
Documents

 SimTK Tutorial
 Release 1.0

March 3, 2008
 Website: SimTK.org/home/dissemination

Copyright and Permission Notice

Portions copyright (c) 2008 Stanford University and Peter Eastman.

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

iii

Acknowledgments

SimTK software and all related activities are funded by the Simbios National Center for

Biomedical Computing through the National Institutes of Health Roadmap for Medical

Research, Grant U54 GM072970. Information on the National Centers can be found at

http://nihroadmap.nih.gov/bioinformatics.

v

Table of Contents

1 INTRODUCTION ... 1

1.1 What is SimTK? ..1
1.2 Mathematical Overview .. 2

2 ARCHITECTURE ..5

2.1 The SimTK Stack ..5
2.2 Systems and States .. 6
2.3 Systems and Subsystems..7
2.4 The Realization Cache ..7
2.5 Events..10

3 EXAMPLE: A DOUBLE PENDULUM ... 13

3.1 A First Example ..13
3.2 A Scheduled Event Reporter ..19
3.3 A Triggered Event Reporter .. 23
3.4 An Event Handler .. 25
3.5 Constraints..27

4 EXAMPLE: A PROTEIN SIMULATION..29

4.1 Creating a Protein.. 29
4.2 Radius of Gyration... 34
4.3 RMS Distance from Native ... 38

1

1 Introduction

1.1 What is SimTK?

SimTK is a toolkit for physics based simulation of biological structures. It contains tools for

doing lots of jobs related to this purpose: vector and matrix math, linear algebra, numerical

integration, optimization, etc. Most importantly, it includes Simbody, a library for

performing internal coordinate simulations of multibody systems. Let’s take a moment to

consider what that means.

A multibody system is a physical system composed of objects, each of which is rigid or

nearly rigid, but which can move relative to each other. Here are some examples of

multibody systems:

• A human skeleton consists of rigid bones that move relative to each other by bending

at joints.

• A protein may be viewed as a collection of atoms or small groups of atoms that are

internally rigid, but move relative to each other.

• An automobile engine consists of gears, pistons, and other rigid parts that move

relative to each other to produce motion.

Now let’s consider what is meant by an internal coordinate simulation. Suppose you are

creating a computer model of a human skeleton. One possible approach would be to

independently specify the position and orientation of every bone. Although that could work,

it isn’t a very natural way to describe a skeleton. It omits all information about connectivity:

the fact that bones are attached to each other, that they can only move in very limited ways,

and that moving an arm should automatically cause the hand to move as well. You therefore

would need to add a very large number of constraints to the system to make it move in a

physically realistic way.

An alternative approach is to describe the system in terms of its internal coordinates. Rather

than specifying six degrees of freedom (three translations and three rotations) for each bone,

 Mathematical Overview

2

you specify only the ways in which the skeleton can actually move: for example, the angle by

which the right elbow is bent. The result is a simpler, more concise description of the state

of the system at any point in time. It also is computationally much more efficient, since it

requires many fewer constraints.

This is what Simbody, SimTK’s multibody dynamics engine, does. It allows you to describe a

multibody system in whatever way is most natural. And it takes care of all the hard parts for

you: transforming between internal and Cartesian coordinates, calculating the inertial forces

that arise as a result of the transformation, determining the effect of forces on internal

coordinates, imposing constraints, integrating equations of motion in terms of internal

coordinates, and many other details that you really don’t want to have to worry about. And

it does all of these things in ways that are efficient, robust, and numerically accurate.

1.2 Mathematical Overview

In the previous section, I defined a multibody system as a “physical system”. That is one way

to think of it, but it is not the only way. After all, simulations can only work with virtual

objects, not physical ones. From the simulation’s perspective, a multibody system is a

system of equations. If you have designed it well, the behavior of those equations will in

some way reflect the behavior of the physical system you are trying to simulate.

More specifically, the state of the system at any moment in time is described by a vector of

state variables. For example, a human skeleton would be described by the current angle and

angular velocity of every joint. We refer to this vector as y. The job of a simulation is to

numerically integrate the equation of motion

!

dy

dt
= f(y,t) (1)

where the function f(y, t) reflects the forces acting on the bodies and the laws of physics.

The vector of state variables can be subdivided into generalized coordinates, which we refer

to as q, generalized speeds, which we refer to as u, and auxiliary variables, which we refer

to as z. For example, the generalized coordinates of a human skeleton would be the set of

angles for all the joints, while the generalized speeds would be the corresponding angular

 Mathematical Overview

3

velocities. (It is also possible for a system to have more generalized coordinates than

generalized speeds, but don’t worry about that right now.) If you were simulating a person

walking and wanted to keep track of the total distance they had walked, that would be an

auxiliary variable; it does not describe the configuration of the skeleton, but still needs to be

integrated along with the other state variables. The full state vector is the union of these

subvectors: y = [q, u, z].

It sometimes is necessary to impose constraints on the behavior of a system. For example,

some proteins contain disulfide bonds that connect two distant parts of the chain. This is

typically modeled as a constraint requiring the distance between the two bonded atoms to

remain fixed. Mathematically, a constraint is an algebraic equation which must be satisfied

at all times during the simulation:

!

c(q,u,t) = 0 (2)

There is one such equation for every constraint imposed on the system. Together, they

represent a manifold on which the state vector is required to lie at all times.

The above discussion assumes the system can be modeled as evolving continuously

according to a single differential equation. In many cases, that is not enough. A system may

change discontinuously at discrete times. For example, suppose you are modeling a person

walking. As long as a foot is in the air, it has no interaction with the ground. But you must

monitor its height, and when it touches the ground, you must turn on a constraint to prevent

it from passing down into the ground or sliding along the ground. You then monitor the net

force acting on the foot, and when you see that it is directed upward, you release the

constraint so the foot can rise back off the ground again.

Mathematically, this is modeled with event trigger functions. These are arbitrary functions

of the state variables which are monitored continuously during the simulation. An event is

said to occur when a trigger function crosses through 0:

!

e(y,t) = 0 (3)

When an event occurs, the corresponding event handler is invoked, which can modify the

state in arbitrary, discontinuous ways.

 Mathematical Overview

4

We also extend the state description to include a set of discrete variables, which we refer to

as d. In the example above, you would use discrete variables to keep track of which

constraints were currently turned on. Discrete variables are not modified by equation 1.

They are changed only by event handlers, which modify them at discrete times. The forces,

constraints, and event functions in equations 1-3 may all depend on the current values of

discrete variables.

5

2 Architecture

2.1 The SimTK Stack

SimTK consists of a set of modules that form a stack. Each module depends on those that

come before it, but not the ones after it.

Module Function

LAPACK Provides routines for high performance linear

algebra

SimTKcommon Contains many of the basic classes for

representing systems, states, vectors, matrices,

event handlers, etc.

CPODES Contains the CPODES numerical integrator

developed at Lawrence Livermore National

Laboratory

Simmath Provides a variety of high level numerical tools

for integration, differentiation, and

optimization

Simbody Provides algorithms and data structure for

modeling multibody systems in internal

coordinates

Molmodel Provides tools for modeling biological

macromolecules such as proteins and nucleic

acids

 Systems and States

6

For now, we will not worry too much about the boundaries between the different modules.

All of them are included in the SimTK Core installer, and you can access all of them from

your code by including a single header file: SimTKmolmodel.h if you are doing a

biomolecular simulation, SimTKsimbody.h otherwise.

2.2 Systems and States

SimTK uses two classes to represent the information associated with a multibody system:

System and State. You can think of these as the “constant” and “non-constant” parts of the

system, respectively. System stores everything that is expected to remain constant over the

course of a simulation, while State stores everything that is expected to change.

More specifically, a State object stores the following values:

• The time t.

• The continuous state variables y.

• The discrete state variables d.

It also provides spacing for storing other values that are calculated based on the state

variables listed above. This will be discussed shortly.

A State object is purely a place for storing data. In contrast, a System provides much of the

logic for the simulation. Its functions include the following:

• It defines what information will be stored in a State (how many generalized

coordinates, how many generalized speeds, etc.).

• It provides routines to calculate the force function f(y, d, t), the vector of constraint

functions c(q, u, d, t), and the vector of event trigger functions e(y, d, t).

• It provides a routine which takes a state that does not satisfy the constraints, and

projects it onto the constraint manifold.

• It provides routines to handle events when they occur.

 Systems and Subsystems

7

This division has several important advantages. You can easily save a copy of the State at

any point in the simulation, and be confident that you have not missed any other

information hidden away in some other object. It also ensures that derived quantities

remain synchronized with the state variables they were calculated based on, which

eliminates a large class of potential bugs.

2.3 Systems and Subsystems

Now let’s look a bit more closely at how a System is put together. Each System is composed

of one or more subsystems, each represented by a Subsystem object. Most of the functions

described above are actually performed by the Subsystems, not by the System itself. For

example, the set of state variables for a System is simply the union of the state variables

defined by all its Subsystems. The force calculated by the System is simply the sum of the

forces calculated by all of its Subsystems. And so on.

This allows you to create a System in a modular way. Subsystems can interact with each

other, so you can split up your System in whatever way seems most convenient. For

example, one Subsystem might define a subset of the bodies in the system, and all the forces,

constraints, and events related to them. Alternatively, one Subsystem might define all the

state variables, a different Subsystem define the forces acting on them, and a third

Subsystem define a set of events.

SimTK provides a number of standard Subsystems ready for you to use. For example,

SimbodyMatterSubsystem allows you to build up arbitrary multibody systems out of a large

collection of joint types, while DuMMForceFieldSubsystem provides a standard force field

for use in molecular dynamics simulations. You will rarely need to actually write a new

Subsystem yourself.

In addition to whatever other Subsystems it has, every System has a default Subsystem. It

implements some standard functionality that is required for all Systems. We will see some

examples of what it can be used for later.

2.4 The Realization Cache

 The Realization Cache

8

The state variables y, d, and t collectively represent a complete description of the state of the

system at a given time. On the other hand, there are lots of other numbers you might want

to know. Some examples include

• The position of each body in Cartesian coordinates

• The force acting on each body

• The resulting acceleration of each internal coordinate

• The values of event trigger functions

These are not really independent information. Given the state variables, you can calculate

them whenever you want. On the other hand, some of them may be expensive to calculate,

so you want to avoid recalculating them more often than necessary. The State object

therefore provides space for storing these derived values. This space is called the realization

cache, and the process of calculating the values stored in it is known as realizing the state.

If you look at the list of examples above, you will see that they need to be calculated in a

particular order. The Cartesian coordinates of each body generally need to be known before

the forces can be calculated, and the forces need to be known before the internal coordinate

accelerations can be calculated. It also is clear that not all of these pieces of information will

be needed in every situation. If you only care about the positions of bodies, you don’t want

to waste time on an expensive force calculation.

The realization cache is therefore divided into a series of stages. Each piece of information

in the cache belongs to a particular stage. When you want to realize part of the cache, you

specify what stage to realize it up to. This causes the information belonging to that stage and

all previous stages to be calculated. In other words, whenever you want to get some

information from the cache, you must first make sure the state has been realized up to the

stage that information belongs to.

Here is the complete list of stages. There are ten in all.

1. Empty

 The Realization Cache

9

2. Topology

3. Model

4. Instance

5. Time

6. Position

7. Velocity

8. Dynamics

9. Acceleration

10. Report

The first four stages (Empty through Instance) are involved in the initial construction and

initialization of the system. Don’t worry about them right now. All of the information you

will want to access during a simulation is associated with one of the later stages. Here is the

information associated with each of the later stages:

Time: At this stage, no derived information has yet been calculated. You can query the State

for any of the state variables (t, y, and d), but nothing else.

Position: At this stage, the positions of all bodies in Cartesian coordinates are known.

Velocity: At this stage, the velocities of all bodies in Cartesian coordinates are known, along

with the amount by which the constraints are violated. This is the lowest stage at which the

System can project the State onto the constraint manifold.

Dynamics: At this stage, the force acting on each body is known, along with the total kinetic

and potential energy of the system.

Acceleration: At this stage, the time derivatives of all continuous state variables are known,

along with the values of all event trigger functions.

Report: A State is not normally realized to this stage during a simulation. It is available in

case a System can calculate values that are not required for time integration, but might be

 Events

10

needed by an event handler or for later analysis. That way, these values will only be

calculated when they are actually needed.

The State makes sure that all values in the realization cache are consistent with the current

state variables. If you modify any state variable, it will automatically “back itself up” to an

earlier stage, invalidating cache entries from later stages so they can no longer be accessed.

In particular:

• Modifying t or q will bring the State back to Time stage.

• Modifying u will bring the State back to Position stage.

• Modifying z will bring the State back to Velocity stage.

• When a System defines a discrete state variable, it specifies what stage the State

should be reverted to when that variable is modified. This should be chosen to

ensure that modifying the variable will invalidate any cache entry that may depend

on it.

2.5 Events

Now let’s look at event handling in more detail. As described earlier, an event is signaled by

an event trigger function, e(y, d, t). When that function crosses through 0, an event is said

to occur, and a handler function is invoked.

In practice, this means that the value of the event trigger function is calculated at each time

step. When it changes sign from the previous time step, the integrator knows that an event

occurred at some point during the step. It then tries to identify exactly when the event

occurred by generating interpolated States at various points in the middle of the step and

evaluating the trigger function at each one.

The result is a time window (tlow, thigh] within which the event is known to occur. We don’t

know exactly when it occurred, only that it was somewhere within the window. You can

control how large a window is acceptable. Asking for a smaller window will produce more

accurate event localization, but also is slower.

 Events

11

The event handler is then invoked and given a State, which reflects what the state of the

system would have been at thigh if the event had not occurred. The event handler is free to

modify this State in whatever way it wants. Once it returns, the time integration continues

on, using the modified State as its starting point.

An important special case is events that are defined to occur at a particular time that is

known in advance. Of course, we can handle this case with the above mechanism, simply

defining the event trigger function as e(y, d, t) = t-tevent. But that is unnecessarily inefficient.

We know in advance exactly when the event occurs, so there is no need to figure it out by

repeated evaluations of the trigger function on a series of interpolated States! SimTK

therefore provides a special purpose mechanism for events of this sort. They are known as

scheduled events, in contrast to triggered events which are determined based on an event

trigger function.

Another important special case is events that do not actually modify the State. For example,

perhaps you want to save a copy of the current State to disk at regular intervals for later

analysis. Or you might want to monitor a particular quantity and record the largest value it

ever takes on over the course of the simulation. In some cases, an integrator can save work if

it knows in advance that an event handler is only going to examine the State but not modify

it. SimTK therefore provides a separate mechanism for implementing event handlers of this

sort. They are known as event reporters.

Like most other aspects of a System, events are defined by Subsystems, but you don’t want to

have to write an entire Subsystem just to create a single event handler or event reporter. The

default Subsystem therefore provides an extensible mechanism to define new events. You

simply create a subclass of one of the following classes: TriggeredEventHandler,

ScheduledEventHandler, TriggeredEventReporter, or ScheduledEventHandler. You then

add it to the default Subsystem by calling addEventHandler() or addEventReporter() on it,

and it takes care of everything else for you. We will see examples of doing this in a later

chapter.

13

3 Example: A Double

Pendulum

3.1 A First Example

It’s now time to look at our first example. The following program creates a system

representing a double pendulum: one pendulum attached to the end of a second one. It

simulates the behavior of this system over a period of 50 seconds, and displays a movie of it.

#include "SimTKsimbody.h"
#include "SimTKsimbody_aux.h"

using namespace SimTK;

int main() {

 // Create the system.

 MultibodySystem system;
 SimbodyMatterSubsystem matter(system);
 GeneralForceSubsystem forces(system);
 Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0));
 Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));
 pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1));
 MobilizedBody::Pin pendulum1(matter.Ground(), Transform(Vec3(0)),
 pendulumBody, Transform(Vec3(0, 1, 0)));
 MobilizedBody::Pin pendulum2(pendulum1, Transform(Vec3(0)),
 pendulumBody, Transform(Vec3(0, 1, 0)));
 system.updDefaultSubsystem().addEventReporter(
 new VTKEventReporter(system, 0.01));

 // Initialize the system and state.

 system.realizeTopology();
 State state = system.getDefaultState();
 pendulum2.setOneU(state, 0, 5.0);

 // Simulate it.

 VerletIntegrator integ(system);
 TimeStepper ts(system, integ);

 A First Example

14

 ts.initialize(state);
 ts.stepTo(50.0);
}

Before you can compile and run this program, you need to run the SimTK Core installer. It

will create a folder with “include” and “lib” subfolders. Make sure the “include” folder is part

of your compiler’s include path, and the “lib” folder is available to the program at runtime.

Exactly how you do this will depend on the compiler and operating system you are using.

If everything is working correctly, you should see a window that looks something like this,

showing an animation of the pendulum swinging:

Let’s go through the program line by line and see how it works. It begins with a couple of

include statements:

 A First Example

15

#include "SimTKsimbody.h"
#include "SimTKsimbody_aux.h"

I mentioned SimTKsimbody.h earlier, and said it was the only file you needed to include to

access all the SimTK classes. That was almost true, but not quite. If you want to use VTK for

visualizing your system, you also need to include SimTKsimbody_aux.h. If your program

does not display a graphical user interface, or does not use the SimTK user interface classes,

you can omit including it.

Next we import the SimTK namespace, which includes nearly all of the symbols used by

SimTK:

using namespace SimTK;

Now we create our System and a pair of Subsystems:

MultibodySystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);

MultibodySystem is a subclass of System. It defines the functionality for working with

general multibody systems. In most cases, you will use a MultibodySystem or one of its

subclasses in your simulations.

SimbodyMatterSubsystem is the Subsystem that will define all the bodies in the system. It is

a modular Subsystem, to which you can add whatever bodies you want. A MultibodySystem

must always have a SimbodyMatterSubsystem. Notice that we do not explicitly add the

Subsystem to the System. Instead, the constructor takes a reference to the System, and it

adds itself.

GeneralForceSubsystem is a Subsystem that can be used to add a variety of forces to a

system. Much like SimbodyMatterSubsystem, it is designed to be modular; you can add

whatever forces you want to it. In the next line, we add a uniform gravitational force of 9.8

m/s2 in the negative y direction:

 A First Example

16

Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0));

The Force class has many subclasses representing a variety of common forces: springs,

dampers, constant forces, etc. It also has a subclass called Force::Custom, which you can use

to define completely new forces.

To understand the next few lines, we need to consider two important classes: Body and

MobilizedBody. The Body class represents the physical properties of a body, such as its mass

and moment of inertia. Body::Rigid is a subclass that represents a generic rigid body. The

MobilizedBody class combines the body’s physical properties (represented by a Body object)

with a set of mobilities—that is, the set of state variables describing how the body is allowed

to move. It has many different subclasses defining a wide variety of types of joints.

We begin by creating a Body to describe the physical properties of our pendulum:

Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));

We specify that it has a mass of 1 kg (the first argument), the center of mass is at the body’s

origin (the second argument), and a moment of inertia of 1 kg·m2 around all three axes (the

third argument).

A Body object can also define how the body should be drawn in graphical displays. This has

no effect on the simulation, so it is completely optional. Since we want to show an animation

of the pendulum, we add a decoration to the Body: a sphere of radius 0.1.

pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1));

So far we have not actually added any bodies to our System. We have simply created a Body

instance that defines a certain set of physical and display properties. The next two lines

actually add bodies to the System:

MobilizedBody::Pin pendulum1(matter.Ground(), Transform(Vec3(0)),
 pendulumBody, Transform(Vec3(0, 1, 0)));
MobilizedBody::Pin pendulum2(pendulum1, Transform(Vec3(0)),
 pendulumBody, Transform(Vec3(0, 1, 0)));

 A First Example

17

MobilizedBody::Pin defines a pin joint. It has one generalized coordinate and one

generalized speed, which allow it to rotate around a single axis. Our pendulum consists of

two of these linked to each other.

The first constructor argument is the MobilizedBody’s parent; that is, the MobilizedBody

relative to which its position is defined. Every SimbodyMatterSubsystem has a ground body

which is fixed at the origin, and forms the root of the multibody tree. We specify ground as

the parent for pendulum1, and then specify pendulum1 as the parent for pendulum2.

The third argument is a Body object. Notice that we specify the same Body for both

MobilizedBodies. Remember, a Body is simply a description of a set of physical properties.

If several MobilizedBodies have identical properties, it is fine to use the same Body for all of

them.

Now let’s look at the second and fourth arguments, which are both Transform objects. These

are the inboard (toward the root of the tree) and outboard (away from the root of the tree)

transforms. A pin joint allows the body to rotate around a central point. The inboard

transform defines the location of that central point relative to the parent body. In our case,

we specify a vector of length 0, so each body simply rotates around its parent. The outboard

transform defines the location of the body relative to the central point. We specify a vector

of length 1 pointing in the y direction, so when both joints are in their neutral positions (that

is, when q=[0, 0]), the pendulum hangs straight down.

Our System is almost complete at this point, but there’s one more line:

system.updDefaultSubsystem().addEventReporter(new VTKEventReporter(system, 0.01));

As you can see, we are adding an event reporter to the System. You will recall from the

previous section that an event reporter is a special type of event handler that does not

actually modify the state of the system when it is called. It is there just to observe and

report. VTKEventReporter uses VTK to display a movie of the simulation. We ask it to draw

a new frame every 0.01 seconds. (That’s measured in simulation time, not real time.

Depending on how fast your computer is, one second of simulation time may take more or

less than one second to calculate and display.)

 A First Example

18

We’re all done building our System. Now we need to prepare it for simulation:

system.realizeTopology();

This function performs lots of initialization. Don’t worry about the details right now; they

usually only matter if you are writing a new Subsystem class. For the moment, you just need

to remember that after you build a System, you need to call realizeTopology() on it. If you

then make any changes to the System (such as adding another event handler), you need to

call realizeTopology() again, and any State objects you previously created will no longer be

valid.

Now we need to get a State for the System. Every System provides a default State which has

been initialized to have the right set of state variables and cache entries for the System. The

easiest way to create a new State is simply to make a copy of the default State. That is what

we do:

State state = system.getDefaultState();

The default State has all state variables initialized to 0. We could use that as the starting

point for our simulation, but it would make for a very dull simulation. The pendulum would

simply hang there and not do anything. We need to give it some energy to make it move.

We do this by modifying the State to give pendulum2 an initial angular velocity of 5

radians/sec:

pendulum2.setOneU(state, 0, 5.0);

We now have a System to simulate, and an initial State to begin the simulation from. It’s

time to do some simulating!

VerletIntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);

To understand these lines, we need to discuss two important classes: Integrator and

Timestepper. An Integrator is an object that knows how to advance the continuous state

 A Scheduled Event Reporter

19

variables y by integrating the equations of motion. There are, of course, lots of different

algorithms for doing that. The “best” algorithm in a particular case depends on lots of

factors: how smooth the system’s energy landscape is, what level of accuracy you want,

whether the equations are numerically stiff, etc. SimTK therefore provides a choice of

different Integrator subclasses, each implementing a different algorithm. In this case, we

have chosen a VerletIntegrator, which uses the velocity Verlet algorithm.

A TimeStepper takes care of the discrete part of a simulation. It repeatedly invokes the

Integrator to evolve the equations of motion, calls event handlers when events occur, and

notifies the Integrator of any changes made by the event handlers. It takes care of most of

the details of running a simulation for you. All you need to do is tell it what Integrator to

use, and it does the rest.

Now we are all ready to run the simulation. Here is how we do it:

ts.stepTo(50.0);

That’s it! Just tell the TimeStepper what time to advance the simulation to, and it does it.

Before we finish with this example, there is one point worth remarking on. Throughout the

discussion, we have assumed that all quantities were measured in SI units: seconds for time,

kg for mass, etc. You may have wondered how SimTK knew that. The answer is simple: it

didn’t. You are free to use whatever units you want. All that matters is that you use a single,

consistent set of units for all quantities. For this example, we assumed SI units. In a later

chapter, we will see an example that uses a different set of units.

3.2 A Scheduled Event Reporter

Now let’s expand on the previous example. We are going to create a new event reporter. Its

job will be to print out the position of the end of the pendulum at regular intervals during

the simulation. Since the reporting times are fixed in advance, not determined by the

behavior of the system, this is a scheduled event reporter.

Here is the code which implements the event reporter:

 A Scheduled Event Reporter

20

class PositionReporter : public PeriodicEventReporter {
public:
 PositionReporter(const MultibodySystem& system, const MobilizedBody& body,
 Real reportInterval) : PeriodicEventReporter(reportInterval),
 system(system), body(body) {
 }
 void handleEvent(const State& state) const {
 system.realize(state, Stage::Position);
 Vec3 pos = body.getBodyOriginLocation(state);
 std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl;
 }
private:
 const MultibodySystem& system;
 const MobilizedBody& body;
};

We can add this event reporter to our System with the following line:

system.updDefaultSubsystem().addEventReporter(new PositionReporter(system,
 pendulum2, 0.1));

Now when you run the program, it prints out the current time and the X and Y coordinates

of the pendulum every 0.1 seconds. Here are the first few lines of the output:

0 0 -2
0.1 0.481219 -1.88155
0.2 0.870604 -1.58657
0.3 1.13856 -1.22146

We output the values as tab delimited text, which makes it easy to load into other programs

for analysis. For example, here is an XY plot which traces out the pendulum’s trajectory over

the course of the simulation:

 A Scheduled Event Reporter

21

Let’s go through the code and see exactly what it is doing. First, we declare our event

reporter to be a subclass of PeriodicEventReporter:

class PositionReporter : public PeriodicEventReporter {

PeriodicEventReporter is a subclass of ScheduledEventReporter which is used for the (very

common) case of a reporter that should be called at fixed intervals throughout the

simulation. We could have subclassed ScheduledEventReporter directly instead; we just

would have needed to implement one additional method.

Now look at the constructor:

PositionReporter(const MultibodySystem& system, const MobilizedBody& body,
 Real reportInterval) : PeriodicEventReporter(reportInterval),
 system(system), body(body) {
}

 A Scheduled Event Reporter

22

This is all very simple. We just store references to the System and MobilizedBody we will be

reporting on, and pass the reporting interval along to the superclass.

Notice that the reporting interval is of type “Real”. This is the type used by SimTK for nearly

all floating point values. By default it corresponds to double precision, but you can configure

it to be something else instead.

All the really interesting things happen in the handleEvent() method. It is called every time

an event occurs (that is, at the time intervals specified to the constructor), and receives a

reference to the current State.

We want to print out the position of the pendulum in Cartesian coordinates. That

information is only available if the State has been realized to at least Position stage, so the

very first thing we do is ask the System to realize it:

system.realize(state, Stage::Position);

Now we can ask for the location of the MobilizedBody:

Vec3 pos = body.getBodyOriginLocation(state);

Notice that we do not ask the State for this information directly. Instead, we pass the State

to the MobilizedBody and ask it for the location. This is a common pattern. All the State

object knows about is state variables. It does not understand that those variables represent

the rotation angles of a pendulum, and that the pendulum is made up of bodies with

positions in Cartesian space. It is the System that knows these things, so you need to get the

System (or in this case, the MobilizedBody which is a part of the System) to interpret the

State and extract the desired information.

Finally, we print out the desired information:

std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl;

We do not bother to print the Z component of the position because we have constructed the

pendulum to move entirely in the XY plane.

 A Triggered Event Reporter

23

3.3 A Triggered Event Reporter

Suppose we are especially interested in knowing how high up the pendulum gets on each

swing. We can’t rely on a scheduled event reporter to tell us this: the highest point on the

swing probably won’t exactly correspond to a reporting time, so we will often miss it. We

really want to be guaranteed that a report will occur at exactly the moment when the

pendulum’s height reaches its local maximum. This calls for a triggered event reporter.

The event times are determined by the behavior of the System, not scheduled in advance.

The first thing we need to do is choose an event trigger function. This must be a continuous

function that crosses through zero at the moment when an event should occur. Fortunately,

there is an easy choice we can use: the Y component of the body’s velocity. This has exactly

the properties we need.

There is a catch, though. We only care about the highest point on the swing, not the lowest

point. The velocity becomes at local minima as well as maxima, but we don’t want the event

reporter to be called at those points.

One option would be to have handleEvent() filter out the unwanted events. Each time it was

called, it could calculate the derivative of the event function (in this case, the body’s

acceleration), and use that to decide whether to ignore the event. But there’s a better

solution: SimTK can do this filtering for you. You simply tell it which zero crossings you are

interested in: rising transitions, falling transitions, or both.

Here is the code for the event reporter.

class PositionReporter : public TriggeredEventReporter {
public:
 PositionReporter(const MultibodySystem& system, const MobilizedBody& body)
 : TriggeredEventReporter(Stage::Velocity), system(system), body(body) {
 getTriggerInfo().setTriggerOnRisingSignTransition(false);
 }
 Real getValue(const State& state) const {
 Vec3 vel = body.getBodyOriginVelocity(state);
 return vel[1];

 A Triggered Event Reporter

24

 }
 void handleEvent(const State& state) const {
 system.realize(state, Stage::Position);
 Vec3 pos = body.getBodyOriginLocation(state);
 std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl;
 }
private:
 const MultibodySystem& system;
 const MobilizedBody& body;
};

This time, we subclass TriggeredEventReporter, which should come as no surprise. Take a

look at the constructor:

 PositionReporter(const MultibodySystem& system, const MobilizedBody& body)
 : TriggeredEventReporter(Stage::Velocity), system(system), body(body) {

Notice the value we pass to the superclass constructor: Stage::Velocity. Event trigger

functions are calculated as part of the process of realizing a State. Each event handler must

specify what stage its trigger function should be calculated after. Since our function depends

on information that is available at Velocity stage, that is the stage we specify.

The constructor also contains the following line:

getTriggerInfo().setTriggerOnRisingSignTransition(false);

This tells SimTK that events should not occur on rising sign transitions (when the trigger

function increases from negative to positive). We only care about falling sign transitions.

Now look at the getValue() method, which returns the value of the event trigger function:

Real getValue(const State& state) const {
 Vec3 vel = body.getBodyOriginVelocity(state);
 return vel[1];
}

Although this looks straightforward, you might notice something odd about it. We access

the body’s velocity, which is only available once the State has been realized to Velocity stage.

Shouldn’t we therefore call system.realize()?

 An Event Handler

25

The answer is no. Remember, this function is called as part of realizing the State. We are

already in the middle of a call to realize(), and all of the Velocity stage cache entries have

already been calculated. In fact, if we inserted a call to realize() here asking to realize the

state to Velocity stage, the result would be an infinite recursion!

The question is a good one, though, and this is an unusual case. At any time other than in

the middle of realizing the State, there is no harm in sticking in an extra call to realize(). If

the State has already been realized to the specified stage, it will simply return without doing

anything. A good rule to follow is, “When in doubt, call realize().”

Conversely, if you forget to realize the State and then ask for information that is not yet

available, it will simply throw an exception. This will usually cause the simulation to

terminate, but at least you discover your mistake right away.

3.4 An Event Handler

So far, we have looked at event reporters: event handlers that can only observe the State, not

modify it. Now let’s create an event handler that actually modifies the State. Suppose that

half way through the simulation, we want to briefly apply a brake to the pendulum that

decreases its angular velocity. Here is the code for an event handler that does this.

class VelocityReducer : public ScheduledEventHandler {
public:
 VelocityReducer() {
 }
 Real getNextEventTime(const State&, bool includeCurrentTime) const {
 return 25.0;
 }
 void handleEvent(State& state, Real accuracy, const Vector& yWeights, const
Vector& ooConstraintTols, Stage& lowestModified, bool& shouldTerminate) const {
 state.updU() *= 0.2;
 lowestModified = Stage::Velocity;
 }
};

We add it to the System with the following line:

system.updDefaultSubsystem().addEventHandler(new VelocityReducer());

 An Event Handler

26

We subclass ScheduledEventHandler. As you would expect, there are also classes called

PeriodicEventHandler and TriggeredEventHandler. All of these classes are nearly identical

to the corresponding event reporter classes. The only difference is the signature of

handleEvent().

ScheduledEventHandler requires us to provide a method that returns the time of the next

event:

Real getNextEventTime(const State&, bool includeCurrentTime) const {
 return 25.0;
}

Since we only want the event handler to be called once, we just return a hardcoded value. In

general, though, the event time could be calculated based on the current State. For example,

PeriodicEventHandler looks at the current time and uses that to determine the next event

time.

Now look at the signature of handleEvent():

void handleEvent(State& state, Real accuracy, const Vector& yWeights, const
Vector& ooConstraintTols, Stage& lowestModified, bool& shouldTerminate) const {

That’s a lot more complicated than for an event reporter! The first thing to notice is that the

State is no longer const. As promised, we are now permitted to modify it.

The next three arguments related to the accuracy requirements for the event handler.

Remember, the event handler is supposed to reflect some physical process. Any calculations

it does are an intrinsic part of the simulation, and the State it produces is part of the

simulated trajectory. The user may have definite requirements for the accuracy of the

trajectory, and the event handler is expected to honor them.

The simplest way in which the user can specify these requirements is with a single number

for the overall accuracy of the simulation. That is the “accuracy” argument. If the resulting

 Constraints

27

State is calculated in an approximate way, the error in it should be less than this value. If the

System includes any constraints, the error in the constraint functions should be less than it.

The System may also provide weights for the individual state variables and constraint

functions. These are the next two arguments. You should multiply the errors by the

corresponding weights when comparing them to the requested accuracy.

Finally, there are two arguments which are used for output: lowestModified and

shouldTerminate. If you modify the State in any way, you should set lowestModified to the

appropriate value to tell SimTK what you have modified. In some cases, this can allow the

Integrator to avoid work if it knows that certain aspects of the State have not been modified.

 The actual implementation of this method is quite simple:

state.updU() *= 0.2;
lowestModified = Stage::Velocity;

updU() returns a mutable reference to the State’s u vector, which we multiply by 0.2. There

is also a method called getU(), which returns a const reference to it. This naming convention

is used frequently throughout SimTK: methods that return a const reference begin with

“get”, and methods that return a non-const reference begin of “upd”.

Finally, since we have modified u, we set lowestModified to Velocity. This lets the Integrator

know that we have modified velocities but not positions.

3.5 Constraints

Working in internal coordinates greatly reduces the number of constraints needed for most

systems, but it often cannot eliminate them altogether. Fortunately, SimTK makes it very

easy to add constraints to your System.

Each constraint is represented by an object of the Constraint class. Subclasses of Constraint

represent different kinds of constraints. SimTK provides a collection of Constraint

 Constraints

28

subclasses for various common types of constraints: that the distance between two bodies

must remain fixed, that a body can only move in a particular plane, etc.

As an example, let’s add a constraint forcing the end of our pendulum to remain on the

vertical line through the origin. That is, the body in the middle of the pendulum will be free

to swing back and forth, but the body at the end will only be able to move up and down.

Adding a Constraint works exactly like adding a MobilizedBody:

Constraint::PointOnLine(matter.Ground(), UnitVec3(0, 1, 0), Vec3(0), pendulum2,
 Vec3(0));

Constraint::PointOnLine is a subclass of Constraint which implements constraints of this

sort: a point on one body is only allowed to move along a line defined by a different body.

The first three arguments specify the line: it is defined in the ground body’s reference frame,

it points in the direction (0, 1, 0), and it passes through the origin. The last two arguments

specify the point which must remain on the line: it is at the origin of pendulum2’s reference

frame.

With this single additional line, the behavior of the pendulum changes dramatically. Instead

of moving chaotically, the first mass simply swings back and forth like an ordinary

pendulum, while the second one slides up and down in unison with it.

29

4 Example: A Protein

Simulation

4.1 Creating a Protein

In the previous chapter we simulated a very simple system with only two degrees of freedom.

Now let’s make an enormous jump in complexity, and simulate an entire protein. The

following program loads a protein structure from a PDB file, constructs a System

representing it, and simulates its behavior for 10 ps.

#include "SimTKmolmodel.h"
#include "SimTKsimbody_aux.h"

using namespace SimTK;

int main() {

 // Load the PDB file and construct the system.

 CompoundSystem system;
 SimbodyMatterSubsystem matter(system);
 DecorationSubsystem decoration(system);
 TinkerDuMMForceFieldSubsystem forces(system);
 forces.loadAmber99Parameters();
 PDBReader pdb("1PPT.pdb");
 pdb.createCompounds(system);
 system.modelCompounds();
 system.updDefaultSubsystem().addEventHandler(new VelocityRescalingThermostat(
 system, SimTK_BOLTZMANN_CONSTANT_MD, 293.15, 0.1));
 system.updDefaultSubsystem().addEventReporter(new VTKEventReporter(system,
 0.025));
 system.realizeTopology();

 // Create an initial state for the simulation.

 State& state = system.updDefaultState();
 pdb.createState(system, state);
 LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

 // Simulate it.

 Creating a Protein

30

 VerletIntegrator integ(system);
 integ.setAccuracy(1e-2);
 TimeStepper ts(system, integ);
 ts.initialize(state);
 ts.stepTo(10.0);
}

When you run this program, a window should appear (after some delay for building the

model and doing energy minimization) displaying the protein:

Before we go through the code in detail, let’s take a moment to consider how one goes about

modeling a molecule. In previous chapters, we have described multibody systems in terms

of rigid bodies connected by joints. In molecular simulations, it’s more natural to use a

different language. One thinks of molecules, which are made up of atoms connected by

covalent bonds. What is the relationship between these two descriptions?

 Creating a Protein

31

One answer would be to simply equate them. You could say that each atom is a rigid body,

and each bond is a joint. That is certainly an option, but it isn’t the only one, and it often

isn’t the best one.

When simulating a macromolecule, one usually constrains the bonds lengths to remain

fixed, and often some of the bond angles as well. This produces clusters of atoms that are

completely immobile with respect to each other. If you treat each of these clusters as a rigid

body, the system will have many fewer bodies than atoms. This results in a simpler system

that is easier to simulate.

SimTK lets you work with either description, and translate from one to the other. It

describes molecules in terms of Compounds. A Compound is a set of atoms covalently

bonded to each other: a molecule or a piece of a molecule. A Compound may be built up

hierarchically out of other compounds. For example, a protein is a single Compound, but

each amino acid residue it contains is itself a Compound.

After you create one or more Compounds, you add them to a CompoundSystem, which is a

subclass of MultibodySystem. The CompoundSystem examines the Compounds and

generates an appropriate set of MobilizedBody objects based on them. You can tell it which

bonds and angles should be constrained, and it automatically figures out what sets of atoms

form rigid bodies and what degrees of freedom they have.

Now let’s look at the code. Notice that we include SimTKmolmodel.h instead of

SimTKsimbody.h. This gets us the molecular modeling classes along with the rest of SimTK.

We begin by creating our CompoundSystem and Subsystems:

CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DecorationSubsystem decoration(system);
TinkerDuMMForceFieldSubsystem forces(system);

There are two new Subsystems that we haven’t seen before. DecorationSubsystem lets you

add arbitrary decorations to a System to control how it is visualized. When

CompoundSystem looks through the Compounds and creates MobilizedBody objects from

them, it also creates a set of decorations to draw the molecules in a standard way.

 Creating a Protein

32

TinkerDuMMForceFieldSubsystem provides a standard molecular dynamics force field. It

has built in support for the Amber99 force field parameters, which we load by calling

forces.loadAmber99Parameters();

If you want to use a different set of parameters, you can load them from a file by calling

populateFromTinkerParameterFile() instead. It also uses a GBSA solvation model to

represent the effect of water.

Now we need to create a set of Compound objects and tell the CompoundSystem to create

MobilizedBody objects from them. We could create them directly, but in this example we

use a different method: we do it by loading a PDB file:

PDBReader pdb("1PPT.pdb");
pdb.createCompounds(system);
system.modelCompounds();

The argument to the PDBReader constructor is the name or path of the file to read. In this

example, we use the 1PPT structure downloaded from http://www.pdb.org. This is a small,

36 residue protein. When we call createCompounds(), it creates all the necessary

Compounds and adds them to the CompoundSystem. Finally, we call modelCompounds(),

which causes the CompoundSystem to generate MobilizedBodies based on the Compounds

that have been added.

Next we add an event handler to the System:

system.updDefaultSubsystem().addEventHandler(new VelocityRescalingThermostat(
 system, SimTK_BOLTZMANN_CONSTANT_MD, 293.15, 0.1));

Molecular simulations are usually performed at constant temperature, so we need a

thermostat to maintain the temperature. VelocityRescalingThermostat does this by

periodically rescaling all of the velocities in the Sytem. We tell it to maintain a temperature

of 293.15 K (20°C), and to rescale the velocities every 0.1 ps.

Notice that one of the arguments is the value of Boltzmann’s constant. This may seem a

little odd. Doesn’t it know the value of Boltzmann’s constant already? The answer is no,

 Creating a Protein

33

because it doesn’t know what system of units you are using. In the previous chapter we used

SI units. In this chapter we use a different set of units known as MD units. It measures

length in nm, mass in Daltons, time in ps, and energy in kJ/mol. SimTK provides

predefined constants that give the values of various physical constants in both systems of

units.

We also add a VTKEventReporter to show a movie of our simulation, and ask it to show a

frame every 0.025 ps:

system.updDefaultSubsystem().addEventReporter(new VTKEventReporter(system,
 0.025));

After creating the System, we need to create an initial State. Once again we turn to the

PDBReader:

pdb.createState(system, state);

This method figures out the values of all generalized coordinates that produce a best fit to

the coordinates read from the PDB file and configures the State object.

We could use this State as the starting point for our simulation, but that usually is not a good

idea. PDB structures have significant uncertainty in them, and may not be at a local

minimum of the particular potential function we are using. If we started the simulation

from this State, the protein would experience very large forces that might disrupt its

structure. We therefore perform a local energy minimization to get a better starting State:

LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

We now are ready to perform our simulation. This works exactly as it did in the last chapter:

we create a VerletIntegrator and Timestepper, initialize it, and tell it to step to 10 ps. There

is only one line that is different:

integ.setAccuracy(1e-2);

 Radius of Gyration

34

Biomolecular systems can usually be integrated at fairly low accuracy. We are simulating a

large, chaotic system at constant temperature, so small errors in the integration have very

little effect on the long time behavior of the simulation. We therefore tell the Integrator to

use lower accuracy than the default. This allows it to take larger time steps, which makes the

simulation faster.

4.2 Radius of Gyration

Watching a movie of a protein is fine as far as it goes, but you generally want to analyze your

simulations in a slightly more quantitative way. In this section, we will expand the previous

example to monitor the radius of gyration of the protein over the course of the simulation.

The radius of gyration is defined by

!

RG =
1

N
ri " ravg

2

i=1

N

where N is the number of atoms, ri is the location of the i’th atom, and ravg is the average

location of all atoms. In this example, we will calculate it based only on the alpha carbon of

each residue.

Before looking at the code, this might be a good time to say something about matrix and

vector math in SimTK. The Vec3 class has already appeared a few times in the earlier

examples, but I didn’t comment on it, since it was generally obvious from the context how it

was being used. This example will require more significant vector math.

Actually, SimTK has two different sets of classes for vector math. First, there are classes to

represent small, fixed size vectors and matrices: Vec for column vectors, Row for row

vectors, and Mat for Matrices. These classes are templatized based on size and element type.

Synonyms are defined for common combinations; for example, Vec3 is a synonym for

Vec<3,Real>, while Mat22 is a synonym for Mat<2,2,Real>. You can also create other

combinations, such as Mat<2,10,Real> or Vec<4,Complex>.

 Radius of Gyration

35

Second, there are classes to represent large vectors and matrices whose sizes are determined

at runtime: Vector_ for column vectors, RowVector_ for row vectors, and Matrix_ for

matrices. These classes are templatized based on element type. Vector, RowVector, and

Matrix are synonyms for Vector_<Real>, RowVector_<Real>, and Matrix_<Real>,

respectively. Again, you can use other element types. In fact, the element type can even be a

vector or matrix itself. For example, Vector_<Vec3> is a vector, where each element is itself

a three component vector.

All of these classes support standard mathematical operators like +, -, and *. The ~ operator

performs a transpose (or more precisely, Hermitian conjugate). There also are versions of

many standard math functions that operate on vectors and matrices: sin(), exp(), sqrt(),

abs(), sum(), mean(), etc. These allow many calculations to be written in a very concise way.

Here is the code for the event reporter that monitors the radius of gyration.

class RadiusReporter : public PeriodicEventReporter {
public:
 RadiusReporter(const CompoundSystem& system, const Compound& compound,
 Real interval) : PeriodicEventReporter(interval), system(system),
 compound(compound) {
 for (Compound::AtomIndex i = Compound::AtomIndex(0); i <
 compound.getNAtoms(); ++i) {
 std::string name = compound.getAtomName(i);
 if (name.size() > 3 && name.substr(name.size()-3) == "/CA")
 atoms.push_back(i);
 }
 }
 void handleEvent(const State& state) const {
 system.realize(state, Stage::Position);
 Vector_<Vec3> pos(atoms.size());
 for (int i = 0; i < atoms.size(); ++i)
 pos[i] = compound.calcAtomLocationInGroundFrame(atoms[i], state);
 pos -= mean(pos);
 Real radius = std::sqrt(~pos*pos/atoms.size());
 std::cout<<state.getTime()<<"\t"<<radius<<std::endl;
 }
private:
 const CompoundSystem& system;
 const Compound& compound;
 std::vector<Compound::AtomIndex> atoms;
};

We add it to the System with the following line:

 Radius of Gyration

36

system.updDefaultSubsystem().addEventReporter(new RadiusReporter(system,
 system.getCompound(Compound::Index(0)), 0.1));

The constructor arguments are the CompoundSystem we are working with, the Compound

for which to calculate RG, and the reporting interval.

The constructor builds a list of all the atoms that will be used in the calculation. It does this

by looping over all atoms in the Compound and checking the name of each one. If the name

ends in “/CA”, it is the alpha carbon of some residue, so we add it to the list.

Now look at handleEvent(). Since we will be working with the locations of atoms in

Cartesian coordinates, we first realize the State to Position stage. We then look up the

location of each atom:

Vector_<Vec3> pos(atoms.size());
for (int i = 0; i < atoms.size(); ++i)
 pos[i] = compound.calcAtomLocationInGroundFrame(atoms[i], state);

We store the locations in a Vector_<Vec3>; that is, a vector of which each element is itself a

three component vector.

We now need to calculate RG. Since it involves a sum over ri-ravg, we first subtract the

average atom position from each one:

pos -= mean(pos);

We now can do the rest of the calculation in a single line:

Real radius = std::sqrt(~pos*pos/atoms.size());

That line may seem a bit confusing at first. How does it represent the entire calculation for

radius of gyration? Let’s look at it more closely, particularly the expression ~pos*pos.

Remember that ~ is the transpose operator, so this expression is simply the dot product of

pos with itself. It multiplies each element by itself, and adds them up. But each element of

pos is itself a Vec3. The ~ operator transposes these sub-vectors along with the parent

 Radius of Gyration

37

vector, so we are actually taking the dot product of each Vec3 with itself (yielding the

absolute value squared), then adding all of them up. Finally we divide by the number of

atoms and take the square root to yield RG: not bad for a single line of code!

Here is a graph of the radius of gyration over the course of the simulation. As you can see, it

has very little variation, indicating that the protein is stable.

Before we leave this example, I should point out that I cheated a bit at one point. I assumed

the System contained only one top level Compound, and simply called

getCompound(Compound::Index(0)) to look it up. This is not always a good assumption. If

the PDB file contained multiple protein chains, each one would be a separate Compound. I

really should have asked the System how many Compounds there were, and looped over all

of them. But I happened to know that the particular PDB file I was working with only

contained one chain, and making the code more general would have resulted in an example

 RMS Distance from Native

38

that was more complicated but no more educational. For real programs, though, you should

handle this more robustly.

4.3 RMS Distance from Native

In this section we will measure a different quantity over the course of our simulation: the

root-mean-square distance (RMSD) from the native structure. This is defined as

!

RMSD =
1

N
r
i
" r

i

0
2

i=1

N

where ri is the position of the i’th atom at the current time, and ri
0 is the position of that

atom in the native structure.

At first, this might seem like a trivial modification to the previous example, but there’s a

catch. Over time, the molecule may drift or rotate away from its starting position. We don’t

care about that, and we don’t want it to cause the RMSD to change. We only care about

conformational changes in the molecule. We therefore need to align the two states before

calculating the RMSD. That is, out of all possible translations and rotations that could be

applied to the molecule, we want to find the one that minimizes the RMSD.

SimTK provides a tool for solving problems of this sort: the Optimizer class. To use it, you

define a function of the form

!

y = f (x)

where x is a vector of parameters, and f(x) is a real valued function of those parameters.

Optimizer searches for a set of values for the parameters x at which y is a local minimum.

You can also impose constraints on the allowed parameter values.

You define the function by creating an object which subclasses OptimizerSystem. Here is an

OptimizerSystem that calculates the RMSD between two structures.

 RMS Distance from Native

39

class RMSDFunction : public OptimizerSystem {
public:
 RMSDFunction(const Vector_<Vec3>& pos1, const Vector_<Vec3>& pos2) :
 OptimizerSystem(6), pos1(pos1), pos2(pos2) {
 }
 int objectiveFunc(const Vector& params, const bool new_params,
 Real& f) const {
 Rotation r;
 r.setRotationToBodyFixedXYZ(Vec3(params[0], params[1], params[2]));
 Transform t(r, Vec3(params[3], params[4], params[5]));
 Vector_<Vec3> diff = t*pos1-pos2;
 f = std::sqrt(~diff*diff/pos1.size());
 return 0;
 }
private:
 const Vector_<Vec3>& pos1;
 const Vector_<Vec3>& pos2;
};

The arguments to the constructor contain the atom positions in the two States we want to

compare. We pass 6 to the superclass constructor to tell it that our function has six

parameters to be optimized: three rotation angles and three translation distances.

Now look at objectiveFunc() which calculates the function to be minimized. Each time it is

called, it receives a vector of parameter values. We choose to interpret them as a

transformation applied to pos1. We therefore use them to create a Transform object, which

combines a rotation (represented by a Rotation object) and a translation (represented by a

Vec3):

Rotation r;
r.setRotationToBodyFixedXYZ(Vec3(params[0], params[1], params[2]));
Transform t(r, Vec3(params[3], params[4], params[5]));

We apply it to pos1, take the difference between that and pos2, and calculate the RMSD

exactly as we calculated the radius of gyration in the previous section:

Vector_<Vec3> diff = t*pos1-pos2;
f = std::sqrt(~diff*diff/pos1.size());

An OptimizerSystem can implement other methods as well. If you know how to calculate the

gradient or Jacobian of the function analytically, you can provide methods to calculate them.

This can speed up the optimization quite a bit, especially when there are many parameters.

 RMS Distance from Native

40

If you want to apply constraints to the parameters, you can provide a method to evaluate the

constraint errors. But for simple cases like this one, a single method is all we need.

Now we are ready to write our event reporter. Here it is.

class RMSDReporter : public PeriodicEventReporter {
public:
 RMSDReporter(const CompoundSystem& system, const Compound& compound,
 Real interval) : PeriodicEventReporter(interval), system(system),
 compound(compound) {
 for (Compound::AtomIndex i = Compound::AtomIndex(0); i <
 compound.getNAtoms(); ++i) {
 std::string name = compound.getAtomName(i);
 if (name.size() > 3 && name.substr(name.size()-3) == "/CA")
 atoms.push_back(i);
 }
 }
 void setReferenceState(const State& state) {
 system.realize(state, Stage::Position);
 refPos.resize(atoms.size());
 for (int i = 0; i < atoms.size(); ++i)
 refPos[i] = compound.calcAtomLocationInGroundFrame(atoms[i], state);
 }
 void handleEvent(const State& state) const {
 system.realize(state, Stage::Position);
 Vector_<Vec3> pos(atoms.size());
 for (int i = 0; i < atoms.size(); ++i)
 pos[i] = compound.calcAtomLocationInGroundFrame(atoms[i], state);
 RMSDFunction func(refPos, pos);
 Optimizer opt(func);
 opt.useNumericalGradient(true);
 opt.useNumericalJacobian(true);
 Vector parameters(6, 0.0);
 opt.optimize(parameters);
 Real rmsd;
 func.objectiveFunc(parameters, true, rmsd);
 std::cout<<state.getTime()<<"\t"<<rmsd<<std::endl;
 }
private:
 const CompoundSystem& system;
 const Compound& compound;
 Vector_<Vec3> refPos;
 std::vector<Compound::AtomIndex> atoms;
};

 RMS Distance from Native

41

The constructor is identical to the one in the previous example. After the System has been

created and the State representing the native structure has been created, we must call

setReferenceState(). This looks up the position of every atom and stores them for later use.

Now look at handleEvent(). The first few lines should look very familiar. Once again, we

realize the State and look up the position of every atom. We then create an instance of our

OptimizerFunction, passing to it the two vectors of atomic positions we want to compare:

RMSDFunction func(refPos, pos);

We then create and initialize an Optimizer:

Optimizer opt(func);
opt.useNumericalGradient(true);
opt.useNumericalJacobian(true);

Those last two lines tell the Optimizer how to calculate the gradient and Jacobian of the

objective function. By default, it calls methods on the OptimizerSystem to calculate them.

Since we have not provided any such methods, we tell it to calculate them from numerical

differences instead.

We now create a vector of parameter values and invoke the Optimizer:

Vector parameters(6, 0.0);
opt.optimize(parameters);

The constructor arguments tell it to create a vector of length 6, and to initialize all elements

to 0. On entry, this vector contains the initial parameter values from which to search for a

local minimum. On exit, it contains the values that optimize the objective function.

We now have the optimal parameter values, but we really want to know the corresponding

RMSD. That requires one more call to the RMSDFunction:

Real rmsd;
func.objectiveFunc(parameters, true, rmsd);

 RMS Distance from Native

42

At the time we add the RMSDReporter to our System, we don’t yet have a State representing

the native structure, so we need to keep a reference to it:

RMSDReporter* rmsd = new RMSDReporter(system,
 system.getCompound(Compound::Index(0)), 0.1);
system.updDefaultSubsystem().addEventReporter(rmsd);

Then, after we call createState() on the PDBReader to find the native structure, we can pass

it on to the reporter:

rmsd->setReferenceState(state);

Here is a graph of the RMSD over the course of the simulation:

It fluctuates up and down, but overall is fairly flat. This again shows that the protein is

stable and is not drifting away from the native structure.

