms’ internal data

structures to the System.

system.adoptCompound(protein);

This method is specific to the CompoundSystem class. No modeling decisions have been

made yet at this point. A Compound can only belong to one CompoundSystem.

2.3.7 Finalizing the multibody model

The call to modelCompounds() is a critical step:

// finalize multibody system
system.modelCompounds();

Modeling decisions are committed at this point. Also, the default configuration (the initial
configuration of the molecule) is transferred onto the dynamic configuration (that stored in
a Simbody State object). Subsequent changed to the default (initial) configuration will

have no affect on your simulation.

In this example, we are relying on a set of default modeling decisions. Those decisions
create a model in which bond lengths and bond angles remain fixed, while torsion angles are
permitted to vary. This is known as a “torsion model”, or “internal coordinate model.”

Other modeling choices will be explored in chapter 4.
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2.3.8 Maintaining temperature

A method for maintaining the physical system at a constant temperature is included in this

example:

system.updDefaultSubsystem() .addEventHandler (new
VelocityRescal ingThermostat(
system, SimTK_BOLTZMANN_CONSTANT _MD, 293.15, 0.1));

See the SImTK tutorial for more details.

2.3.9 Relaxing the structure

Before running a dynamic simulation, it is a good idea to relax the structure so that your
trajectory does not begin with a high energy configuration. The call to do that is shown

below:

LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

See the SImTK tutorial for more details.

2.3.10 Simulating

The simulation process is the same as that for non-molecular systems, as described in the
SimTK tutorial. Here we have chosen the Verlet integrator, which performs well with
molecular systems, in which the computation of the forces tends to be vastly more expensive
than the computation of the motions. See the APl documentation to find what other

integrators are available.

2.3.11 Accelerating Molmodel with OpenMM

If you have OpenMM installed and operating on a hardware-accelerated platform (e.g.
CUDA) on your computer, you can easily use it to accelerate the protein simulation we did

above. Simply insert the lines:

forceField.setUseOpenMMAcceleration(true);
forceField.setTraceOpenMM(true);

before the call to realizeTopology(). Only the first line is required; the second is very useful
though to verify that OpenMM is actually being used and to debug the problem if not—it
sends helpful trace output to stdout (cout). Note that if you did not install SimTK in its
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standard location, the environment variable SImTK_INSTALL_DIR must be set so that the
OpenMM plugin can be located (it is in $(SImTK_INSTALL_DIR)/lib/plugins).

For problems with OpenMM installation, go to https://simtk.org/home/openmm. Note that

acceleration requires supported hardware, appropriate drivers, and an OpenMM 1.0
installation.

2.4 EXxercises

Exercise 2.4-1

Compile and run the protein example program.

Exercise 2.4-2

Try a different protein sequence.


https://simtk.org/home/openmm




3 Simulating an RNA

Molecule

Simulating a simple RNA molecule is very similar to simulating a protein.
3.1 SimpleRNA Program

RNA and DNA structural topology, like that of proteins, can be represented by a sequence of
letters in a one-letter-per-residue code. The size of the alphabet for RNA and DNA is much
smaller than that for proteins. RNA has letters A, C, G, U, while DNA has letters A, C, G, T.

This example runs a bit slower than the previous one because atomic coordinates are being

written periodically.

Example 3.1-1: Simulating a small RNA molecule.

#include "SimTKmolImodel.h"
#include "molmodel/internal/PeriodicPdbWriter.h"
#include "SimTKsimbody aux.h' // for vtk visualization

#include <iostream>
#include <exception>

using namespace SimTK;
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using namespace std;

int main() {
try {

// molecule-specialized simbody System
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DecorationSubsystem decorations(system);
// molecular force field
DuMMForceFieldSubsystem forceField(system);

forceField. loadAmber99Parameters();

RNA rna("'AUG™);
rna.assignBiotypes();
system.adoptCompound(rna);

system.updDefaultSubsystem() .addEventReporter(
new VTKEventReporter(system, 0.020));

system.updDefaul tSubsystem() -addEventReporter(
new PeriodicPdbWriter(system, cout, 0.100));

// Tinalize multibody system
system.modelCompounds();

// Maintain a constant temperature
system.updDefaultSubsystem() .addEventHandler
new VelocityRescalingThermostat(

system, 293.15, 0.1));

// Instantiate simbody model
system.realizeTopology();
State& state = system.updDefaultState();

// Relax the structure before dynamics run
LocalEnergyMinimizer: :minimizeEnergy(system, state, 15.0);

// Simulate it.
Verletintegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(10.0);
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return O;
}
catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
}
catch(...) {
std::cerr << "ERROR: An unknown exception was raised" <<
std: :endl;
return 1;

}

Figure 3.1-1: Small RNA model
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3.2 Writing PDB Coordinates

This example writes a set of PDB coordinates to the screen periodically. The atomic
coordinates in PDB files can be used by many molecular computer programs to share
structural data. The example program uses the class PeriodicPdbWriter, which is
derived from PeriodicEventReporter, which is described in the SimTK tutorial.
PeriodicPdbWriter wuses the writePdb() method of Compound. The

Compound::writePdb() methods can also be used directly.

If you are curious about how the class PeriodicPdbWriter is implemented, you can see
the full implementation in the header file
$(SIMTK_INSTALL_DIR)/include/molmodel/internal/PeriodicPdbWriter._h.

3.3 Finding APl Documentation

Using documentation of the Molmodel API is essential to mastering Molmodel

programming. HTML API documentation is available in the SimTK Core distribution in a

directory on your computer:
$(SIMTK_INSTALL_DIR)/doc/api/Molmodel/index.html

(Assuming you installed the SimTK Core distribution on your computer.)

You can also access the APl documentation at the Simtk.org website.

1. Browse to the SimTK Core project site at http://simtk.org/home/simtkcore

2. Select the “Documents” section on the left navigation bar.

3. Select the “Doxygen Docs, v 2.0” link.


http://simtk.org/home/simtkcore
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3.4 Exercises

Exercise 3.4-1

Compile and run “RNA example” program.

Exercise 3.4-2

See how much faster it runs if you don’t write PDB coordinates.

Exercise 3.4-3

Simulate  with electrostatic ~ forces  turned off. Use  the method
setCoulombGlobalScaleFactor () of DuMMForceFieldSubsystem.






4  Tuning Molecular Mobility

4.1 Modeling and Coarse-grained Representations

The default mobilities of Compounds defined in the Compound.h, Protein_h, and RNA_h
header files are internal coordinate mobilities. In other words, bond lengths and bond
angles are constrained to be fixed, while dihedral (torsion) angles are permitted to move
during simulation. Further, planar groups, such as peptide bonds and aromatic ring
systems, are held rigid by default. These default mobilities can be changed. Such changes
must be made before the multibody model is finalized with the

CompoundSystem::modelCompounds() method.

The example below simulates a rigid protein, where all mobilities, including those for the
dihedral angles, are fixed. It is not very interesting, because the protein is not capable of
moving. If there were two rigid proteins on the other hand, they would be able to move
relative to one another. The code is also useful as a template for experimenting with

different mobility combinations.
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Example 4.1-1: Simulating a Rigid Protein

#include
#include

#include
#include

"SimTKmolImodel .h""
"SimTKsimbody_ aux.h™

<iostream>
<exception>

using namespace SimTK;
using namespace std;

int main() {

try {

CompoundSystem system;
SimbodyMatterSubsystem matter(system);

DecorationSubsystem decorations(system);

DuMMForceFieldSubsystem forceField(system);

forceField. loadAmber99Parameters();

Protein protein("'SIMTK);
protein.assignBiotypes();
system.adoptCompound(protein);

for ( Compound::BondIndex bondIx(0);

bondIx < protein.getNBonds();
++bond1x)

// set all bonds rigid
protein.setBondMobility(

}

BondMobility: :Rigid,
bondIx);

system.updDefaultSubsystem() .addEventReporter(new
VTKEventReporter(system,
0.020));

// Tinalize multibody system
system.modelCompounds();

// Maintain a constant temperature
system.updDefaultSubsystem() .addEventHandler (new
VelocityRescal ingThermostat(
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system, 293.15, 0.1));

// lInstantiate simbody model
system.realizeTopology(Q);
State& state = system.updDefaultState();

// Relax the structure before dynamics run

LocalEnergyMinimizer::minimizeEnergy(system, state,
15.0);

// Simulate 1t.

Verletlntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(20.0);

return O;

}

catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;

}
catch(...) {

std::cerr << "ERROR: An unknown exception was raised" <<
std: :endl;
return 1;

}
}

4.2 Specifying the Degrees of Freedom of a Molecule

The dynamic mobility of a molecule is controlled by setting the mobilities of each of its
bonds. You can set the mobility of a particular bond using the setBondMobility()
method.

Compound: :setBondMobi lity(
BondMobility: :Mobility mobility,
Compound: :BondIndex bondIndex);
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This approach works well for setting every bond in a Compound to a particular mobility, in
which case you loop over every index from zero to getNBonds() as shown in Example 4.1-1
above. To set the mobility for a particular bond, use the version of setBondMobility that

takes atom names as arguments:

Compound: :setBondMobi lity(
BondMobility: :Mobility mobility,
Compound: :AtomName atomNamel,
Compound: :AtomName atomName2) ;

4.3 Defining Dihedral Angles

To specify particular atoms and bonds in a protein or RNA structure, you need to know the
names of the residues that comprise the molecule. Protein and RNA residue names are
numeric and begin with the name “1” at the beginning of the chain, and proceed to “2”, “3”,
etc. although they do not have to be consecutive. So you could identify a particular atom as
"3/05*" for example.

You can set a dihedral angle at the time of bond creation, at which point several assumptions

are made about the meaning of that dihedral angle in the interest of concise syntax.

To set a dihedral angle later, you create a name for that angle, and then use that name to
access the dihedral later in your program. A dihedral angle is properly defined by a

sequence of four bonded atoms. You can define a dihedral like so:

defineDihedralAngle('angleName™, "atomlName', "atom2Name’,

"atom3Name', "‘atom4Name™)

You can also define a dihedral angle in terms of TWO bond centers: a) the BondCenter

linking atom2 to atom 1, and b) the BondCenter linking atom 3 to atom 4.
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4.4 An Index is Notan ID

Avoid the error of using an AtomlIndex defined in one Compound to identify the same atom
in a subcompound or parent Compound. For example, the atom with Atomindex 13, for
example, in a particular AminoAcidResidue Compound within a Protein Compound, will, in
general, have a different AtomlIndex at the Protein level.

4.5 Combining Fine-grain and Coarse-grain Mobilities in a
Single Model

The following example creates a small RNA molecule containing three nucleotide residues.
Each of the three residues has a different set of mobilities.

Example 4.5-1: Multi-grain RNA simulation

#include "SimTKmolmodel .h"
#include "SimTKsimbody_ aux.h™
#include <iostream>

#include <fstream>

using namespace std;
using namespace SimTK;

int main(Q)
{

try {
// lInitialize simbody objects

CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DecorationSubsystem decoration(system);
DuMMForceFieldSubsystem forces(system);
forces. loadAmber99Parameters();

// Initialize molmodel objects
RNA rna('AAA™);

// Set bond mobilities
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Compoundé& residuel rna.updResidue(Compound: : Index(0));
Compound& residue2 = rna.updResidue(Compound: : Index(1));
Compoundé& residue3 rna.updResidue(Compound: : Index(2));

// Set fTirst residue to Euclidean mobilities
for (Compound: :BondIndex bond(0); bond <
residuel.getNBonds(); ++bond)
residuel.setBondMobility(BondMobility: :Free, bond);

// Leave second residue at default combination of Torsion
and Rigid mobilities

// Set third residue to Rigid
for (Compound::BondIndex bond(0); bond <
residue3.getNBonds(); ++bond)
residue3.setBondMobi lity(BondMobility::Rigid, bond);

// Finalize the multibody system
system.adoptCompound(rna) ;
system.modelCompounds();

// Maintain temperature
system.updDefaultSubsystem() .addEventHandler (new
VelocityRescalingThermostat(
system, 293.15, 0.1));

// Show me a movie
system.updDefaultSubsystem() .addEventReporter( new
VTKEventReporter(system, 0.015) );

system.realizeTopology();
State& state = system.updDefaultState();

// Relax the structure before dynamics run
LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

// Prepare for molecular dynamics
Verletintegrator integrator(system);
integrator.setAccuracy(0.001);

TimeStepper timeStepper(system, integrator);
timeStepper.initialize(state);

// Start simulation
timeStepper.stepTo(500.0);
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return O;

}

catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;

¥
catch(...) {

std::cerr << "ERROR: An unknown exception was raised" <<
std::endl;
return 1;

}
}

4.6 Exercises

Exercise 4.6-1

Compile and run “rigid protein” example. Why is this simulation a bit boring?

Exercise 4.6-2

Add a second rigid protein to interact with the first one. You will need to place the second
protein at a different location than the first protein. Use the optional second argument of

the adoptCompound() method to choose this location.

Exercise 4.6-3

Modify the RigidProtein example to make every atom independent. We won'’t write out the
source code for this one. Set the bond mobilities to BondMobility::Free instead of
BondMobility::Rigid in Example 4.1-1.

Exercise 4.6-4

Compile and run the AdenylateMobilitiesVTK program
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Exercise 4.6-5

Install the program VMD (http://www.ks.uiuc.edu/Research/vmd/), and view the
AdenylateMobilitiesVMD example program using that viewer.



5 Loading a Molecule from
PDB Coordinates

The previous protein example created a protein in a fully extended configuration.
Functional proteins in the real world are folded into compact shapes. It would be extremely
tedious to set all of the internal coordinates manually to match a known structure.
Fortunately, the coordinates for a folded protein are captured in PDB (Protein Data Bank)
format molecular structure files which can be read into Molmodel. The Molmodel API
includes a few approaches for loading molecular structures from PDB files.

5.1 Using the PDBReader Class

The LoadPDB program reads a protein configuration from a PDB (Protein Data Bank)
format file. In addition, there are a few more nice features that bring this simulation a bit
closer to being physically reasonable than the other examples in this guide.

This program is based on an example from the SimTK tutorial by Peter Eastman.

Example 5.1-1: Simulating a protein from PDB coordinates.

#include "SimTKmolImodel.h"
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#include "SimTKsimbody_ aux.h"

#include <iostream>
#include <exception>

using namespace SimTK;
using namespace std;

int main() {

try {
// Load the PDB file and construct the system.
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DecorationSubsystem decorations(system);
DuMMForceFieldSubsystem forceField(system);
forceField. loadAmber99Parameters();

PDBReader pdb("*'1AKG.pdb'™);
pdb.createCompounds(system) ;
system.modelCompounds();

system.updDefaultSubsystem() .addEventHandler (new
VelocityRescalingThermostat(
system, 293.15, 0.1));
system.updDefaultSubsystem() .addEventReporter(new
VTKEventReporter(system,
0.025));

system.realizeTopology();
// Create an initial state for the simulation.

State& state = system.updDefaultState();
pdb.createState(system, state);
LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

// Simulate it.

Verletlntegrator integ(system);
integ.setAccuracy(le-2);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(10.0);



PDBReader Methods 47

return O;

}

catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;

}
catch(...) {

std::cerr << "ERROR: An unknown exception was raised" <<
std::endl;
return 1;

}
}

5.2 PDBReader Methods

One way to load in the PDB file information is to create a PDBReader object, as shown

below:

PDBReader pdb(*"1AKG.pdb™);
pdb.createCompounds(system);

pdb.createState(system, state);

The PDBReader object manages the reading of a PDB file, in this case “1AKG.pdb”, and
directly populates the CompoundSystem object. Thus the PDBReader methods obviate the
need for the Protein() constructor, the assignBiotypes() method, and the adoptCompound()

method.

5.2.1 Advantages of the PDBReader class

° PDBReader can read Protein and RNA molecules from PDB files

5.2.2 Disadvantages of PDBReader class

. cannot read molecules other than Protein and RNA

o cannot model structures with large rigid segments
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5.3 Internal Coordinates Differ from Cartesian Coordinates

The atomic coordinates in a PDB file specify Cartesian (X, y, z) coordinates in orthogonal

Angstrom units for the location of each atom in a molecule.

Structures in Molmodel use internal coordinates to specify atomic locations. After the first
three atoms of a molecule are placed, the location of each atom is specified relative to three

other atoms. Three values are used to specify the atom’s position:

1. Bond length to the previous atom
2. Bond angle formed by atom and the two previous atoms

3. Dihedral angle formed by the atom and the three previous atoms

Molmodel uses internal coordinates to specify atomic locations for two reasons. First, this
representation is closely related to the internal coordinate dynamics model that is created by
default. Second, internal coordinates can be more convenient for defining localized

structural groups.

5.4 Default (initial) Configuration Differs from Dynamic

Configuration
Although Compound structures are defined using internal coordinates in Molmodel, this
does not imply that internal coordinate dynamics must be used in your simulation. The
choice of the number of degrees of freedom to use in dynamic simulation (e.g., internal
coordinate, full Cartesian, or rigid bodies) is made after the initial (default) configuration of
the Compound has been specified. That initial default configuration is always specified in

internal coordinates.

The program in Example 5.1-1 demonstrates a technique for setting the degrees of freedom
in a dynamic model to match the structure in a PDB file. This approach might not work well
for models that have large sections of rigid bonds. An approach that incorporates the

configuration from a PDB into the initial default configuration is under development.
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5.5 Another Way to Load PDB Structures: Specialized Protein

Constructor

For release 1.5 a specialized constructor is available for the Protein class.

Example 5.5-1: Load from PDB File Using Specialized Protein() constructor

#include "SimTKmolImodel.h"
#include "SimTKsimbody_ aux.h™

#include <iostream>
#include <exception>
#include <fstream>

using namespace SimTK;
using namespace std;

int main() {

try {
// Load the PDB file and construct the system.
CompoundSystem system;

SimbodyMatterSubsystem matter(system);
DecorationSubsystem decorations(system);
DuMMForceFieldSubsystem forceField(system);
TforceField. loadAmber99Parameters();

std::ifstream pdbFile(""1AKGtrim.pdb'™);
Protein protein(pdbFile);

protein.assignBiotypes();
system.adoptCompound(protein);
system.modelCompounds();

system.updDefaultSubsystem() .addEventHandler (new
VelocityRescalingThermostat(
system, 293.15, 0.1));
system.updDefaultSubsystem() .addEventReporter (new
VTKEventReporter(system,
0.025));

system.realizeTopology();
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// Create an initial state for the simulation.

State& state = system.updDefaultState();
LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

// Simulate it.

Verletlntegrator integ(system);
integ.setAccuracy(le-2);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(10.0);

return O;

}

catch(const std: :exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
+
catch(...) {
std::cerr << "ERROR: An unknown exception was raised" <<
std::endl;
return 1;

}
}

5.5.1 Advantages of the Protein(istream) constructor

can read from any istream, not just named files

can model rigid segments after structure is loaded

5.5.2 Disadvantages of Protein(istream) constructor

has trouble with unrecognized residue types in the PDB file

only exists for Protein, not RNA (for now)

5.6 EXxercises
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Exercise 5.6-1

Download PDB structure 1AKG from http://www.rcsb.org/

Exercise 5.6-2

Load and simulate 1AKG structure.






6 Constructing a Custom

Molecule

6.1 Introduction to Custom Molecule Construction

The current Molmodel API is focused on easy construction of RNA and protein molecules.
This API also makes it possible to construct other molecule types. Construction of a
Compound from scratch in Molmodel is a complex subject. This chapter gives a light

overview of the process.

The examples here do not go to the very deepest level of Compound construction, because it
uses instances of the Compound::SingleAtom subclass, which are themselves built upon a
lower API. It is recommended to use classes derived from Compound::SingleAtom,
including UnivalentAtom, BivalentAtom, TrivalentAtom, etc., and their higher level
descendants AliphaticCarbon and AliphaticHydrogen, as is done in the example in this
chapter.

Careful examination of the example programs in this and subsequent chapters, combined
with examination of the various molecule definitions in the header file Compound.h, may

provide enough information for a motivated programmer to design new molecule types.
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6.2 Compound Parts List

To get started constructing custom molecules, it is important to understand the fundamental
building blocks that are used to construct Compounds. Figure 6.2-1 shows a pictorial
representation of these parts in a partially constructed molecule. The numbers in
parentheses show the number of each part in the figure: there are nine BondCenters, three

Atoms, two Bonds, and one top-level Compound.

1: Atoq_:s(3)

2: BondCente rs(g) >

4: Compound(1)

Figure 6.2-1: Parts of a Compound.

6.2.1 Atoms and Bonds

Atoms and Bonds correspond directly to atoms and covalent bonds in the real world. There
is no explicit Atom class in the public Molmodel API. Atoms are specified using atom names

or atom indices within a Compound.
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A Bond is formed by connecting BondCenters on two Atoms. There is no explicit Bond class
in the public Molmodel API. Bonds are specified by Bond names or Bond indices within a

Compound.

6.2.2 BondCenters

A BondCenter represents one half-bond, or a location on an Atom where a Bond can be
formed. Thus it is possible to specify, via its BondCenters, how many Bonds an Atom can
make, even before any other Atoms have been introduced. There is no explicit BondCenter
class in the public Molmodel API. BondCenters are specified by BondCenter name or

BondCenter index within a Compound.

6.2.3 Compounds

A Compound is composed of Atoms, Bonds, BondCenters, other sub-Compounds, and need
not represent a complete molecule. Compound is the central base class for molecular
structures in the Molmodel API. For example, Protein, RNA, AminoAcidResidue,

Argon, and Ethane are all derived classes of Compound.






/ Simulating Two Argon

Atoms

Our first foray into custom molecule construction will represent the interaction of two argon
atoms. Argon is an inert noble gas, meaning that is does not have chemical bonds. This fact
simplifies the force field considerations. The only important force affecting the interaction
between argon atoms is the van der Waals interaction, which is mildly attractive at large
distances, and highly repulsive at short distances.

Argon is one of a small number of molecule types that are predefined in the “Compound.h”
header file in the SimTK Core distribution. That is how we are able to use it as a type in this

example program. So this is not a completely custom molecule.

7.1 TwoArgons Example Program

Example 7.1-1: Simulating two argon atoms

#include "'SimTKmolmodel .h"
#include "SimTKsimbody_ aux.h'™ // for vtk visualization

using namespace SimTK;
using namespace std;
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int main(Q)

{

// molecule-specialized simbody System
CompoundSystem system;

// matter is required
SimbodyMatterSubsystem matter(system);

// molecular force field
DuMMForceFieldSubsystem forceField(system);

// for drawing vtk visualization
DecorationSubsystem artwork(system);

// Define an atom class for argon
forceField.defineAtomClass KA(
DuMM: : AtomClassIndex(100),
‘argon™,
18,
0,
1.88,
0.0003832
)
forceField.defineChargedAtomType(
DuMM: :ChargedAtomType Index(5000),
‘argon™,
DuMM: : AtomClassIndex(100),
0.0

)

if (! Biotype::exists("argon', "argon'))
Biotype: :defineBiotype(Element: :Argon(), 0, 'argon™,

‘fargon™);

TforceField.setBiotypeChargedAtomType(

DuMM: : ChargedAtomType Index(5000), Biotype::get(“argon™,
""argon'™) .getindex() );

forceField.setGbsaGlobalScaleFactor(0);
Argon argonAtoml, argonAtom2; // two argon atoms

// place fTirst argon atom, units are nanometers
system.adoptCompound(argonAtoml, Vec3(-0.3, 0, 0));
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// place second argon atom, units are nanometers
system.adoptCompound(argonAtom2, Vec3( 0.3, 0, 0));

system.updDefaul tSubsystem() .addEventReporter (new
VTKEventReporter(system,
0.500));
system.modelCompounds(); // finalize multibody system

State state = system.realizeTopology(Q);

// Simulate it.

Verletlntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(500.0);

Figure 7.1-1: Frame from Argon Atom Animation
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If all goes well, you should see an animation of two argon atoms repeatedly bumping into

one another (Figure 7.1-1).

7.2 TwoArgons Program Discussion

7.2.1 Define Atom Class

In this example, we create an empty force subsystem, and explicitly define the few force

parameters needed for argon.

DuMMForceFieldSubsystem has two levels of hierarchy when defining atom types. The
first, more general, level is the atom “class” which roughly corresponds to a particular
element in a particular bonding environment. The second, more detailed, level is the atom
“charged type” which includes a partial charge on the atom and is discussed in section 7.2.2.

Let’s begin by looking at the code defining the first, more general level:

// Define an atom class for argon

forceField.defineAtomClass KA(
DuMM: : AtomClassIndex(100),
argon’,
18,

.88,

.0003832

N~ O k- O

The ““_KA” part of defineAtomClass_KA() denotes that the units used are based on
kilocalories-per-mole and Angstroms, rather than on kilojoules-per-mole and nanometers,

which is the default set of units.

The first argument, 100, is the index within the force field subsystem for the new atom class
that is being defined. The number 100 is meant to be large enough to probably not collide
with other atom class indices that have been defined. If another class already has index 100,

an error will occur. Yes, this is not particularly elegant.
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The second argument, “argon,” is a name for the atom class, and has no practical use.

The third argument, 18, is the atomic number of the chemical element represented by the
atom class; in this case argon, which is element number 18 on the periodic table of the

elements.

The fourth argument, O (zero), is the number of bonding partners for this atom type. Since

argon is an inert gas, it never forms bonds.

The fifth argument, 1.88, is the van der Waals radius of the atom class, here defined as half
the distance between two argon atoms that are separated by a distance that minimizes the
energy of their interaction. This value may not be quite right and is difficult to get a perfect
value for. That is why we will be so relieved when we start using predefined force field
parameters in later examples. The value is in Angstroms because of the _KA suffix on the

method name. Otherwise it would have to be in nanometers.

The sixth and final argument, 0.0003832, is the energy well-depth of the van der Waals
interaction at its minimum. The units are kilocalories-per-mole. If the method did not have

the KA suffix, the units would have to be in kilojoules-per-mole.

WARNING: The numbers for van der Waals radius and well-depth in this

example are made up. Do not treat them as physically accurate!

7.2.2 Define Atom Charged Type

The “charged type” for an atom further refines the atom “class” by assigning a particular

atomic partial charge to the atom type. The code for doing this is provided below:

forceField.defineChargedAtomType(
DuMM: :ChargedAtomType Index(5000),
argon™,
DuMM: : AtomClassIndex(100),
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0.0
)

The first argument, 5000, is the index in the force subsystem for the new charged type that
is being defined. Like the atom class index, it is chosen to not collide with other values. Itis

much larger because there are potentially many more different charged types.

The second argument is a name for the charged type. It is not used.

The third argument refers to the atom class of which this charged type is a sub-type. That
100 must match the 100 in the call to defineAtomClass_KA(Q).

The final argument, 0.0 (zero), is the total partial charge on the charged atom type. In the
case of argon, the net charge is zero, which is part of why the force situation in this case is

particularly simple.

7.2.3 Biotypes

The previous section discussed atom “class” and atom “charged type,” which are both atom
classifications related to specific force field parameters. Biotype is another atom

classification. But Biotype is not associated with a specific force field.

The purpose of the Biotype is to decouple the chemical concept of the atom from any
particular force field that models the atom. In other words, the Biotype for a particular atom
can be defined before any force field has been chosen. The Biotype then acts as a link
between the chemical atom type and the atom types used in a particular force field. The
concept of the Biotype is borrowed from the molecular mechanics package TINKER (J. W.
Ponder, 1987).

First, we link a particular atom to a Biotype, which has approximately the same granularity
as the atom charged type, but can be assigned before a force field is chosen. Second, once a
force field is chosen, the Biotypes are linked to atom charged types of the force field. The

Biotype has no charge associated with it.
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Biotypes are managed by the Biotype class, and are independent of any particular force field,
Compound, or even simulation. To define a biotype for argon, we use the

Biotype::defineBiotype() method:

1T (! Biotype::exists(argon™, ™argon'))
Biotype: :defineBiotype(Element::Argon(), 0, "argon',
‘argon');

The Biotype::defineBiotype() method takes three arguments. The first argument is the
chemical element of that Biotype. The second argument is the number of bonds to the atom
in the Biotype category. Argon does not form bonds, so this value is zero. The third
argument is the Compound name of the Biotype, and fourth, the atom name. In the case of

argon, we have chosen “argon” for both the Compound name and the atom name.

This defines a global argon biotype, but does not attach it to anything. The biotype for the
argon atoms could be set using the Compound::setAtomBiotype() method. In this case, the
biotype has already been assigned in the constructor for Argon() in Compound.h, so we do

not need to do it in the example program.

Once the force field parameters are defined, the argon biotype can be associated with a

particular atom charged type:

forceField.setBiotypeChargedAtomType(
DuMM: :ChargedAtomType Index(5000), Biotype::get(*'argon™,
"argon') .getlndex() );

The DuMMForceFieldSubsystem::setBiotypeChargedAtomType() method takes two

arguments: the index of an existing atom charged type, and the index of a Biotype.

The numbering of Biotype indices is arbitrary, and is managed by the Biotype class.

7.2.4 Declaring the Argon Compounds

The following line creates two argon atoms, using the constructor found in the header file

Compound.h.
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Argon argonAtoml, argonAtom2; // two argon atoms

These atoms are members of the class Argon, which is derived from Compound. No

multibody model has yet been constructed at this point.

7.3  Where is the Atom Type?

There is no explicit Atom type exposed in the public Molmodel API. Atoms are managed
within Compounds using atom names and atom indices. Compound is the central parent
data type in Molmodel from which Molecules, Residues, and other molecular assemblies are
derived. Atoms, Bonds, and BondCenters are identified within a Compound using names or

indices. See section 6.2 for more details.

7.4 Exercises

Exercise 7.4-1

Compile and run the two argon example program.

Exercise 7.4-2

Add a third argon atom. Be careful to place it neither too close to, nor too far away from, the
other atoms. Try to keep the initial locations of each atom at least 0.3 nanometers away

from each of the other atoms.
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Molecules

We will now move from the simplest molecular simulation, argon, to one that includes
chemical bonds. The inclusion of bonds (and charges) increases the complexity of the
molecular force field. In this example, we will ignore most of that complexity, and make use
of predefined force field parameters. We will still need to define the atomic charges,

however.

The ethane molecule is the second simplest hydrocarbon, and consists of two carbon atoms
and six hydrogen atoms. It is the simplest hydrocarbon that possesses a torsion angle, which
requires a series of four atoms to be bonded together sequentially. Torsion angles are a

central feature of internal coordinate simulation.

Ethane is one of a small number of molecule types that are predefined in the
“Compound_.h’” header file in the SimTK Core distribution. That is how we are able to use it
as a type in the example program. Examining “Compound.h” can be useful when trying to

design new molecules. See chapter 6 for more details.

8.1 TwoEthanes Example Program



66 SIMULATING TWO ETHANE MOLECULES

Example 8.1-1: Simulating two ethane molecules

#include "SimTKmolmodel .h"
#include "SimTKsimbody aux.h™ // for vtk visualization

#include <iostream>
#include <fstream>
using namespace SimTK;

int main()

{
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DuMMForceFieldSubsystem forceField(system);
DecorationSubsystem artwork(system) ;

// Atom classes are available, but not charged atom types
for ethane

// in standard Amber force field

forceField. loadAmber99Parameters();

it (! Biotype::exists("ethane™, "C'™))
Biotype: :defineBiotype(Element: :Carbon(), 4, "ethane",
"C);
it (! Biotype::exists(“ethane™, "H™))
Biotype: :defineBiotype(Element: :Hydrogen(), 1,
"ethane', "H™);

forceField.defineChargedAtomType(
DuMM: :ChargedAtomType Index(5000),
"ethane C",
DuMM: :AtomClasslindex(1), // "CT"™ type in amber
-0.060 // made up
)
forceField.setBiotypeChargedAtomType(
DuMM: :ChargedAtomTypelndex(5000), Biotype::get(“ethane™,
"C'").getindex() );

forceField.defineChargedAtomType(
DuMM: :ChargedAtomTypelndex(5001),
"ethane H",
DuMM: :AtomClassIndex(34), // "HC" type in amber
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0.020 // made up, use net neutral charge
)
forceField.setBiotypeChargedAtomType(
DuMM: :ChargedAtomTypelndex(5001), Biotype::get(“ethane’,
“"H™) .getlndex() );

Ethane ethanel, ethane2;

// place Tirst ethane, units are nanometers

// skew i1t a little to break strict symmetry

system.adoptCompound(ethanel, Transform(Vec3(-0.5, 0, 0))
* Transform(Rotation(0.1, YAXis)) );

// place second ethane, units are nanometers
system.adoptCompound(ethane2, Vec3( 0.5, 0, 0));

system.updDefaultSubsystem() .addEventReporter (new

VTKEventReporter(system,
0.050));

system.modelCompounds(); // finalize multibody system

State state = system.realizeTopology(Q);

// Simulate it.

Verletlntegrator integ(system);

TimeStepper ts(system, integ);

ts.initialize(state);
ts.stepTo(200.0);
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Figure 8.1-1: Frame from Two Ethanes Simulation

8.2 Discussion of TwoEthanes Program

8.2.1 Force Field

As in the TwoArgons program, we create an empty DuMMForceFieldSubsystem object to

manage the forces:

DuMMForceFieldSubsystem forceField(system);

Unlike the case with the TwoArgons program, we can leverage some predefined force field
parameters for our ethane simulation, in this case those of the AMBER99 force field:

forceField. loadAmber99Parameters();



Discussion of TwoEthanes Program 69

The AMBER99 force field does not include parameters for the ethane molecule itself, but it
does include atom classes that can be wused for ethane. So by using the
loadAmber99Parameters() method, we avoid the need to call defineAtomClass() methods, as

we did in the TwoArgons example.

8.2.2 Define Atom Charged Type

The AMBER99 force field gives us parameters for the atom classes in ethane, but not for the

atom charged types. Again, we will make up some parameters for these.

There are two kinds of atoms in ethane: carbon and hydrogen. There are two carbon atoms
and six hydrogen atoms, but only two atom types, because each hydrogen atom is chemically
equivalent to all of the others, and each carbon atom is chemically equivalent to the other

one. This equivalence is implied by the symmetry of the ethane molecule.
So we need to define the atom charged types for the carbon and hydrogen atoms:

forceField.defineChargedAtomType(

DuMM: :ChargedAtomTypelndex(5000),

"ethane C",

DuMM: :AtomClasslindex(1), // "CT™ type in amber
-0.060 // made up

);

forceField.defineChargedAtomType(
DuMM: :ChargedAtomTypelndex(5001),
"ethane H",
DuMM: :AtomClasslindex(34), // "HC" type in amber
0.020 // made up, use net neutral charge

)

The charges on the atom are made up and probably wrong, but I did make sure that the total
charge on the whole ethane molecule will be zero, because ethane does not have a net

charge. | guestimated the charges themselves based on the parameters for similar groups
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that actually are found in the standard AMBER99 force field. Again, do not take these

atomic charges as correct. This is just for expository purposes.

The bad part about using the predefined atom classes is that | needed to know the
AMBER99 atom class indices for tetrahedral carbon (1) and for aliphatic hydrogen (34), as
used by the program TINKER. There is no good way right now to look those indices up in
the Molmodel API. Sorry.

8.2.3 Declare the Ethane Compounds and attach them to the system

The next part of the code declares the ethane compounds and attaches them to the system:
Ethane ethanel, ethane2;

system.adoptCompound(ethanel, Transform(Vec3(-0.5, 0, 0))
* Transform(Rotation(0.1, YAXis)) );

Like Argon, Ethane is one of the few Compounds defined in the header file Compound.h.

8.2.3.1 Initial orientation/reference frame of each molecule

In the TwoArgon program, the center of each argon atom was placed at the location given in

the adoptCompound() method. What part of the ethane molecule goes there?

The specified location is where the first atom of the Compound will be located. In the case of
ethane, that atom is the first carbon, atom “C1.” In the Compound reference frame, the first
atom center is at the origin, the first BondCenter of that atom is along the y-axis, and the
second BondCenter of the first atom lies in the x-y plane. These rules define the internal

reference frame of a Compound.

In one of the adoptCompound() statements, | have multiplied the starting location by a
Transform. | won't explain in detail here exactly what that does, but its purpose is to skew
the orientation of one of the ethane molecules a bit to break perfect symmetry, so the

simulation will look more interesting.
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The rest of the TwoEthanes example follows the same concepts as the TwoArgons example.

8.2.4 Why are some bonds gray and others orange?

If you look carefully at the ethane animation, you will see that the bond connecting the
carbons is orange, while the carbon-hydrogen bonds are gray. Gray bonds connect members
of the same rigid body. So each methyl group is a single rigid body. The only internal
motion permitted is a rotation about the carbon-carbon bond. This is an internal coordinate
simulation. Internal coordinate simulation, in which bond lengths and bond angles remain
fixed, while dihedral angle are permitted to vary, is the default modeling behavior of the
Molmodel API.

8.3 Exercises

Exercise 8.3-1

Compile and run the ExampleTwoEthanes program.

Exercise 8.3-2

Add a third ethane molecule. Keep in mind that each ethane molecule is about 0.4
nanometers wide, and is centered on the “C1” atom. The long direction of each molecule is

initially along the y-axis.

Exercise 8.3-3

Adjust the mobilities of the three ethane molecules so that one moves using internal
coordinates (the default), one is completely rigid, and the third is a full Cartesian model.

You may want to examine Chapter 4 of this guide before attempting this.






9 Defining a New Molecule:

Propane

The example program below defines and simulates a new molecule, propane.

Example 8.3-1: Complete Program for Defining and Simulating Propane.

#include "SimTKmolmodel .h"
#include "SimTKsimbody aux.h™ // for vtk visualization

#include <iostream>

#include <fstream>

using namespace SimTK;

// Propane is a three carbon linear alkane

// C(3)H(8), or CH3-CH2-CH3
class Propane : public Molecule

{

public:
// constructor
Propane()
{

setCompoundName (**Propane') ;
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instantiateBiotypes();

// First atom
setBaseAtom( AliphaticCarbon(**C1™) );
setBiotypelndex( '""C1", Biotype::get(''propane",
"C1l or_C3").getlndex() );
convertlnboardBondCenterToOutboard(); // this is the
root of the parent compound

// Second atom

bondAtom( AliphaticCarbon(*'C2'"), "Cl1/bondl™ );

setBiotypelndex( '""C2", Biotype::get(''propane",
"C2'™) .getIndex() );

// Third atom

bondAtom( AliphaticCarbon(**C3'), 'C2/bond2™" );

setBiotypelndex( "C3", Biotype::get(“propane',
“C1l or C3™).getindex() );

// First methyl hydrogens

bondAtom( AliphaticHydrogen(*'H11"), 'C1/bond2" );

bondAtom( AliphaticHydrogen(''H12'), 'C1/bond3" );

bondAtom( AliphaticHydrogen('*"H13'"), 'C1/bond4™ );

setBiotypelndex(**H11", Biotype::get(*'propane',
"H1 or H3™).getlndex() );

setBiotypelndex("'H12", Biotype: :get(''propane",
"H1 or_H3"™).getlndex() );

setBiotypelndex(*'H13", Biotype::get(*'propane’,
"H1 or_H3'™).getlndex() );

// Second methylene hydrogens

bondAtom( AliphaticHydrogen(''H21'), ''C2/bond3" );

bondAtom( AliphaticHydrogen(''H22'), ''C2/bond4" );

setBiotypelndex("'H21", Biotype::get(*propane',
"H2'") .getindex() );

setBiotypelndex("'H22", Biotype: :get(''propane",
"H2') .getindex() );

// Third methyl hydrogens

bondAtom( AliphaticHydrogen(*'H31"), '"C3/bond2" );
bondAtom( AliphaticHydrogen(**"H32'"), 'C3/bond3" );
bondAtom( AliphaticHydrogen(''H33"), 'C3/bond4" );



Exercises 75

setBiotypelndex("'H31", Biotype::get(*'propane',
“"H1 or H3™).getlndex() );
setBiotypelndex("'H32", Biotype::get(''propane",
"H1 or_H3"™).getlndex() );
setBiotypelndex(*'H33", Biotype::get(*'propane’,
"H1 or_H3'™).getlndex() );
}

static void iInstantiateBiotypes() {
// Create biotypes if they do not exist yet
// four chemically distinct atom types
ifT (! Biotype::exists('propane’™, "Cl or C3'))
Biotype: :defineBiotype(Element: :Carbon(), 4,
"propane’™, "Cl1_or_C3");
it (! Biotype::exists(''propane™, 'C2'"))
Biotype: :defineBiotype(Element: :Carbon(), 4,
"propane’™, "'C2");
it (! Biotype::exists(''propane'™, "H1_or_H3'"))
Biotype: :defineBiotype(Element: :Hydrogen(), 1,
“propane’™, "H1l _or_H3");
it (! Biotype::exists(''propane™, '"H2'))
Biotype: :defineBiotype(Element: :Hydrogen(), 1,
“propane’™, "H2"™);
}

// create charged atom types

// ensure that charges sum to zero, unless molecule has a
formal charge

static void
setAmberLikeParameters(DuMMForceFieldSubsystem& forceField)

{
instantiateBiotypes();

DuMM: :ChargedAtomTypelndex chargedAtomlndex(5000);

forceField.defineChargedAtomType(
chargedAtomIndex,
"propane C1 or_C3",
DuMM: :AtomClassIndex(1), // "CT" type in amber
-0.060 // made up
)
forceField.setBiotypeChargedAtomType(
chargedAtomlndex, Biotype::get(''propane™,
"C1l or_C3").getlndex() );
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++chargedAtomlndex;

forceField.defineChargedAtomType(
chargedAtomIndex,
“"propane C2',
DuMM: : AtomClasslIndex(1), // "CT"™ type in amber
-0.040 // made up
)
forceField.setBiotypeChargedAtomType(
chargedAtomindex, Biotype::get("propane', 'C2'").getlndex() );
++chargedAtomIndex;

forceField.defineChargedAtomType(
chargedAtomIndex,
"propane H1l_or_H3",
DuMM: : AtomClassIndex(34), // "HC" type in amber
0.020 // made up, use net neutral charge
);
forceField.setBiotypeChargedAtomType(
chargedAtomlndex, Biotype::get("propane’,
"H1 or_H3"™).getlndex() );
++chargedAtomIndex;

forceField.defineChargedAtomType(
chargedAtomIndex,
“propane H2",
DuMM: : AtomClassIndex(34), // "HC" type in amber
0.020 // made up, use net neutral charge
);
forceField.setBiotypeChargedAtomType(
chargedAtomlndex, Biotype::get(*'propane™, "H2").getIndex() );
++chargedAtomlndex;

}
¥

int main(Q)

{
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DuMMForceFieldSubsystem forceField(system);
DecorationSubsystem artwork(system);

// Atom classes are available, but not charged atom types
for propane
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// in standard Amber force field
forceField. loadAmber99Parameters();

Propane: :setAmberLikeParameters(forceField);
Propane propanel, propane2;

// place Tirst propane, units are nanometers

// skew i1t a little to break strict symmetry

system.adoptCompound(propanel, Transform(Vec3(-0.5, 0, 0))
* Transform(Rotation(0.1, YAXis)) );

// place second propane, units are nanometers
system.adoptCompound(propane2, Vec3( 0.5, 0, 0));

system.updDefaul tSubsystem() .addEventReporter(new
VTKEventReporter(system,
0.100));

system.modelCompounds(); // finalize multibody system
State state = system.realizeTopology();

Verletlntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(100.0);

9.1 The Inboard Bond Center

Every atom and every Compound has (at most) exactly one BondCenter that is known as the
inboard bond center. For an atom, the inboard bond center is ordinarily the first
BondCenter for that atom. For a Compound, the inboard bond center is ordinarily the

inboard bond center of its first atom.

Every time a covalent bond is formed using a bondAtom() or bondCompound() method (but
NOT those created with the addRingClosingBond() method), a bond is formed between the

inboard bond center of the child compound, and an explicitly specified BondCenter of the
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parent compound. The inboard bond center of the parent Compound remains the inboard

bond center of the resulting combined Compound.

The tree-structure of parent-child relationships that is built up using these bonding methods
is directly related to the topology of the multibody system that will be created when the

CompoundSystem::modelCompounds() method is called.

9.2 The First Few Atoms

Because three previous atoms are required, in general, to specify an atom location in internal
coordinates, the first three atoms placed in a molecule are special. However, because the
Compound::SingleAtom derived classes come preloaded with BondCenters, only the first

atom is special. The relative locations of the BondCenters specify all of the bond angles.

9.2.1 The first atom

The first atom of a Compound is placed using the setBaseAtom() method. You can
specify a Cartesian (x,y,z) location for the atom; otherwise it defaults to (0,0,0). When you
later place an entire molecule, the location of that molecule (i.e., its reference frame) is the

location of the first atom of the molecule.

9.2.2 Subsequent atoms

Additional atoms are placed relative to previous ones using the bondAtom() method.

The bond length needs to be specified, but may have a default value already built into one of
the BondCenters. If a default bond length is already set on exactly one of the BondCenters
(as is the case for AliphaticHydrogen), the bond length can be omitted. If both BondCenters

have differing built-in default values, an error will occur.

The name of the bond center on the previous atom must be specified. As with all of the
bondWhatever() methods, the inboard bond center in the new atom will be used to form the
second half of the bond.

The bond angles are already specified by the relative arrangements of BondCenters on the

atoms.
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Dihedral angles are also specified in the BondAtom() and BondCompound() methods, to

complete the internal coordinate representation of the default molecular configuration.

9.3 Ring-closing Bonds

Because bonded structures are built up in tree-like fashion, with child atoms and
Compounds attaching to parent Compounds via their inboard bond centers, ring and loop
closures require a special process (not shown in the propane example; look in the header
files Protein.h and RNA.h for examples). One bond in each ring or cycle must be specified
using the addRingClosingBond() method. This method takes two BondCenters as
arguments, and has no effect upon the implicit tree structure of the Compound. Although
you can specify a default bond length and dihedral angle with the addRingClosingBond()
method, these may have no effect upon the default configuration, which is completely

specified by the internal coordinates defined using non-ring-closing bonds.

The addition of ring-closing bonds is necessary for the force field to know where all of the

bonds are.

9.4 Setting Default Geometry

You can set default geometry at construction time using arguments to the setBaseAtom(),
bondAtom(), and bondCompound() methods. You can change the default geometry later
using setDefaultBondLength(), setDefaultBondAngle(), and setDefaultDihedralAngle()
methods. Be aware that setting the default geometry will have no effect on your dynamic
simulation after you have already realized a dynamic model with the

CompoundSystem::modelCompounds() method.

9.5 Exercises

Exercise 9.5-1

Compile and run propane example.
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Exercise 9.5-2

Create a molecule of your own. Doing this properly involves understanding the Amber atom
types for each atom in your molecule, plus knowing the partial charges on each atom. It is

beyond the scope of this document to explain how to determine those parameters.
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Getting More Information

10.1 The Simtk.org Website

The SimTK Core project website, hosted on the Simtk.org website
(https://simtk.org/home/simtkcore), has the latest downloads, documentation, and source

code for the entire SimTK Core, including Molmodel.

10.2 Help Us Help You: Submitting Feature Requests and Bug
Reports

10.2.1 How to submit Bug Reports and Feature Requests

Bug reports and feature requests can be submitted online at
https://simtk.org/home/simtkcore.



https://simtk.org/home/simtkcore
https://simtk.org/home/simtkcore

82 GETTING MORE INFORMATION

Iveryie SimTKcore
Guagrashy of ure Overview
Team .
The SenTi Core Project
Downloads Becsimulation toolkit Lead L
Documants :
Wiki (Beta)
N Fughby-specialized
Publications technalogies
memesary ta building
News suczesshl
e
simulabiens of
egieal strusturas.
These mchude: shit
‘sdherence to an important gat of abstracticns and guiding
prreies, robust, ngh-perlirmance ramerical metheds, support
Michasl Sherman far developing and shanng physics-based madels, and care
Comas soltmare ergneenng. . u
dask Maddislen ‘Wa beligve that & primary concern of simulation scientists i [T
Sonag performance, that i, speed of computation. We seei: to buid
y e, Approximate medels using classical phivsics in ordar ta Principal Downloads
8 ‘achieve reasonable run times for cur computabicnal studies, 5o
Salas Ehiat we can hops to lmarn something interseting bafars reticement. I."?“
Ester Gastman I the cheice of SIMTK tehnciogies, we are facused on achieveg
Comad tha bast pocskia that st indows
actusily have. In today's practice, M means commodity 14
maneite Schmidt mukiprocessars and small chisters, .
e rd)
The diferencs i perfarmance between the best methads and the [
Team b penurael] behraues et peaple use con b
& et e —ansily an arder of magnibada or more. Thegrowing  Zther
e set of SimTK Cone kbraries seeks 1o pravide the be: Blatfarmacarsusosried
Tmbtermentat o of the Bes-imawn matads far wely used 10
comentations ch as:
See &1 Downlnads

Lineer aigebes, numericalintegration snd Wonte Carka sampin,
enubibady Ginteeral coordinate) aleculnr forcn fonld
evatstion, naminear naet finding and optimizstion. A1l STk Core  NEWS

softmars i in tha form of €45 APl it thrand-eafs, 30d quistly LT 10 e -

)_id=97 omticorg @ 5 0

Figure 10.2-1: Opening the Advanced options on the navigation bar.

Orverview SimTKcore
an Advanced
Seme of the menu iems m s category are geared lowards
Docunsents developers that sre members of the project, while cthers ane
geared lowards the active wadtor wh would ke bo comtribnte by
Wikl {Beta) sharing his ar her opinians and by partcipating in discussions.
Publications Developars an gat access 1 the Source Code repository, the
dashboard (which repoets on the suceess o lailure of the labest
Hews camalation) and the Task Manager (which can keep srack of your

ToDa hists). Seher menu derms are of iberest 1o ol users.

Buble forrry § 2 Visiters are weloms 16 3ign up o the projects maling lists,
2 contbute or read pastngs to the projects Pubbc Fonum, select
“Hugs an Faatures” 1o regueit A fasture of repart a bug.

Mxchael Sherman
Contacy

sk Mddigton
apniad

Cantac
Easer Eastiman
Contasy

Isacstts Schoudt
Spniad

Team
& mambers

ittps:)smik.orgtracke 7group_kd=97 smitkorg @ 55 ©

Figure 10.2-2: Selecting "Features & Bugs' page
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Figure 10.2-3: Choosing between Bugs or Features

10.2.2 What is the difference between a Bug Report and a Feature
Request?

A “Bug Report” identifies problems where the software is not working the way it is supposed
to. A “Feature Request” is suggests new functionality that does not yet exist in the software.
Sometimes it is not obvious which category your issue falls into. In this case, just use your

judgment.

Once you have selected “Bug Reports” or “Feature Requests” from the left navigation menu,
it will no longer be obvious which of the two categories you are submitting. So please try to

remember which one you clicked.
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Figure 10.2-5: Selecting a Bug/Feature category.

Don’t spend too much time worrying about the fields on the form you don’t understand.
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10.2.3 How can | ensure that 1 am submitting a truly excellent bug
report?

Submitting high quality bug reports is an art that may require some practice. Practice the

following steps to become a bug reporter who is beloved by the software developers.

When submitting a software problem report, please try to give as complete a report as
possible.
1. Include a description of what you expected would happen, had there been no
problem.
2. Include a detailed description of what actually did happen, including error messages
and other output.
3. Create a short program that demonstrates the problem. Submit the complete
program text, plus any input files, in the Bug Report. Use the “Check to Upload and
Attach File” field to include these files. If that doesn’t work, just paste your whole
program into the comments section. Please do not be shy about pasting all of this

information and files into the form.

Please include complete programs that really compile, if possible, with your Bug Reports.
Do not just paste in the six or seven lines of code that you think are causing the problem.
Please send us a complete program to demonstrate the error whenever you can. It is also
important to include your input files, if any, with the example program. This will make it

much easier for us to reproduce the bug, and therefore much more likely that we can fix it.
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